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Summary

The higher criticism is effective for testing a joint null hypothesis against a sparse alternative, e.g., 

for testing the effect of a gene or a genetic pathway that consists of d genetic markers. Accurate p-

value calculations for the higher criticism based on the asymptotic distribution require a very large 

d, which is not the case for the number of genetic variants in a gene or a pathway. In this paper we 

propose an analytic method that accurately computes the p-value of the higher criticism test for 

finite d problems. Unlike previous treatments, this method does not rely on asymptotics in d or 

simulation, and is exact for arbitrary d when the test statistics are normally distributed. The 

method is particularly computationally advantageous when d is not large. We illustrate the 

proposed method with a case-control genome-wide association study of lung cancer and compare 

its power to competing methods through simulations.
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1. Introduction

The higher criticism tests for the joint null hypothesis against the alternative hypothesis that 

signals in a set are sparse. This situation is commonly encountered in genetic association 

studies, where it is often of interest to jointly test the effects of genetic variants within a 

gene, network, or pathway on a disease/trait (Tzeng & Zhang, 2007; Wu et al., 2010). The 

higher criticism adaptively aggregates independent marginal test statistics, and has been 

shown to be an asymptotically powerful test of the joint null hypothesis when signals are 

sparse and are above the detection boundary (Donoho & Jin, 2004; Arias-Castro et al., 

2011). Here asymptotics refers to the number of test statistics, d, tending towards infinity. 

The higher criticism test statistic is the supremum of a standardized empirical process under 

the null hypothesis and follows a Gumbel distribution asymptotically, but its convergence is 

very slow and its p-value cannot be reliably computed analytically based on asymptotic 

theory unless d is very large (Jaeschke, 1979).
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Many practical situations of interest that could benefit from the higher criticism do not have 

a very large d. For example, in genome-wide association studies, one is often interested in 

testing for the effect of genetic variants in a gene or a pathway. The number of genetic 

variants in a gene or a pathway is often not large; it is in the dozens for the vast majority of 

genes across the genome. To test for the joint null hypothesis of no gene or no pathway 

effect, the asymptotic theory-based p-values using the higher criticism are not applicable due 

to the very slow convergence rate to the asymptotic distribution. Simulation of the null 

distribution is computationally burdensome in genome-wide association studies, as tens of 

thousands of genes of different sizes need to be tested, and a control for multiple 

comparisons results in very stringent significance levels. For example, in order to obtain p-

values accurate to the genome-wide significance level of 10−7 for testing 104 genes requires 

at least 1011 test statistics simulated under the null hypothesis.

In this paper we present an analytic method of accurate p-value calculations for the higher 

criticism in non-large d signal detection settings. The proposed method relies neither on 

asymptotics in d nor on simulation of the null distribution. We show that the proposed 

method is exact for an arbitrary d for normally distributed marginal test statistics, and is 

computationally fast for the non-large d settings commonly encountered in genome-wide 

association studies. We evaluate the finite sample performance of the proposed method 

using simulation and demonstrate its effectiveness on data from a case-control lung cancer 

genome-wide association study.

2. The higher criticism and its asymptotic distribution

Consider d normally independent test statistics Z = (Z1, …, Zd)T with means μ = (μ1, …, μd)T 

and unit variance. It is of interest to test the joint null hypothesis that H0 : μ = 0 against the 

alternative that μ is a sparse vector with the number of non-zero entries d0 = d1−β, where β ∈ 

(1/2, 1) (Donoho & Jin, 2004). Letting Φ̄(t) be the survival function of the standard normal 

distribution and , the higher criticism test statistic is

(1)

Under the null hypothesis, HC follows a Gumbel distribution as d → ∞. For large d, gains 

in power can be made by searching for the supremum over a restricted range of t (Donoho & 

Jin, 2004). For 0 < ε < δ < 1, if the supremum in (1) is taken over the interval Φ−1(1 − δ/2) < 

t < Φ−1(1 − ε/2), then, as shown in Jaeschke (1979), we can write

(2)

where ρ = 2−1 log[δ (1 − ε)/{ε(1 − δ)}]. Jaeschke (1979) shows that HC converges in 

distribution at an abysmal rate of O{(log d) −1/2}, so the asmyptotic approximation (2) is 

inaccurate for d as large as 106 as demonstrated through simulations in the Supplementary 

Material. Hence, accurate higher criticism p-values at stringent significance levels for gene 
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or pathway level analysis in genome-wide association studies must be computed without the 

use of asymptotics.

In genetic association studies, the individual marker test statistics Zj within a gene or a 

genetic pathway are often correlated, with covariance Σ, say, which can be estimated from 

the genotypes of a study sample. Letting UUT = Σ be the Cholesky decomposition, then 

under the joint null hypothesis, the transformed statistics U−1Z are uncorrelated standard 

normal random variables and so the higher criticism can be applied directly on these 

transformed test statistics (Hall & Jin, 2010). This is appropriate only when sample size is 

larger than d, which is often the case in gene/pathway level analysis in genome-wide 

association studies.

3. Estimation of p-values for the higher criticism in finite d settings

The higher criticism test rejects the joint null hypothesis for large values of HC. In this 

section we show that finding the supremum does not require an exhaustive search over all t 

> 0. Let HC(t) = {S(t) − d2 Φ̄ (t)}[d2 Φ̄ (t){1 − 2 Φ̄ (t)}]−1/2. Then HC(t) is a piecewise 

increasing function with a local maximum at each observed |Zi|. Hence calculating the 

supremum in the higher criticism test statistic requires finding a maximum over only d 

quantities. Specifically, let h be the observed HC statistic in (1). Letting c(t | h) = h[2d Φ̄ (t)

{1 − 2 Φ̄(t)}]1/2 + 2d Φ̄ (t), the p-value corresponding to a given observed higher criticism 

statistic h is

(3)

At a first glance, evaluating (3) seems to require determining the probability of an 

intersection of an uncountable number of events: one for each t > 0. Without having 

asymptotics in d, we can instead use the fact that S(t) is binomially distributed and can only 

take a finite number of values 0, …, d. This will reduce the intersection in (3) to an 

intersection over a finite number of events, as defined by the partition given in Lemma 1.

Lemma 1

There exists a partition of the positive real line, 0 = t0 < ···< td+1 = ∞, such that c(t | h) > d 

for t0 < t < t1 and d − k < c(t | h) ≤ d − k + 1 for tk ≤ t < tk+1 for each k = 1, …, d.

The proof of Lemma 1 is left to the Appendix. Lemma 1 makes the observation that, as a 

function of t, c(t | h) equals d when t = 0, and then increases to a global maximum before 

decreasing with an asymptote at 0 (Fig. 1). The form of c(t | h) is the same for all h > 0 and 

so in each case the partition in Lemma 1 exists.

We can ignore the case where h = 0, because the p-value then equals 1. For h > 0, using 

Lemma 1, Theorem 1 simplifies (3) to be the joint probability of a finite intersection, which 

is computationally feasible to obtain.

BARNETT and LIN Page 3

Biometrika. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Theorem 1

If 0 = t0 < ···< td+1 = ∞ is the partition given by Lemma 1, then

According to Theorem 1, for the partition given in Lemma 1, (3) simplifies to

(4)

For a given d and h, this partition from Lemma 1 is obtained by solving for tk in the equation 

c(tk | h) = d − k + 1 for each k = 1, …, d. The result is

(5)

which defines the partition.

Evaluating (4) directly is difficult because the d events in the intersection are not 

independent. Instead, by the chain rule for conditioning, the p-value can be written as

(6)

Empirical processes have the Markov property (pg. 3 of Gaenssler, 1983), so, conditional on 

S(tk−1) = mk−1, …, S(t1) = m1, S(tk) is Binomial with denominator mk−1 and probability Φ̄ 

(tk) / Φ̄(tk−1); information about S(tk−2),…, S(t1) has no bearing on the distribution of S(tk) if 

S(tk−1) is known. We can use this to compute the terms in the product of (6) by further 

conditioning on S(tk−1) in the kth term. Letting qk,a = pr{S(tk) = a | S(tk−1) ≤ d − k + 1, …, 

S(t1) ≤ d − 1}, some calculations show that

(7)

From (7), in order to compute qk,a, only knowledge of qk−1,m for m = 0, …, d − k + 1 is 

required. Because q1,a = pr{S(t1) = a} is a binomial probability, q1,a offers a base case for 

calculating the p-value by computing each qk,a for k = 1, …, d and a = 0, …, d − k.

The main result of this paper, Theorem 2, integrates the qk,as into the exact analytic p-value 

calculation of the higher criticism for an arbitrary d.
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Theorem 2

For the partition in (5), the qk,as from (7), and the observed higher criticism statistic h, the p-

value for the higher criticism test statistic (1) is

(8)

Proof—The result follows immediately by the definition of qk,a combined with Theorem 1, 

equation (3) and equation (6).

Remark 1: Obtaining the higher criticism p-value analytically in finite samples is a three-

step process. Firstly, the observed test statistic h is computed by finding the supremum in 

(1), by finding the maximum value attained over all observed test statistics |Zi|. Upon 

computing h, the partition in (5) is computed. Lastly, the qk,as are calculated using this 

partition. As there are d(d + 1)/2 different qk,a terms, each requiring a sum of order d in 

order to be calculated, the total computation time for this last step is O(d3).

Remark 2: The p-value calculation has been implemented in the statistical computing 

software, R, in the package GHC. The precision of this method as well as the inaccuracy of 

the asymptotic p-values is confirmed by Table 1. The computation time in seconds for a 

given d on a 2·30 GHz laptop with 4 Gb memory can be well approximated by the 

polynomial (3 · 69 × 10−4)p − (6 · 98 × 10−6)p2 + (3 · 63 × 10−6)p3. This corresponds to 

0·007 seconds, 0·45 seconds, 28·9 seconds, and 4 hours, for d = 10, 50, 200, and 1000, 

respectively. Table 1 also presents the empirical type I error rates calculated using the 

asymptotic distribution in (2), which are subject to considerable bias.

4. Power Simulations

We compare the power of the higher criticism to competing methods through simulation in 

the context of genetic association studies. An n by d genotype matrix G is generated such 

that the rows are independent and the columns are autocorrelated with correlation parameter 

ρ, where n is the sample size. Marginally, each Gij ~ Binomial(2, 0·3). Letting ε be the n-

vector of independent standard normal noise and β be the d-vector of regression coefficients, 

the phenotypes are generated according to y = Gβ + ε. The test for the association between 

the jth genetic variant and y is  where Gj is the jth column of G 

and σ̂2 is the sample variance.

Power is calculated for a region of size d = 40, with 10% and 5% sparsity with 

autocorrelation ρ = 0, 0·05, 0·1, 0·15, 0·2, 0·25, 0·3, 0·35. In each setting, 1000 iterations 

resulted in power estimates. For each iteration, causal variants were selected at random. If 

the jth variant is causal, it has βj = 0·11 for the 5% sparsity case and βj = 0·08 for the 10% 

sparsity case. If the jth variant is non-causal then βj = 0. In the cases where ρ > 0, the test 

statistics must first be decorrelated, as in Hall & Jin (2010), so that the higher criticism is 

applied instead to U−1/2Z. The sequence kernel association test of Wu et al. (2010) is 
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provided as a comparison alongside the standard likelihood ratio test, and the results are in 

Fig. 2.

The higher criticism has the highest power in the higher sparsity situations, while the 

likelihood ratio test and the sequence kernel association test have higher power for lower 

sparsity. The sequence kernel association test seems to benefit greatly from increased 

correlation, while the higher criticism loses power as ρ increases, because the transformation 

U−1/2Z deflates some of the signal for larger ρ, leading to lower power. Overall, it seems that 

all three methods can be viable. The higher criticism is a good complement to the other 

methods, and performs better in the presence of weak correlation among the variants and 

sparse signals.

5. Data analysis

We apply our p-value computation of the higher criticism to a case-control lung cancer 

genome-wide association study conducted at the Massachusetts General Hospital, which 

aims at identifying genes that are associated with the risk of non-small-cell lung cancer. The 

study consists of a total of 984 cases and 970 controls. We use the higher criticism to test for 

the association of lung cancer risk and each gene, which consists of multiple genetic 

variants. We analyze 14396 genes throughout the genome with d = 20 genetic variants per 

gene on average. 92% of genes have d < 50 genetic variants, with the largest d being 1665.

For each gene, we calculate the marginal test statistics Zj (j = 1, …, d) for genetic variant j 

by fitting a logistic regression model of case-control status on the genetic variant j while 

controlling for age, sex, smoking, and principal components for population stratification 

(Price et al., 2006). As in Section 3, the marginal test statistics corresponding to the genetic 

variants within the same gene are decorrelated using the Hall & Jin (2010) approach.

Three of the top most significant genes in this analysis were CHRNA5, MYH10, and 

CLPTM1L, which have been independently found to be associated with lung cancer in 

previous studies (Spitz et al., 2008; Zienolddiny et al., 2009; Wang et al., 2012). For the 

CHRNA5, MYH10, and CLPTM1L genes, the higher criticism p-values are 6·37 × 10−4, 

6·42 × 10−4, and 1·29 × 10−2; the sequence kernel association test p-values are 8·19 × 10−4, 

0·41, and 1·54 × 10−5; and the likelihood ratio test p-values are 4·92 × 10−3, 1·96 × 10−3, 

and 7·05 × 10−4, respectively.

As observed in the power simulations of Section 3, the higher criticism test and the sequence 

kernel association test complement each other for these most significant genes. In order to 

correct for multiple comparisons, the higher criticism can be used for signal identification in 

a hierarchical fashion on the 14396 p-values (Donoho & Jin, 2008). A threshold is set at the 

point where the test statistics attain the supremum for the higher criticism and all genes with 

test statistics more extreme than that threshold are declared to be disease-associated. This 

procedure controls for the false non-discovery rate (Ahdesmki & Strimmer, 2009). In our 

case this procedure selected the four most significant genes.

As a clear example of why the asymptotic distribution of the higher criticism can be wildly 

inaccurate for finite d settings, the asymptotic p-values for CHRNA5, MYH10, and 
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CLPTM1L are 5·97 × 10−72, 3·83 × 10−64, and 3·27 × 10−12, respectively. These 

inaccuracies are amplified in the tails of the distribution which is why the asymptotic p-

values differ by so many orders of magnitude from the exact p-values obtained from 

Theorem 2.

6. Discussion

The proposed analytic method for calculating the p-value of the higher criticism is exact for 

any arbitrary finite d for normally distributed test statistics. It is computationally fast for the 

common non-large d settings encountered in gene-level analysis in genome-wide association 

studies. For non-normally distributed outcomes, such as binary outcomes in case-control 

studies, accuracy of the proposed calculations depends on the accuracy of the normality 

approximation of individual marginal test statistics. For large sample sizes, which is often 

the case in genome-wide association studies, the normality assumption of individual test 

statistics holds quite well and the proposed p-value calculations for an arbitrary d have high 

accuracy.

While the vast majority of genes in the genome will have only dozens of genetic variants, 

there may be a very few large genes with d in the thousands. For these large genes, 

simulating the null distribution could be less of a computational burden than the analytic p-

value calculation given by Theorem 2. Hence a mixture of both techniques could lead to a 

faster overall analysis of genome-wide association data. For example, Theorem 2 could be 

used to calculate p-values unless the gene has d > 500 in which case simulation of the null 

distribution could be used to obtain the p-value. In the presence of correlation, the 

decorrelation transformation (Hall & Jin, 2010) could dampen the non-null signals when the 

correlation between some of the marginal test statistics is moderate or strong. It would be of 

future interest to develop an alternative higher criticism method to account for the 

correlation more effectively to improve the test power.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix 1. Proof of Lemma 1

Proof

Recall that c(t | h) = h[2d Φ̄ (t){1 − 2 Φ̄ (t)}]1/2 + 2dΦ̄ (t). By letting t → 0, we see that h ≥ 0 

and the p-value in this case is 1. Considering a fixed h > 0, we evaluate the behavior of c(t | 

h). We have, c(0 | h) = d, limt→∞ c(t | h) = 0, and the first derivative is

Letting tmax = Φ−1[1 − {1 + d(h2 + d) −1}/4], we can see that c(t | h) is increasing on 0 < t < 

tmax, achieves its maximum at tmax, and is decreasing on tmax < t < ∞ approaching 0. This 

along with c(0 | h) = d and c(t | h) being continuous gives the result.

Appendix 2. Proof of Theorem 1

Proof

We need only consider t ≥ t1 rather than take the intersection over all t > 0. Because c(t | h) > 

d for 0 < t < t1, and as S(t) ≤ d, S(t) must be less than c(t | h) for every t ∈ (0, t1) with 

probability 1. Therefore
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As S(t) an integer-valued non-increasing function of t, we have for each k in 1, …, d that

Using this and breaking the intersection into its partition

the results follow.

BARNETT and LIN Page 9

Biometrika. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
An example c(t | h) = h[2d Φ̄ (t){1 − 2 Φ̄ (t)}]1/2 + 2dΦ̄ (t) is plotted with d = 6 and h = 2.4. 

The partition given by Lemma 1 is labeled on the t-axis.
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Fig. 2. 
The power for various methods are compared. The higher criticism applied to the 

decorrelated test statistics is represented by the solid line. The likelihood ratio test is 

represented by the dotted line. The sequence kernel association test is represented by the 

dashed line. Power is simulated for each ρ that is a nonnegative multiple of 0·05 and the 

smoothed results are displayed. Signal sparsity is 5% with β = 0.11 in the left plot with 

signal sparsity 10% with β = 0.08 in the right plot.
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Table 1

Empirical type I error rate percentages from 106 simulations for the higher criticism using the proposed 

analytic method over a range of significance levels, α. Asymptotic type I error rate percentages are provided 

for comparison: exact(asymptotic).

d

α 2 10 50

5·0 4·98(5·95) 4·98(3·24) 5·01(1·84)

1·0 1·00(2·24) 9·92 × 10−1(7·31 × 10−1) 1·01(1·59 × 10−1)

1·0 × 10−1 9·97 × 10−2(2·05 × 10−1) 1·01 × 10−1(6·03 × 10−2) 9·75 × 10−2(4·90 × 10−3)

1·0 × 10−2 1·01 × 10−2(5·32 × 10−2) 1·12 × 10−2(7·30 × 10−3) 9·80 × 10−3(4·00 × 10−4)
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