
Setting Up the JBrowse Genome Browser

Mitchell E Skinner1 and Ian H Holmes2

1Institute for Quantitative Biosciences, UC Berkeley

2Department of Bioengineering, UC Berkeley

Abstract

JBrowse is a web-based tool for visualizing genomic data. Unlike most other web-based genome

browsers, JBrowse exploits the capabilities of the user's web browser to make scrolling and

zooming fast and smooth. It supports the browsers used by almost all internet users, and is

relatively simple to install. JBrowse can utilize multiple types of data in a variety of common

genomic data formats, including genomic feature data in bioperl databases, GFF files, and BED

files, and quantitative data in wiggle files. This unit describes how to obtain the JBrowse software,

set it up on a Linux or Mac OS X computer running as a web server and incorporate genome

annotation data from multiple sources into JBrowse. After completing the protocols described in

this unit, the reader will have a web site that other users can visit to browse the genomic data.

Keywords

genome browser; visualization; jbrowse; gff; bed; wiggle; genbank

INTRODUCTION

JBrowse (Skinner et al. 2009) is a compact and easily-installed software package for the

web-based browsing of genomes and genome annotations.

Like other genome browsers, such as the UCSC browser (Unit 1.4; Kent et al. 2002) or

GBrowse (Unit 9.9; Stein et al. 2002), JBrowse enables the user to visualize discrete features

Contributed by Shonda A. Leonard (discussion of FASTA and GenBank file formats)
Timothy G. Littlejohn (discussion of NCBI descriptor lines) IBM Life Sciences St. Leonards, NSW, Australia
Andreas D. Baxevanis (discussion of PHYLIP, MSF, and NEXUS file formats) Bethesda, Maryland

This article describes in detail how JBrowse works and why.

Internet Resources
http://jbrowse.org/
The main JBrowse web site; has links to the JBrowse code, documentation, email lists, publications, and other internet resources
relevant to JBrowse.

DISCLAIMER
This component of this unit by Dr. Andreas D. Baxevanis was written in his private capacity. No official support or endorsement by
the National Institutes of Health or the United States Department of Health and Human Services is intended or should be inferred.

INTERNET RESOURCES
http://iubio.bio.indiana.edu/cgi-bin/readseq.cgi
ReadSeq biosequence interconversion tool.
http://www.ebi.ac.uk/clustalw
ClustalW multiple sequence alignment interface.

HHS Public Access
Author manuscript
Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

Published in final edited form as:
Curr Protoc Bioinformatics. 2010 December ; 0 9: Unit–9.13. doi:10.1002/0471250953.bi0913s32.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://jbrowse.org/
http://iubio.bio.indiana.edu/cgi-bin/readseq.cgi
http://www.ebi.ac.uk/clustalw

and gene structures alongside quantitative information. Unlike other web-based genome

browsers, with JBrowse, the web browser (e.g., Firefox, Internet explorer, Safari, etc.) does

most of the work; this allows the user to interact with the data without having to wait for the

server to respond. This approach of moving work from the web server to the web browser

makes JBrowse simpler to set up and maintain than other browsers, while being faster and

easier to utilize due to the use of advanced client-side user interface enhancements. JBrowse

is part of the Generic Model Organism Database (GMOD) project (www.gmod.org), a suite

of tools for generating and maintaining genomic databases. Like the other tools in GMOD

project (of which it is a part), JBrowse is a piece of software that you install yourself and use

with your own data. This is in contrast to services such as the UCSC genome browser (Unit

1.4; Kent et al. 2002) or the Ensembl genome browser (Unit 1.15; Hubbard et al. 2007),

which focus mainly on hosting the most-in-demand genomes with rather more limited scope

for adding your own data.

Each of the protocols here describes a different way of setting up a JBrowse instance. Such

an “instance” is a copy of the JBrowse software combined with genomic data for an

organism, placed on a server so that an end user can visit the site in their web browser and

browse a genome. Basic Protocol 1 describes setting up a JBrowse instance for genome

annotations stored in the common FASTA, GFF3, and/or BED formats. Alternate Protocol 1

describes an alternate way to set up JBrowse, for genome annotations that are stored in a

relational database. Alternate Protocol 2 describes the process of setting up a JBrowse

instance from a Genbank record. Support Protocol 1 describes the initial installation process

for JBrowse and its dependencies.

BASIC PROTOCOL 1

SETTING UP A JBROWSE INSTANCE USING FLATFILES AS A DATA SOURCE

This protocol will walk through the installation of JBrowse and setup process, assuming that

the user has already successfully completed the installation steps in Support Protocol 1.

In JBrowse, software running in the web browser downloads specially-formatted data files

from the server and displays a visual representation of them. The process of setting up a

JBrowse instance involves running the programs that come with JBrowse to generate those

specially-formatted data files from some data source.

After JBrowse is downloaded and installed (see Support Protocol 1), the JBrowse directory

contains a file named “index.html”. This file is the main HTML front-end to JBrowse, and

will (eventually) be displayed in the end user's web browser (e.g. Firefox). However, before

it is ready to do this, the user will need to add some genomic data.

JBrowse supports a variety of data sources; it uses the same underlying BioPerl machinery

as the GBrowse genome browser, and therefore supports all of the same data sources. In

addition to genomic databases (described in Alternate Protocol 1), JBrowse supports several

flat-file formats, including FASTA (Appendix 1B) for reference sequence data and GFF3

and BED for genomic feature data.

Skinner and Holmes Page 2

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.gmod.org

Broadly speaking, the GFF3 and BED formats are used to store similar data--mainly, the

boundaries of genomic features such as genes (for example, a line in a GFF3 or BED file

might describe the gene TP53 and state that it is found on chromosome 17 from bases

7,571,720 to 7,590,863). Beyond such basic feature information, though, the two formats

differ; GFF3 files can contain richer information about each feature, and can describe multi-

level feature hierarchies (e.g., a gene feature being the parent of a transcript feature, which

itself is the parent of several exon, intron, and CDS or UTR features). BED, on the other

hand, is simpler and more limited in the kinds of data it can store and the depth of the

feature hierarchies. Both formats are commonly used to store and communicate genomic

feature information. JBrowse can use either one, or both.

Each feature in the GFF3 format consists of a line of text, containing several columns

separated by tab characters; here are a few lines from the example GFF3 file included with

JBrowse:

ctgA example remark 13280 16394 . + . Name=f08

ctgA example remark 15329 15533 . + . Name=f10

A brief description of the GFF3 columns is shown in Table 9.13.1; for full details refer to

the specification: http://www.sequenceontology.org/gff3.shtml.

The BED format is an alternative to GFF3. The BED format also represents each feature by

a line containing tab-separated columns. Here are a few example lines:

ctgA 1659 1984 f07 . +

ctgA 3014 6130 f06 . +

ctgA 4715 5968 f05 . -

ctgA 13280 16394 f08 . +

ctgA 15329 15533 f10 . +

The columns of the BED format are briefly described in Table 9.13.2. For full details, refer

to the format FAQ from UC Santa Cruz: http://genome.ucsc.edu/FAQ/FAQformat.html.

This protocol utilizes the term “user” to describe the person installing JBrowse and

importing data into a JBrowse instance; the phrase “end user” will describe the person who

visits that JBrowse instance in their web browser. In this protocol, the user will set up an

instance of JBrowse using the included example data. The tutorial example refers to the

“volvox” genome, but the sequence and all annotation data is simulated and does not

correspond to volvox or any other living organism.

Necessary Resources—Hardware

Linux or Mac OS X machine

RAM – roughly 512 megabytes; more for large data sets

Internet connection

Software

Skinner and Holmes Page 3

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sequenceontology.org/gff3.shtml
http://genome.ucsc.edu/FAQ/FAQformat.html

Installation of all necessary software is described in Support Protocol 1.

1. Import reference sequence data into the JBrowse instance. To do this, first open a

terminal window, go into the JBrowse directory, and then run the prepare-refseqs.pl

program from the command line (the “$” symbol represents the Unix shell prompt).

$ cd <JBrowse directory>

$ bin/prepare-refseqs.pl --fasta docs/tutorial/data_files/

volvox.fa

Where <JBrowse directory> is the directory created in Support Protocol 1;

commonly /var/www/html/jbrowse (on Red Hat/CentOS/Fedora

machines), /var/www/jbrowse (on Ubuntu), or /Library/WebServer/Documents/

jbrowse (on OS X).

If an end user visits the JBrowse instance now, they should see the JBrowse UI

(user interface) elements: buttons for zooming and scrolling, a drop-down box for

selecting a reference sequence, and a box showing the current genomic location

being viewed. If the end user zooms in all the way, they should see DNA sequence

data (Figure 9.13.1).

To see this, load or reload the “index.html” page in your browser.

2. It is now time to add some genomic feature tracks. Run bin/flatfile-to-json.pl to add

the gene track:

$ bin/flatfile-to-json.pl --tracklabel gene --key “Gene” --

gff docs/tutorial/data_files/volvox.gff3 --cssclass feature2

--getLabel --type gene --autocomplete all

This step uses the command-line arguments shown in Table 9.13.3. Note that this

example command wraps across several lines, but should be entered as a single

line. You may use the backslash (“\”) character to continue the command across

several lines.

If an end user visits the JBrowse instance in their web browser, then they'll see a

new track as shown in Figure 9.13.2.

In JBrowse, genomic feature data is organized into tracks, which usually contain

features of the same or similar types. For example, there might be a “transcript”

track, an “EST” track, and a “SNP” track. JBrowse's bin/flatfile-to-json.pl program

takes as input a file with genomic feature data and also takes some command-line

arguments that specify how to process the file, and uses those inputs to generate

JBrowse's data files for one track. If the user wants to create multiple tracks, they

can run the program multiple times and specify different settings each time.

3. Run bin/flatfile-to-json.pl again, with different arguments, to create a new track

from a BED file (Figure 9.13.3):

Skinner and Holmes Page 4

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

$ bin/flatfile-to-json.pl --bed docs/tutorial/data_files/

volvox-remark.bed --tracklabel remark --key “Remark” --

cssclass feature3 --getLabel --autocomplete label

4. 4. Add a quantitative track using bin/wig-to-json.pl (Figure 9.13.4):

$ bin/wig-to-json.pl --wig

docs/tutorial/data_files/volvox_microarray.wig --tracklabel

wiggle_example --key “20 degrees, 2 hr”

JBrowse also supports visualizing quantitative data in the “wiggle” format. This

type of data is useful for dense quantitative data like transcription level data (e.g.,

from microarrays or RNA-seq). If you have data with a numeric value at a series of

genomic locations, that data can be put into a wiggle file. The genomic locations

can be specified in a few different ways as described at http://genome.ucsc.edu/

goldenPath/help/wiggle.html, but the wiggle file used in this protocol is in the

simplest format. Here are a few lines from the example wiggle file included with

JBrowse; the first line specifies that this file contains data points that are separated

by a fixed distance (indicated below by “fixedStep”); the data points are 100 bases

wide (indicated by “span=100”), starting at base 1 (indicated by “start=1”) and

occurring every 100 bases thereafter (indicated by “step=100”):

fixedStep chrom=ctgA start=1 step=100 span=100

281

183

213

191

288And this is how the result looks:

5. Run the bin/generate-names.pl program to enable the end user to search for feature

names or identifiers:

$ bin/generate-names.pl

This step enables end users to search for specific features by name. Earlier in this

protocol the –autocomplete option passed to flatfile-to-json.pl caused this

program to generate lists of feature names (in addition to the locations of the

associated features) and place them in separate track files. The generate-names.pl

program takes all of the separate per-track lists of names, collects them together,

and generates another set of specially-formatted files. Those files allow the web

browser to search for a specific feature name or ID. If generate-names.pl generates

no error messages, that means the program has completed successfully. If an end

user visits the page now, enters a feature name (e.g., “f05”) into the text box that

shows the current genomic location, and clicks “Go”, they'll be taken to that

feature.

Skinner and Holmes Page 5

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://genome.ucsc.edu/goldenPath/help/wiggle.html
http://genome.ucsc.edu/goldenPath/help/wiggle.html

ALTERNATE PROTOCOL 1

SETTING UP A JBROWSE INSTANCE USING A RELATIONAL DATABASE AS THE DATA
SOURCE

JBrowse can also access data in any of the databases that work with the BioPerl Bio::DB

API. Two common database schemas that support that API are the chado schema and the

Bio::DB::SeqFeature::Store schema. This protocol describes using JBrowse with

Bio::DB::SeqFeature::Store and the MySQL database server.

Necessary Resources—Hardware

Linux or Mac OS X machine

RAM – roughly 512 megabytes; more for large data sets

Internet connection

Software

Installation of all necessary software is described in Support Protocol 1.

1. Create the database using the mysql command-line tool:

$ mysql -u root

mysql> create database jbrowse_example;

Query OK, 1 row affected (0.00 sec)

mysql> grant all on jbrowse_example.* to "@'localhost';

Query OK, 0 rows affected (0.00 sec)

2. Load the database using BioPerl's bp_seqfeature_load.pl script

$ bp_seqfeature_load.pl –dsn=dbi:mysql:jbrowse_example --

adaptor=DBI::mysql --fast --create docs/tutorial/data_files/

volvox.fa

docs/tutorial/data_files/volvox.gff3

In Basic Protocol 1, the user runs the bin/flatfile-to-json.pl program once per track.

This protocol, by contrast, uses one program that generates multiple tracks from a

data source. The detailed settings for each track (supplied as command-line

arguments in Basic Protocol 1) are instead specified in a configuration file. This

configuration file is helpful if the user runs the JBrowse programs repeatedly (for

example, if the data source is updated with new data) then the configuration file is a

convenient place to store those track-specific settings.

The JBrowse distribution includes an example configuration file; however, it needs

to be adjusted to work with the database that the user created in steps 1 and 2 of

this protocol (see step 3).

3. Edit the example configuration file. Find the “db_args” setting and change it from:

Skinner and Holmes Page 6

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

“db_args”: { “-adaptor”: “memory”,

 “-dir”: “docs/tutorial/data_files” },

To:

“db_args”: { “-adaptor”: “DBI::mysql”,

“-dsn”: “dbi:mysql:jbrowse_example” },

This tells JBrowse that the database is a MySQL database, and, of the mysql

databases on the machine, to use the one called “jbrowse_example”.

Most of the remaining of the file contains the per-track settings. These mostly

correspond to the command-line parameters used with the flatfile-to-json.pl

program described in Basic Protocol 1 (Table 9.13.3).

4. As in Basic Protocol 1, use the prepare-refseqs.pl program to import reference

sequence data into this JBrowse instance:

$ bin/prepare-refseqs.pl --conf docs/tutorial/conf_files/

volvox.json --refs ctgA

This performs the same function that this program served in Basic Protocol 1, but

uses different command-line arguments. The --conf command-line argument

specifies the configuration file; the --refs command line argument gives the

names of the reference sequences in the format of a comma-separated list (for

example, if there was a second contig named “ctgB”, the --refs argument would

then be ctgA,ctgB).

5. Run bin/biodb-to-json.pl to extract data from the database and add it to this

JBrowse instance.

$ bin/biodb-to-json.pl --conf docs/tutorial/conf_files/

volvox.json

6. Run generate-names.pl to enable name/ID searching:

$ bin/generate-names.pl

ALTERNATE PROTOCOL 2

SETTING UP A JBROWSE INSTANCE USING NCBI GENBANK FILES AS A DATA SOURCE

JBrowse does not directly support files in genbank formats, but a bioperl conversion

program can take genbank files and create GFF3 files that JBrowse can process. This

protocol walks through the process of taking a genbank file, converting it into GFF3, and

incorporating it into a JBrowse instance.

Necessary Resources—Hardware

Linux or Mac OS X machine

Skinner and Holmes Page 7

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

RAM – roughly 512 megabytes; more for large data sets

Internet connection

Software

Installation of all necessary software is described in Support Protocol 1.

Files

From

ftp://ftp.ncbi.nih.gov/genomes/Saccharomyces_cerevisiae/CHR_I/

download the file:

NC_001133.gbk

NOTE: Data can be imported into JBrowse from GenBank .gbk files, by converting

those files into GFF3 with scripts from BioPerl.

1. Use the BioPerl bp_genbank2gff3.pl script to generate a GFF3 file:

$ bp_genbank2gff3.pl NC_001133.gbk

2. Edit the generated file, named NC_001133.gbk.gff, and change this line:

sequence-region NC_001133 1 230208

to the following:

##sequence-region NC_001133 1 230208

This corrects a small bug in the bp_genbank2gff3.pl script.

3. Go into the JBrowse directory and use bin/prepare-refseqs.pl to initialize the

JBrowse instance. JBrowse comes with a suitable configuration file (named

yeast_genbank.json) in the docs/examples/config directory:

$ bin/prepare-refseqs.pl --conf docs/examples/config/

yeast_genbank.json --refs NC_001133

4. Use bin/biodb-to-json.pl to populate the tracks:

$ bin/biodb-to-json.pl --conf docs/examples/config/

yeast_genbank.json

5. Make the features searchable with bin/generate-names.pl:

$ bin/generate-names.pl

SUPPORT PROTOCOL 1

DOWNLOADING/INSTALLING JBROWSE

The protocol describes how to obtain and install the JBrowse software and its prerequisites.

After performing the steps in this protocol, the user should be able to go on to Basic

Protocol 1, or Alternate Protocols 1 or 2.

Skinner and Holmes Page 8

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ftp://ftp.ncbi.nih.gov/genomes/Saccharomyces_cerevisiae/CHR_I/

Necessary Resources—Hardware

Linux or Mac OS X machine

RAM – roughly 512 megabytes; more for large data sets

Internet connection

1. Install perl and related packages. These are usually available from your operating

system provider; the way to install them depends on your operating system. This

protocol describes how to install the necessary software on the Red Hat, CentOS,

Fedora, and Ubuntu flavors of Linux, and on Apple's Mac OS X operating system.

Red Hat/CentOS/fedora:

$ sudo yum install perl

Ubuntu:

$ sudo apt-get install perl

OS X:

You don't need to do anything on OSX; Perl is installed by default.

2. For quantitative tracks, you need to install a C++ compiler program, the ‘make’

program, the ‘libpng’ library, and the libpng header files. As with Perl, these are

usually provided by your operating system provider:

Red Hat/CentOS/fedora:

$ sudo yum install gcc-c++ make libpng libpng-devel

Ubuntu:

$ sudo apt-get install g++ make libpng12-0 libpng12-dev

OS X:

For the C++ compiler and ‘make’ program, you need to install XCode tools,

either using the install CD/DVD that came with your computer, or by

downloading them directly from Apple at http://developer.apple.com/.

The ‘libpng.dylib’ library file and ‘png.h’ header file should already be installed in

directories /usr/X11R6/lib and /usr/X11R6/include, respectively.

3. Install the necessary perl modules from CPAN:

$ sudo cpan

cpan> install CJFIELDS/BioPerl-1.6.1.tar.gz JSON JSON::XS

4. For Alternate Protocol 1, install MySQL:

Red Hat/CentOS/fedora:

$ sudo yum install mysql perl-DBD-MySQL

Ubuntu:

Skinner and Holmes Page 9

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://developer.apple.com/

$ sudo apt-get install mysql-server libdbd-mysql-perl

OS X:

There are multiple ways of installing MySQL on OS X; the easiest is to go to

the MySQL Downloads website (http://dev.mysql.com/downloads/mysql/) and

download a ‘.dmg’ (disk image) file containing the MySQL server.

5. Download a zipfile from github, containing the JBrowse source code. You can do

this by pointing your web browser at: http://github.com/jbrowse/jbrowse/zipball/

master.

Alternatively, you can download the zipfile directly from the command line, using

the ‘wget’ utility, if it is installed on your system:

$ wget http://github.com/jbrowse/jbrowse/zipball/master

6. Uncompress the zip file downloaded in the previous step

$ unzip jbrowse*.zip

7. Build the quantitative track (wiggle) renderer:

Red Hat/CentOS/Fedora/Ubuntu:

$ cd jbrowse*

$./configure

$ make

OS X:

$ cd jbrowse*

$./configure

$ make GCC_LIB_ARGS=-L/usr/X11R6/lib GCC_INC_ARGS=-I/usr/

X11R6/include

8. Move the JBrowse directory to where it will be served by the web server:

Red Hat/CentOS/fedora:

$ cd ..

$ sudo mv jbrowse*/ /var/www/html/jbrowse

Ubuntu:

$ cd ..

$ sudo mv jbrowse*/ /var/www/jbrowse

OS X:

$ cd ..

$ sudo mv jbrowse*/ /Library/WebServer/Documents/jbrowse

Skinner and Holmes Page 10

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dev.mysql.com/downloads/mysql/
http://github.com/jbrowse/jbrowse/zipball/master
http://github.com/jbrowse/jbrowse/zipball/master
http://github.com/jbrowse/jbrowse/zipball/master

9. To check that the JBrowse instance is accessible, go to http://localhost/jbrowse in

your web browser. You should see a completely blank page; this page will be

populated when you add a genome sequence and tracks as described in Basic

Protocol 1.

GUIDELINES FOR UNDERSTANDING RESULTS

The results of running each major step of Basic Protocol 1 can be seen in the figures

referenced within that section. After completing Support Protocol 1, and after each major

step of Basic Protocol 1, a web browser can be pointed at the URL corresponding to the

jbrowse installation, providing immediate feedback on the success or failure of that step:

a. Following installation (Support Protocol 1), a web browser pointing at the

appropriate URL (typically http://localhost/jbrowse) should display a blank page.

Some JavaScript errors may be displayed in the console. If, instead of a blank page,

you get an error such as “403 Forbidden” or “404 Not Found”, then there may

problems with your installation (see Troubleshooting).

b. After adding the sequence data, reloading the web page should yield a view similar

to that shown in Figure 9.13.1.

c. After adding a gene annotation track, and successive annotation tracks, reloading

the web page should yield a view similar to that shown in Figures 9.13.2 and

9.13.3.

After adding a quantitative (Wiggle) track, reloading the web page should yield a view

similar to that shown in Figure 9.13.4.

Problems, and potential resolutions to those problems, are described below in the

“Troubleshooting” section.

COMMENTARY

Background Information

A variety of web-based genome browsers have existed for several years. Those systems

generally have database engines running on the web server alongside a body of genome-

browser software. When a user visits a genome browser page, that software queries the

database and draws a picture of a genomic region and sends that picture to the web browser,

which just displays it.

Over the last ten years, however, many software systems have begun to shift work away

from the web server and onto the user's web browser. Having part of the application running

on the user's machine allows for much richer interaction between the user and the

application. It also reduces the amount of work that the server must do, which reduces or

eliminates the time users have to spend waiting for the server to respond.

JBrowse is an example of this shift; it does part of the work on the server but moves the bulk

of the work to the user's web browser. The initial server-side work that JBrowse does

(getting data from some data source) is almost the same as the first part of what GBrowse

Skinner and Holmes Page 11

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://localhost/jbrowse
http://localhost/jbrowse

(Unit 9.9) does. In fact, JBrowse uses many of the same software components for data

access that were built for the GBrowse genome browser. This sharing and reuse of software

is one of the ways that JBrowse builds on the work done for GBrowse, and it means that

JBrowse is compatible with the same set of data sources as GBrowse.

The next step differs, however, instead of using that data to draw a picture on the server,

JBrowse uses it to create files on the server that the web browser downloads and uses to

present a graphical representation of a region of a genome. In addition to the advantages

listed above, this approach simplifies the server environment, which helps make JBrowse

simple to set up. When a user visits a JBrowse instance, the server does not have to run any

JBrowse software; it just sends the files that were created in advance by the JBrowse

programs. Many web hosting environments enable users to put such static files online, but

restrict the user's ability to install and run software. JBrowse can be used in those

environments; all the user has to do is install and run JBrowse on their own computer and

then upload the resulting JBrowse instance to the server.

The main (“master”) version of JBrowse currently handles tracks with tens of thousands of

features per reference sequence, but does not deal well with tracks like human EST or SNP

tracks with millions of features. The version currently in development handles tracks of this

size by downloading regions only when they are needed; as of this writing the largest tracks

tested with the development version of JBrowse have contained next-generation sequencing

read data with tens of millions of features per reference sequence.

Critical Parameters and Troubleshooting

If you encounter problems with JBrowse, the best thing to do is to consult the email list, first

by searching the archive here: http://gmod.827538.n3.nabble.com/JBrowse-f815920.html.

And then, if you don't see any messages that solve your problem, send a message to the list

at gmod-ajax@sourceforge.net.

Common problems that users encounter include:

1. The JBrowse programs fail with an error message -- there are multiple reasons why

this can happen; the main ones are:

A. Running programs from outside of the JBrowse directory -- JBrowse works

best if the programs are run from within the JBrowse directory (the directory

that contains the index.html file) as shown above.

B. Missing or outdated dependencies -- Some JBrowse programs use parts of

BioPerl in which bugs have recently been fixed. Using the latest available

stable version of BioPerl (1.6.1 as of this writing) will help avoid problems.

2. When a user visits a JBrowse instance in their web browser, they get a 403

(Forbidden) error -- This can arise as a result of restrictive permissions in the

JBrowse directory; to fix it, try going into the JBrowse directory and changing the

permissions of all files so as to be readable by Unix users other than yourself, as

follows:

Skinner and Holmes Page 12

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://gmod.827538.n3.nabble.com/JBrowse-f815920.html
http://gmod-ajax@sourceforge.net

$ chmod −R o+r .

3. Subfeatures not showing up -- Subfeatures (such as exons in a transcript) are, by

default, not included in the files that JBrowse generates. To include them, specify --

getSubs (for flatfile-to-json.pl) or “subfeatures”: true in the config file (for biodb-

to-json.pl).

Acknowledgements

The authors wish to thank Lincoln Stein for suggesting this article, and Oscar Westesson and Dave Clements for
their comments on the manuscript. This work was funded by NIH grant HG004483.

APPENDIX 1B

Common File Formats

This appendix discusses a few of the file formats frequently encountered in bioinformatics.

FASTA FILES

FASTA files may contain DNA, RNA, or protein sequences. In each case, the sequence is

written in the standard IUPAC single-letter codes (APPENDIX 1A), with the following

exceptions:

Lowercase letters are accepted;

A hyphen (−) represents a gap of indeterminate length;

The letter U represents selenocysteine in protein sequences;

An asterisk (*) in a protein sequence indicates a translation stop.

A FASTA file may contain one or more sequences. A file with multiple sequences is called

a multi-FASTA file. The first line, or descriptor line (see discussion below), of each new

entry begins with a greater-than sign (>), followed by a single-line description of the

sequence that follows. This title line may be any length, including simply the greater-than

sign followed by no additional characters. Subsequent lines contain the sequence (Fig. A.1B.

1). It is recommended that sequence lines be less than 80 characters.

NCBI Descriptor Lines

In typical NCBI descriptor lines, pipe (“|”) characters delineate key fields. For example:

>gi|532319|pir|TVFV2E|TVFV2E envelope protein

The syntax of NCBI sequence FASTA format descriptor lines depends on the database from

which each sequence was obtained. Table A.1B.1 lists the identifiers for the databases from

which the sequences were derived.

“gi” identifiers are being assigned by NCBI for all sequences contained within NCBI's

sequence databases. The “gi” identifier provides a uniform and stable naming convention

whereby a specific sequence is assigned its unique gi identifier. If a nucleotide or protein

sequence changes, however, a new gi identifier is assigned, even if the accession number of

Skinner and Holmes Page 13

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the record remains unchanged. Thus gi identifiers provide a mechanism for identifying the

exact sequence that was used or retrieved in a given search.

Figure A.1B.1.
A sample FASTA file that contains the sequences for two homologous proteins, actophorin

and yeast cofilin. Note that a greater-than sign (>) designates the beginning of each entry

and that each of the lines of sequence contains less than 80 characters.

Table A.1B.1

Identifiers to be Used With Sequence Databases

Database name Identifier syntax

GenBank gb|accession|locus

EMBL Data Library emb|accession|locus

DDBJ (DNA Database of Japan) dbj|accession|locus

NBRF PIR pir||entry

Protein Research Foundation prf||name

SWISS-PROT sp|accession|entry name

Brookhaven Protein Data Bank pdb|entry|chain

Patents pat|country|number

GenInfo Backbone identifier bbs|number

General database identifier gnl|database|identifier

NCBI Reference Sequence ref|accession|locus

Local sequence identifier lcl|identifier

In the example above, 532319 is the gi accession number, TVFV2E is the PIR accession

code, and TVFV2E envelope protein is the description of the sequence. Note that in this

case there are two accession codes (a gi number and a PIR code).

The gnl (“general”) identifier allows databases not on the above list to be identified with the

same syntax. An example here is the PID identifier:

gnl|PID|e1632

PID stands for Protein ID; the e (in e1632) indicates that this ID was issued by EMBL. The

pipe (“|”) separates different fields as listed in the above table. In some cases, a field is left

Skinner and Holmes Page 14

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

empty, even though the original specification called for including this field. To make these

identifiers backwardly compatible for software applications that expect these fields, the

empty field is denoted by an additional pipe (“||”).

GenBank FLAT FILES

GenBank Files summarize pertinent information (e.g., sequence, size, source organism, and

key references) for genes and gene products. They are readily available from the NCBI

server (http://www.ncbi.nlm.nih.gov). Each file is broken into fields that designate what

information is found on the following line(s). New fields are identified by a left-justified

field name (given in capital letters) at the beginning of a new line of text. Some fields

contain subfields, which are indented on subsequent lines. Table A.1B.2 lists the possible

field names and describes the contents of each field. It is important to note that any given

GenBank file may not contain every field. Figure A.1B.2 illustrates one example of a

GenBank file. Additional information regarding the content and format of GenBank records

may be found at http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html.

If you are creating a sequence file in GenBank format, it may contain multiple sequences.

Each new sequence begins with a LOCUS field. The other fields are optional, except for the

ORIGIN field, which marks the beginning of the sequence. Two slashes (//) mark the end of

the sequence (Fig. A.1B.2).

Table A.1B.2

A Summary of Fields Commonly Found in GenBank Records (Fig. A.1B.2)

Field Identifier(s) in Figure
A.1B.2

Contents

LOCUS 1a: Locus name Although the locus name was originally intended to identify
similar sequences, it no longer carries such significance. Each
GenBank file has a unique locus name. Often, it is either the
first letter of the genus and species followed by the accession
number, or simply the GenBank accession number of the file.

1b: Sequence length The number of nucleotide base pairs (bp) or amino acid
residues (aa) in the gene or gene product.

1c: Molecule type Identifies the type of sequence found in a particular file.
Possibilities include: genomic DNA, genomic RNA, precursor
RNA, mRNA, rRNA, tRNA, small nuclear RNA, and
cytoplasmic RNA.

1d: Molecular topology The molecule's expected topology. The options are linear and
circular.

1e: GenBank division Each GenBank sequence is currently classified in one of the
following 17 subdivisions: PRI, primates; ROD, rodents; MAM,
mammals (excluding primates and rodents); VRT, vertebrates
(excluding mammals); INV, invertebrates; PLN, plants, fungi,
and algae; BCT, bacteria; VRL, viral; PHG, bacteriophages;
SYN, synthetic; UNA, unannotated; EST, expressed sequence
tag; PAT, patent sequence; STS, sequence tagged sites; GSS,
genome survey sequence; HTG, high-throughput genomic
sequence; HTC, unfinished high-throughput cDNA sequence.
Note that the organismal subdivisions do not coincide with the
current NCBI taxonomy. They are purely historical.

1f: Modification date Indicates when the file was last revised.

DEFINITION 2 A brief description of the sequence, including the organism
source and the gene or protein name.

Skinner and Holmes Page 15

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html

Field Identifier(s) in Figure
A.1B.2

Contents

ACCESSION 3 A unique, stable, identifier for the particular file, which is
usually a combination of one or two letters with five or six
digits.

VERSION 4 Allows users to track multiple incarnations of a given
sequence. The version number is the accession number
concatenated with a period and a number. For the first version
of a particular accession, the number following the period is
set to 1. Each time the sequence data are modified, the number
following the period is incremented by 1. The example shown
in Figure A.1B.2 is the first version of accession number
M93361.

This field will also contain a GenInfo Identifier (GI) for
nucleotide sequence files. This number uniquely identifies
each nucleotide sequence in GenBank, even if they differ by a
single nucleotide. Note that, unlike the accession number for a
file, the GI number may change.

KEYWORDS 5 A word or phrase describing the sequence. Although
frequently found in older GenBank records, this field is
generally not present in more recent GenBank files.

SOURCE 6 The first line is a free-format description of the source
organism, followed by the molecule type. The subsequent lines
contain the subfield ORGANISM, which has the complete
scientific name of the source organism and its phylogenetic
classification as given by the NCBI Taxonomy Database.

REFERENCE 7 Publications by the authors of the GenBank entry that discuss
the molecule. Multiple publications may be listed in
chronological order, ending with the most recent. Each
reference entry will contain subfields (e.g., AUTHORS, TITLE,
JOURNAL, MEDLINE) that are appropriate for the particular
publication type.

FEATURES 8 This is essentially a concise summary of the gene or protein
annotation. It offers a list of genes, gene products, and regions
of biological interest that have been identified within the
reported sequence. The first subfield in each FEATURE list is
the source subfield, which contains the length of the
sequence, the scientific name of the source organism, and the
taxon ID number. Additional subfields are given—e.g., gene,
promoter, TATA signal,
5′ UTR, 3′ UTR, and coding sequence (CDS)—depending on
the features within the sequence. For each feature, the
GenBank record provides its location within the sequence and
other pertinent information (e.g., the product or gene name,
possible function, and protein translation).

BASE COUNT 9 The number of adenine, cytosine, thymine (or uracil), and
guanine nucleotide bases within the sequence.

ORIGIN 10 This field is often left blank. In older records, it may contain
the experimentally derived restriction cleavage site. Note that
the ORIGIN field should be included in every GenBank
record, even if it contains no information. Most parsers look
for the sequence on the first line after the word ORIGIN.

11 The sequence data with 60 bases (or residues) per line. The
bases on each line are presented in six groups of ten bases per
group, with the groups separated by spaces. The sequence ends
with two slashes (//).

PHYLIP FILES

The Phylogeny Inference Package (PHYLIP) is a suite of programs used to infer

phylogenies and generate evolutionary trees. The PHYLIP package allows users to generate

Skinner and Holmes Page 16

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

distance matrices and apply a variety of phylogenetic methods to both nucleotide and protein

sequences.

All of the programs in the package that use sequence data as the input (usually the result of a

multiple sequence alignment) require that the sequences be formatted in PHYLIP's own

“PHYLIP format.” An example of a PHYLIP-formatted file is shown in Figure A.1B.3. The

file begins with a line containing two numbers; the first number represents the number of

sequences in the data set (here, 5), and the second number represents the length of the

alignment (here, 547 amino acids). The five sequences then follow, in “interleaved” format;

this is different from the “sequential” FASTA format described above, where a sequence is

listed in its entirety before the next sequence begins. In the first block, each sequence is

preceded by an identifier that can be up to ten characters in length.

Figure A.1B.2.
A sample GenBank record. Circled numbers identify the fields listed in Table A.1B.1.

PHYLIP files usually take the file extension .phy.

MSF FILES

Multiple sequence files (called “MSF files”) are used by the individual programs within the

GCG (Wisconsin) sequence analysis package. The GCG suite (UNIT 3.6) provides a large

number of programs designed for sequence comparison, the generation of multiple sequence

alignments, gene and secondary structure prediction, and pattern recognition, to name a few.

As with PHYLIP, the programs in the GCG package that use multiple sequence alignment

data as the input require that the sequences be provided in MSF format. An example of an

Skinner and Holmes Page 17

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

MSF-formatted file is shown in Figure A.1B.4. All MSF files begin with either

PileUp, !!NA MULTIPLE ALIGNMENT, or !!AA MULTIPLE ALIGNMENT on the first line

of the file. In the line that begins with MSF:, the length of the alignment is given (here, 547

amino acids), followed by the type of alignment (N for nucleotide, P for protein), a

checksum number, and two dots, which signify the end of the descriptive header. The next

block of lines contains information on the sequences in the alignment, giving their name,

length, a checksum, and weight. A double slash then precedes the sequences, which are

shown in interleaved format.

Figure A.1B.3.
A sample PHYLIP-formatted file. The five sequences shown are HIV-1 and HIV-2 gag

proteins from a variety of isolates. See text for details.

Skinner and Holmes Page 18

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure A.1B.4.
A sample MSF-formatted file. The five sequences shown are HIV-1 and HIV-2 gag proteins

from a variety of isolates. See text for details.

MSF files usually take the file extension .msf.

NEXUS FILES

A variety of programs use a format known as Nexus format. These include programs such as

MacClade, MrBayes, and the PAUP suite of phylogenetics programs (UNITS 6.4 & 6.5).

A sample Nexus-formatted file is shown in Figure A.1B.5. The file begins with the keyword

#NEXUS, which is then followed by a block describing the sequences that follow. The

DIMENSIONS line gives the number of sequences (or taxa) in the file (NTAX=5, for five

sequences), as well as the length of the alignment (NCHAR=547). The FORMAT line

indicates whether the alignment is of nucleotide or protein sequences and that they are

interleaved. The lines that follow, one per sequence, give the name of each sequence and its

length. The sequences then follow under the keyword MATRIX, as shown in the figure. The

end of the file is signified by the semicolon and END; on the final two lines of the file.

Nexus files usually take the file extension .nex or .nxs.

Skinner and Holmes Page 19

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure A.1B.5.
A sample Nexus-formatted file. The five sequences shown are HIV-1 and HIV-2 gag

proteins from a variety of isolates. See text for details.

CONVERTING BETWEEN FILE FORMATS

Often, the output of a program is provided in one format, but in order to provide that output

as the input to another program, the format of the file needs to be converted before the

second program can actually read the file. A number of utilities are available to perform this

conversion, and many are available on the Web.

The most widely-used format conversion program is ReadSeq, which is described in detail

in APPENDIX 1E. ReadSeq currently allows interconversion between 19 different file types,

including those discussed in this appendix. Programs such as ClustalW (UNIT 2.3), which

are widely used to generate reliable multiple sequence alignments, can provide the

alignment output in MSF and PHYLIP formats, among others, facilitating analysis by

programs such as PHYLIP and PAUP.

Literature Cited

Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson E, Stajich JE, Harris TW,
Arva A, Lewis S. The generic genome browser: a building block for a model organism system
database. Genome Res. 2002; 12:1599–610. [PubMed: 12368253]

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human
genome browser at UCSC. Genome Res. 2002; 12:996–1006. [PubMed: 12045153]

Hubbard TJP, Aken BL, Beal1 K, Ballester1 B, Caccamo M, Chen Y, Clarke L, Coates G,
Cunningham F, Cutts T, Down T, Dyer SC, Fitzgerald S, Fernandez-Banet J, Graf S, Haider S,
Hammond M, Herrero J, Holland R, Howe K, Howe K, Johnson N, Kahari A, Keefe D, Kokocinski
F, Kulesha E, Lawson D, Longden I, Melsopp C, Megy K, Meidl P, Overduin B, Parker A, Prlic A,
Rice S, Rios D, Schuster M, Sealy I, Severin J, Slater G, Smedley D, Spudich G, Trevanion S,
Vilella A, Vogel J, White S, Wood M, Cox T, Curwen V, Durbin R, Fernandez-Suarez XM, Flicek
P, Kasprzyk A, Proctor G, Searle S, Smith J, Ureta-Vidal A, Birney E. Ensembl 2007. Nucleic
Acids Res. 2007; 35(Database issue):D610–D617. [PubMed: 17148474]

Skinner and Holmes Page 20

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Key Reference

Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH. JBrowse: A next-generation genome
browser. Genome Res. 2009; 19:1630–8. [PubMed: 19570905]

Skinner and Holmes Page 21

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9.13.1.
JBrowse instance with just DNA sequence track, zoomed in to the individual base level.

Skinner and Holmes Page 22

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9.13.2.
Screenshot of JBrowse with newly-created “gene” track.

Skinner and Holmes Page 23

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9.13.3.
Screenshot of JBrowse instance with newly-created “Remark” track.

Skinner and Holmes Page 24

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9.13.4.
Screenshot of JBrowse instance with newly-created quantitative track.

Skinner and Holmes Page 25

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Skinner and Holmes Page 26

Table 9.13.1

Description of columns in GFF3 format

Column Description

Reference sequence name
Name of the sequence that the feature
is defined on (commonly a chromosome
or contig)

Source

The source of the feature. For features
that were generated by software, this is
commonly the name of the software; for
human-curated features, this is
commonly the name of the group
performing the curation (e.g., a model
organism database)

Type
The type of the feature from the
Sequence Ontology
(http://www.sequenceontology.org/)

Start The start position of the feature

End The end position of the feature

Score (optional) The score of the feature

Strand (optional) The strand on which the
feature occurs

Phase

(optional) The phase of the feature
(e.g., for CDS features, indicates that
the first full codon in the feature starts
this many bases after the start of the
feature)

Attributes

(optional) A set of name=value pairs
specifying information not contained
within the other GFF columns (often
contains Name and ID information)

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

http://www.sequenceontology.org/

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Skinner and Holmes Page 27

Table 9.13.2

Description of columns in BED format

Reference sequence name Name of the chromosome or scaffold

Start Start position of the feature

End End position of the feature

Name (optional) Name of the feature

Score (optional) Score of the feature

Strand (optional) Strand on which the feature
is defined

Thick Start

(optional) Position where the feature
should be drawn thickly (e.g., for
transcript models, the start of the
coding sequence)

Thick End

(optional) Position where the feature
should no longer be drawn thickly (e.g.,
for transcript models, the end of the
coding sequence)

Item Rgb (optional) Color to use to draw the
feature

Block Count (optional) Number of blocks (e.g., for
transcript models, the number of exons)

Block Sizes
(optional) Sizes of blocks (e.g., for
transcript models, the size of each
exon)

Block Starts
(optional) Start points of blocks (e.g.,
for transcript models, the starting point
of each exon)

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Skinner and Holmes Page 28

Table 9.13.3

Description of command-line arguments used with the gene track

Argument Required Purpose

--tracklabel Yes Unique identifier for the
track

--key Yes Human-readable label for
the track

--gff or --gff2 or --bed Yes Path to input flat file

--cssclass No Describes how the
features should look

--getLabel No Include feature labels in
the output

--type No Only process features of
the given type

--autocomplete No Make it possible to search
for features in this track

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 March 05.

