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Abstract

Background—Accurate evaluation of unclassified sequence variants in cancer predisposition 

genes is essential for clinical management and depends on a multifactorial analysis of clinical, 

genetic, pathologic, and bioinformatic variables and assays of transcript length and abundance. 

The integrity of assay data in turn relies on appropriate assay design, interpretation, and reporting.

Methods—We conducted a multicenter investigation to compare mRNA splicing assay protocols 

used by members of the ENIGMA (Evidence-Based Network for the Interpretation of Germline 

Mutant Alleles) consortium. We compared similarities and differences in results derived from 

analysis of a panel of breast cancer 1, early onset (BRCA1) and breast cancer 2, early onset 

(BRCA2) gene variants known to alter splicing (BRCA1: c.135-1G>T, c.591C>T, c.594-2A>C, c.

671-2A>G, and c.5467+5G>C and BRCA2: c.426-12_8delGTTTT, c.7988A>T, c.8632+1G>A, 

and c.9501+3A>T). Differences in protocols were then assessed to determine which elements 

were critical in reliable assay design.

Results—PCR primer design strategies, PCR conditions, and product detection methods, 

combined with a prior knowledge of expected alternative transcripts, were the key factors for 

accurate splicing assay results. For example, because of the position of primers and PCR extension 

times, several isoforms associated with BRCA1, c.594-2A>C and c.671-2A>G, were not detected 

by many sites. Variation was most evident for the detection of low-abundance transcripts (e.g., 

BRCA2 c.8632+1G>A Δ19,20 and BRCA1 c.135-1g>t Δ5q and Δ3). Detection of low-abundance 

transcripts was sometimes addressed by using more analytically sensitive detection methods (e.g., 

BRCA2 c.426-12_8delGTTTT ins18bp).
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Conclusions—We provide recommendations for best practice and raise key issues to consider 

when designing mRNA assays for evaluation of unclassified sequence variants.

Germline mutations in the breast cancer susceptibility genes breast cancer 1, early onset 

(BRCA1)26 and breast cancer 2, early onset (BRCA2) (OMIM #113705 and #600185, 

respectively) are associated with a significantly increased risk of breast and other cancers 

(1). Although many thousands of disease-associated mutations have been identified in these 

genes, many DNA sequence changes found during genetic screening fall into the category of 

unclassified variants because their functional and clinical significance is not immediately 

clear. Such unclassified variants pose a challenge for clinical management of variant 

carriers.

Unclassified variants have the potential to alter protein function by changing the coding 

sequence of a transcript, or the level or structure of the gene transcript, and by disrupting 

regulatory regions in promoters, untranslated regions, exons, or introns (2-5). Such 

regulatory variants include those affecting normal splicing of BRCA1 and BRCA2, many of 

which have been shown to be clinically significant by use of cDNA studies and 

multifactorial likelihood analysis methods that combine bioinformatic, pathologic, and 

clinical information (6-8). These variants include those that affect splicing by disrupting or 

weakening the motifs at intron-exon boundaries, introducing de novo splice acceptor or 

donor sites, activating cryptic splice sites, or disrupting enhancer and silencer sequences. 

Several studies have shown that bioinformatic prediction tools can be used to prioritize 

variants for splicing assays (9-14).

To date, a total of 82 studies have reported findings related to splicing in BRCA1 or BRCA2 

(15). The majority of these used reverse transcriptase PCR (RT-PCR)27 analysis of RNA 

extracted from blood of variant carriers or alternatively, minigene constructs containing the 

variant and assayed in non-patient-derived cell lines. The interpretation of splicing results 

for variant carriers can be complicated by the detection of normal alternatively spliced 

transcripts that occur in healthy individuals—an issue that has yet to be extensively 

addressed in the literature. The effect of the range of variables found in protocols used in 

research and clinical testing laboratories, including the PCR assay design, reagents used, and 

tools for visualizing and characterizing transcripts identified by PCR on assay result 

interpretation, is also unclear.

There are 4 instances of inconsistent or conflicting splicing results (6, 8, 14, 16-19). These 

include BRCA1 c.212+3A>G, c.670+8C>T, and c.736T>G and BRCA2 c.517-19C>T (4, 

19-25). Reports of splicing results from a further 7 variants differed in the number of 

aberrant bands found in each study. The potential clinical implications of such 

inconsistencies highlight the need to establish the advantages and limitations of the various 

techniques in practice.

26Human genes: BRCA1, breast cancer 1, early onset; BRCA2, breast cancer 2, early onset
27Nonstandard abbreviations: RT-PCR, reverse transcriptase PCR; ENIGMA, Evidence-Based Network for the Interpretation of 
Germline Mutant Alleles; NMD, nonsense-mediated decay; LCL, lymphoblastoid cell lines; kConFab, Kathleen Cuningham 
Consortium for Research into Familial Breast Cancer; CE, capillary electrophoresis.
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Guidelines for clinical interpretation and reporting of unclassified variants analyzed using 

splicing assays are available in the UK and Netherlands via the UK Clinical Molecular 

Genetics Society (http://www.cmgs.org/BPGs/Best_Practice_Guidelines.htm) and Dutch 

Society of Clinical Genetic Laboratory Specialists (http://www.vkgl.nl/). In addition, a range 

of in silico approaches have been compared with one another, and with transcript analysis, 

by the splice network of the French BRCA diagnostic testing laboratories, recently reported 

by Houdayer et al. (11). In this study (11), Houdayer et al. investigated the value of 

combining Splice-site Finder and MaxEntScan prediction tools and showed that major splice 

defects were consistently identified across a number of different laboratories. The authors 

did find some discrepancies with results previously reported in the literature and 

recommended a large cross-validation study as a future priority.

The Evidence-Based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) 

consortium was established in 2009 with the purpose of sharing data, methods, and 

resources to facilitate classification of unclassified variants (21). To date, a total of 3286 

unique BRCA1 and BRCA2 variants considered to be of uncertain clinical significance have 

been submitted to ENIGMA from more than 43 sites in 19 countries. The consortium has 

established several working groups, including one dedicated to examining variants that 

potentially alter RNA splicing.

Here we describe the outcome of an ENIGMA Splicing Working Group study to assess the 

importance of various mRNA assay components on consistency of results. We identified a 

variety of differences in protocols from 23 laboratories, the majority of which conduct 

routine clinical assays (see Table 1 in the Data Supplement that accompanies the online 

version of this article at http://www.clinchem.org/content/vol60/issue2). We report the 

critical elements on assay design that should be considered in the analysis of variants that 

may impact RNA splicing.

Materials and Methods

Each participating laboratory submitted information about the mRNA splicing protocol in 

use at their site. These protocols were then compared on the basis of the source of biological 

material; the use of a nonsense mediated decay (NMD) inhibitor, RNA extraction, or 

removal of contaminating genomic DNA; the choice of cDNA synthesis primer, reverse 

transcriptase, and DNA Taq polymerase; the method of PCR product detection; and whether 

products were isolated, subcloned or sequenced (see online Supplemental Table 1).

To compare the assays used by laboratories within the ENIGMA consortium, 23 sites were 

sent aliquots of samples from the same lymphoblastoid cell lines (LCLs) that had been 

generated by the Kathleen Cuningham Consortium for Research into Familial Breast Cancer 

(kConFab) from 9 carriers of BRCA1 or BRCA2 variants known to be associated with 

splicing defects (Fig. 1) and from 11 controls. Four LCLs carried variants that produce 

unequivocal splicing aberrations resulting in a clear exon-skipping event. Five LCLs carried 

variants considered to produce equivocal splicing aberrations, based on the observation that 

they confer more subtle and variable effects, such as altering the availability of naturally 
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occurring isoforms to avariable extent and/or producing a large and variable number of 

uncharacterized splicing products.

The project was conducted in 2 phases. In the initial phase (phase 1), 16 sites used an 

mRNA splicing protocol they routinely use in their laboratory (see online Supplemental 

Table 1), summarized their results, and submitted these to PJW and MAB. for collation. 

Following an analysis of phase 1 results, phase 2, informed by the phase 1 findings, was 

initiated, during which some sites repeated each assay using a standard set of PCR primers 

and cycling conditions (see online Supplemental Table 2). All other components of the 

protocol were per phase 1, apart from site 8, which used a Bioanalyzer in phase 1 and 

capillary electrophoresis (CE) in phase 2. Seven sites that participated in phase 1 repeated 

the assays under the controlled conditions of phase 2. An additional 3 sites joined the study 

to assay all variants for phase 2. A further 3 sites joined phase 2 to specifically assay BRCA1 

c.671-2A>G, following the finding that this equivocal variant gave rise to the greatest range 

of alternatively spliced transcripts.

Results

The initial comparison of protocols used by participating laboratories revealed that 

cycloheximide or puromycin was sometimes used for NMD treatment, with incubation times 

between 4 and 8 h and concentrations between 100 and 250 μg/mL, the use of 8 cDNA 

synthesis kits, 12 different DNA polymerases, and transcript isolation strategies that 

included band excision, subcloning, and sequencing. The majority of laboratories used 

agarose gel electrophoresis for visualizing transcripts, but several used digital visualization 

strategies.

In phase 1 of the study, all sites detected the fulllength transcript for each of the 4 

unequivocal variants (Table 1). All sites also detected the most prominent single-exon 

skipping events not seen in controls for each of the unequivocal variants, apart from site 4 

and 14, which did not detect the Δ20 transcript for the unequivocal variant BRCA2 c.

8632+1G>A. Not all sites detected all of the less abundant transcripts from this variant, 

however, with only 3/16 sites detecting the Δ19&20 transcript and only 6/16 sites detecting 

the ins i20 transcript. For the unequivocal variant BRCA1 c.135-1g>t, which has been 

associated with multiple splice isoforms (22), only 3/16 detected the Δ5q transcript, and only 

1 site detected the Δ3 transcript.

Detailed analysis of each of the protocols and resulting data revealed that the range of PCR 

design strategies contributed to the variation in detection of transcripts, in particular PCR 

primer design and PCR cycling conditions. For example, 11 out of 16 sites that analyzed 

equivocal BRCA1 c.671-2A>G were unable to detect all of the transcripts because primer 

position did not allow some, clearly unanticipated, fragments to be amplified (Table 1). 

Forward primers positioned in exon 9 or 10 were unable to amplify isoforms lacking those 

exons, including Δ9/10, Δ9/10/11, or Δ9/10/11q isoforms seen in controls, or the Δ9/11 or 

Δ10/11 variant-associated isoforms detected by other sites.
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The length of extension time during PCR amplification was also found to be a contributing 

factor, with several protocols using times that were likely to be too short to detect the longer 

PCR products amplified from some splice isoforms. For example, 5 sites used elongation 

times of 3 min or less and were unable to amplify full-length transcripts or transcripts 

containing exon 11 (Δ9 or Δ9/10) for BRCA1 c.671-2A>G, which are longer than 3 kb. As 

for the results observed for unequivocal variants, an additional explanation for variation in 

detection of transcripts was the low abundance of some transcripts, including those 

identified in the variant carrier only (e.g., Δ9/11, Δ10/11, and Δ>3kb exon 11 transcripts), 

which is known to lead to variable PCR amplification. PCR cycle number was also 

important, with site 23 detecting only a limited number of transcripts (Table 1), likely 

reflecting the use of only 25 cycles (see online Supplemental Table 1).

Given that phase 1 showed that many transcripts were not observable due to the positioning 

of primers or elongation time, phase 2 of the study was initiated. Phase 2 included assays 

conducted by 10-12 sites (depending on the variant analyzed) using a standard set of primers 

and elongation times appropriate for the expected lengths of the transcripts (see online 

Supplemental Table 2). The outcome was a much greater analytical sensitivity and 

consistency of results (Table 2). For example, all sites were now able to detect relatively 

high-abundance isoforms or variant-associated transcripts reported in previous studies, but 

not consistently reported in phase 1 [Δ17,18 for BRCA2 c.7988A>T, Δ20 for BRCA2 c.

8632+1G>A, Δ5 for BRCA2 c.426-12_8delGTTTT, and Δ10 for BRCA1 c.594-2A>C (5, 7, 

8)]. Importantly, unlike phase 1, in phase 2 all study sites were able to detect at least 1 

aberrant band (cf. controls) and thus may have been able to better classify the variant using 

the IARC (International Agency for Research on Cancer) 5-tier classification scheme.

There remained some inconsistencies in the phase 2 data. Further comparison of protocols 

suggested that the method of PCR product detection was likely to be a contributing factor. 

Sites 2 and 8 in phase 2 were the only sites to use CE exclusively for detection of transcripts. 

Site 2 had higher overall detection compared to the other sites. Indeed, 10 of the 23 

transcripts (43.5%) identified across all sites in the phase I analysis of unequivocal variants 

were detected only by CE, demonstrating it to be a comparatively more analytically 

sensitive detection method. This trend continued for equivocal variants analyzed in phase 2, 

with 12 of the 49 (24.5%) transcripts detected only by capillary CE. The sites employing a 

Qiaxcel visualization, Bioanalyzer, or MultiNA systems demonstrated that these systems 

were often more analytically sensitive than gel electrophoresis. For example, sequencing of 

transcripts identified by Qiaxcel analysis of BRCA2 c.426-12_8delGTTTT (site 9, phase 2) 

showed that it was the only system to discriminate the small insertion of 18 nucleotides from 

the full-length transcript (Table 2; also see online Supplemental Fig. 1).

Analysis of BRCA1 c.594-2A>C in phase 2 identified 11 different transcripts. Excising 

bands from agarose gel or sequencing PCR products directly enabled detection of 3-6 

transcripts (sites 3, 4, 17, and 18). Cloning PCR products followed by sequencing detected 

6-7 transcripts (sites 1 and 16), and CE detected 10-11 transcripts (sites 2 and 8). This 

showed that cloning PCR products improved analytical sensitivity, and visualization by the 

Qiaxcel system or capillary CE together with sequence analysis is optimal to identify and 

characterize transcripts. The number of clones sequenced also appeared to improve 
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analytical sensitivity; screening 40 clones (site 16) in comparison to 24 clones (site 1) 

enabled the detection of 1 additional transcript.

Finally, we examined the effect of using different reverse transcriptase enzymes with the 

same RNA, cDNA synthesis primers, and PCR primers, enzymes, and conditions. As shown 

in Fig. 2, the amplification of the longest transcripts was not possible with GoScript; with 

M-MuLV we missed in the patient with the c.671-2A>G variant the wild-type transcript; 

only Superscript II allowed amplification of the longest transcript in both controls and 

variant carriers.

It is important to note that all transcripts shown in Tables 1 and 2 were the outcome of 

results by scorers who were blind to the transcripts identified by other participants, to avoid 

biasing the interpretation and thus the value of each approach. Once the full range of 

transcripts was known, however, it was possible to find some missing transcripts, 

demonstrating the importance of prior knowledge in both the design of the assays and the 

interpretation of results.

There was no clear evidence of any differences as a result of using (a) cycloheximide vs 

puromycin treatment for NMD inhibition; (b) differing RNA extraction methods; (c) oligo 

d(T) and random hexamers vs gene specific primers; (e) various methods of DNase 

treatment; and (f) a particular type or brand of Taq polymerase.

A summary of the recommendations arising from this study is provided in Table 3.

Discussion

RNA splicing assays are commonly used in diagnostic and research settings to assess the 

potential effects of unclassified variants in multiple genes, including BRCA1 and BRCA2. 

There are a multitude of differing protocols used in clinical and research laboratories, 

including those within the ENIGMA consortium, and this prompted a study aimed at 

establishing assay guidelines.

This study shows that prior knowledge of the expected transcripts, including naturally 

occurring isoforms and aberrant transcripts predicted to occur in variant-carrying samples, is 

important for assay design. Phase 1, followed by phase 2, demonstrated that the selection of 

primers used to amplify exons and the design of cycling conditions appropriate for that 

primer design explain the vast majority of the differential success of detecting some 

isoforms. In phase 2 of the project, during which primer design and extension time were 

controlled, all sites detected the fulllength transcript and the predominant alternative 

transcripts, suggesting that high-abundance aberrant transcripts will be detectable regardless 

of assay protocol, which is consistent with the conclusions of Houdayer et al. (12).

Variability in overall detection increased as the apparent abundance of individual transcripts 

in a sample decreased, and thus detection became more dependent on the sensitivity of the 

method of analysis. This variability is also likely to occur between replicates done in a 

single laboratory, in addition to that between different laboratories. A controlled comparison 

of different reverse transcriptases showed that Superscript is much better able to copy longer 
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transcripts (Fig. 2). It is also possible that the maximum span length of some PCR 

polymerases contributed to the ability of some groups to detect longer transcripts. 

Furthermore, primer pairs that selectively amplify disease-associated isoforms rather than 

naturally occurring isoforms could increase assay sensitivity.

Sites that used gel electrophoresis visualization alone were unable to detect some bands 

because of the inherent insensitivity of this technique, combined with the stochastic nature 

of PCR when analyzing low levels of target (26). An example of this is site 1, which when 

analyzing the equivocal variant BRCA2 c.8632+1G>A detected the ins i21bp intron 9 in 

phase 1 but not in phase 2, despite using the same primers and PCR conditions.

Some sites sequenced PCR products. Sites that directly sequenced the products of PCR 

reactions experienced some challenges in determining the sequence of low-level transcripts. 

An accurate assessment of transcript sequence was also confounded by the presence of 

multiple (3 or more) PCR products of similar lengths. In these instances, adjustments to the 

concentration of agarose and running times of electrophoresis may improve analytical 

sensitivity. However, it appears that this may be less relevant if CE systems are adopted (see 

below). Cloning single PCR products into a vector system is a useful alternative for isolating 

transcripts and appears to improve sensitivity over band excision and sequencing alone. 

Furthermore, by increasing the number of clones screened it is possible to marginally 

increase the number of transcripts detected. However, to identify low-abundance transcripts, 

analysis of very large numbers of clones (100s or 1000s) or next generation sequencing 

would be necessary.

Of all the detection methods used, CE was shown to be the most analytically sensitive. For 

example, site 8 showed an increase in sensitivity from phase 1 to phase 2 after switching 

from using a Bioanalyzer to using CE. In addition to analytical sensitivity, the CE system 

has the added advantage of a greater resolution (1–2 bp) compared to Qiaxcel (3–5 bp). 

However, the limitation with both the Bioanalyzer and CE is the inability to harvest and thus 

perform sequence analysis of the PCR product. Also, CE relies on a prediction of the 

splicing event based on the length of the product observed, which can be limited by the 

inaccuracy of size standards, so a secondary set of primers may be required. It is also worth 

noting that very long full-length (or alternative) transcripts (like those involving BRCA1 

exon11 and BRCA2 exons 10 and 11) cannot be analyzed by CE.

The results presented here represent each laboratory's initial assessment of each variant. 

Each site had the opportunity to reassess their results after the data from all sites were 

released to the group and several sites reported that they detected additional transcripts in 

addition to (and thus not shown) the initial conclusions reported in Tables 1 and 2. This 

finding suggests that a prior knowledge of all potential splice transcripts related to variant 

carriers, from studies such as these, as well as those that occur as naturally occurring 

isoforms in healthy controls, is essential not only to design detection strategies (see above) 

but to interpret results.

The use of analytically sensitive PCR product detection (CE and Qiaxcel in phases 1 and 2, 

Bioanalyzer in phase 1) enabled the identification of several novel low-abundance 
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transcripts, in both normal controls and variant carriers. This raises the question of which 

detectable transcripts are functional and thus relevant for determining the pathogenicity of 

clinically identified unclassified variants, and whether or not low abundance transcripts are 

of biological or pathological significance in vivo. It is generally accepted that variants 

resulting in single major transcripts that lack an open reading frame will be deleterious (27). 

However, it is much less clear whether changes in the levels of low-abundance alternative 

splicing events will have an impact either directly or through altering the function or levels 

of endogenous transcripts including fulllength mRNA.

It is possible, for example, that a reduction in the full-length expression will have a 

deleterious effect on known BRCA1 functions (DNA repair, cell cycle control) (28). A 

quantitative analysis of the range of naturally occurring isoforms relative to full-length 

expression and relative to other BRCA1 or BRCA2 isoforms is required, as is a 

comprehensive analysis of the functional role of each of these isoforms in both the healthy 

functioning of BRCA genes and the consequences of sequence variation on this process (29). 

It will also be important to extend this investigation to breast and ovarian tissue, to gain a 

broader understanding of the tissue-specific nature of splice-isoform regulation. Importantly, 

this information will be essential to determine whether knowing the full complement of 

transcripts has the potential to have an impact on the final classification of the variant as 

pathogenic or otherwise. For example, does the expression profile of the 16 alternately 

spliced transcripts detected in BRCA1 c.671-2A>G carriers change at different tissue sites, 

and will this new information influence the classification of the variant?

In summary, we have shown that primer design, PCR conditions, and PCR product detection 

methodology, together with prior knowledge of potential transcripts, are important 

contributors to the analytical sensitivity of PCR-based assays for detecting alternatively 

spliced RNA transcripts from variant carriers and from wild-type sequences. These factors 

must be considered when designing assays, particularly when they form the basis of clinical 

decision-making. Furthermore, the formulation of standard assay design and detection 

methods is indicated for all variants, but particularly for those that may impact on isoform 

expression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. BRCA1 and BRCA2 exons showing the positions of the variants studied
BRCA1 c.135-1 G>T, BRCA1 c.5467+5 G>C and BRCA2 c.9501 + 3A>T and c.8632 + 

1G>A were considered to produce unequivocal splicing aberrations. BRCA1 c.591 C>T, c.

594Ã¢â‚¬â€œ2 A>C and c.671Ã¢â‚¬â€œ2 A>G and BRCA2 c.426-12_8delGTTTT and c.

7988 A>T were considered to produce equivocal splicing aberrations.
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Fig. 2. Comparison of cDNA synthesis enzymes for the detection of different isoforms arising 
from the variant BRCA1: c.671-2A>G variant
RT-PCR results (obtained by capillary electrophoresis on the Labchip, Caliper) obtained by 

using the same RNA, Taq polymerase (Takara), and PCR program. cDNA was synthesized 

with 3 different kits [GoScript (Promega), M-MuLV (New England BioLabs), SuperscriptII 

(Invitrogen)].
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Table 3

Protocol recommendations.

Protocol Recommendation

NMD inhibitor Need for this depends on sensitivity of detection method.

For agarose gel detection, either CHX (cycloheximide) or puromycin are recommended.

RNA extraction RNA extraction protocols were indistinguishable.

Dnase treatment Recommended to avoid genomic DNA contamination.

cDNA synthesis primer(s) Gene-specific or oligodT+random hexamers are recommended.

cDNA synthesis SuperscriptII reverse transcriptase is better for longer transcripts.

PCR primers Forward and reverse primers must be at least 1 whole exon 5′ or 3′ of variant, respectively.

PCR polymerase Different PCR polymerases were indistinguishable.

PCR conditions Extension time long enough to copy amplicon (see enzyme manufacturer's instructions). At least 30 cycles.

Detection CE was the most sensitive, followed by Qiaxcel, and then sequencing and agarose gel electrophoresis.

Sequencing Cloning and sequencing is more sensitive than direct sequencing, but need to sequence at least 40 clones.
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