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Abstract

Many researchers have addressed the problem of finding the optimal linear combination of
biomarkers to maximize the area under receiver operating characteristic (ROC) curves for
scenarios with binary disease status. In practice, many disease processes such as Alzheimer can be
naturally classified into three diagnostic categories such as normal, mild cognitive impairment and
Alzheimer’s disease (AD), and for such diseases the volume under the ROC surface (VUS) is the
most commonly used index of diagnostic accuracy. In this article, we propose a few parametric
and nonparametric approaches to address the problem of finding the optimal linear combination to
maximize the VUS. We carried out simulation studies to investigate the performance of the
proposed methods. We apply all of the investigated approaches to a real data set from a cohort
study in early stage AD.
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1. Introduction

Multiple diagnostic tests are often performed on the same individual to provide clinicians as
much information as possible in order to make more accurate disease diagnosis as it is
becoming increasingly clear that one single diagnostic test or biomarker is not sufficient to
serve as an optimal screening device for early detection or prognosis [1]. It is therefore of
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critical importance to combine the information available in an optimal way to improve
overall diagnostic accuracy [2].

When the diagnostic outcome is binary, that is, non-diseased and diseased, the receiver
operating characteristic (ROC) curves and the area under the ROC curves (AUC) are
commonly used diagnostic accuracy measures. Many conditions are conceptualized as
having a normal stage, an early/mild/prodromal stage, and a late/diagnosable/fully
symptomatic stage. For example, mild cognitive impairment and/or early stage Alzheimer’s
disease (AD) is a transitional stage between the cognitive changes of normal aging and the
more serious AD. More details can be seen here [3].

With three ordinal diagnostic categories, the ROC surface, analogous to ROC curve, as well
as the volume under the ROC surface (VUS), analogous to AUC, have been proposed to
assess diagnostic accuracy [3,4]. Let Sy, Sy, and Sz denote the scores resulting from a
diagnostic test or biomarker, and let Fq, F», and F3 be the corresponding cumulative
distribution functions for non-diseased, intermediate, and diseased subjects, respectively.
Assume that the results of a diagnostic test are measured on a continuous scale and higher
values indicate greater severity of the disease. Let p; = F1. (c1), p3 = 1 — F3.(c3), where Cq
and Cj are threshold values (Cq < C3), be the true classification rates for non-diseased and
diseased categories, respectively. Then the probability that a randomly selected subject from
the intermediate group has a score between Cq and Cg is

pa=Fy(c3) — Fa(cr)=F[F5 (1 = p3)] — BR[F ' (p1)].

The probability p, is guaranteed positive because of the imposed order restriction of ¢, < c3

such that p3<1 — F3[ F; (py)):

For a pair of thresholds (c4, ¢c3), we could compute the true classification rate p, for the
intermediate category. The triplet (p1, p2, P3), Where pa = po(p1, p3) being a function of (py,
p3), would produce an ROC surface in the three-dimensional space for all possible (cq, c3) &
R2. The VUS is then defined as

-1
VUS=[L o B P g o1 — py)) — B[ Fr (p)]dpsdpr. @)

This is a generalization of the AUC for a binary classification. As in Xiong et al. [3], under
the normality assumption S; ~ N (ug4,032), d =1, 2, 3, the VUS can be further expressed as

VUS=[%_®(as — b)®(—cs+d)p(s)ds, (3)

where a = o/, b = (U1 — W)/ a1, ¢ = ovl oz, d = (U3 — W)l a3, ¢ () is the standard normal
distribution function, and ¢(') is the standard normal density function. One could show that
VUS is mathematically equivalent to the probability P(Sq < Sy < S3), where Sq, Sy, and S3
are scores for randomly selected individuals from corresponding diagnostic category. For a
useless test (when Sq, Sy, and Sg have identical distributions), VUS is 1/6. Notice that the
unbiased nonparametric Mann-Whitney U statistic of the VUS is given by
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where nq, ny, and n3 are the sample sizes for non-diseased, intermediate, and diseased
subjects, respectively, and 1.(-) stands for the indicator function.

The problem of finding optimal combinations of diagnostic tests and biomarkers with binary
diagnostic categories has been well addressed in literature. Su and Liu [5] derived an
optimal linear combination that maximizes the AUC when the biomarkers in the non-
diseased and diseased categories follow normal distributions. Without assumptions on the
distributions of the biomarkers, Pepe and Thompson [6] considered an empirical solution of
the optimal linear combination that maximizes the Mann-Whitney statistic. However, when
the number of biomarkers is large, this approach is computationally formidable. Recently,
Liu et al. [7] developed a min-max combination approach that only involves searching for a
single coefficient that maximizes the Mann-Whitney U statistic of AUC.

Whereas several studies address optional selection of weights for binary outcomes, the
problem of finding the optimal linear combinations has rarely been addressed for outcomes
with three ordinal diagnostic categories. Nevertheless, it is of paramount importance to
develop such combinations for biomarkers with three disease categories for the purpose of
maximizing diagnostic accuracy. The importance can be seen through the data example on
AD. Because AD is irreversible and no pharmaceutical treatments are effective for late
stages, it is critical to accurately diagnose AD at its early stage. However, as presented in
Xiong et al. [3], none of the current psychometric tests can be considered as excellent with
the estimated VUS ranging from 0.522 to 0.752. Therefore, it is important to develop a
composite score derived from a linear combination of biomarkers for better diagnostic
accuracy.

The goal of this manuscript is twofold: (1) to present parametric and nonparametric
combination approaches for the purpose of maximizing the most important diagnostic
accuracy index for three-category outcomes, namely, the VUS; (2) to empirically compare
the performance of the proposed methods. We organize the rest of our article as follows. In
Section 2, we extend two existing combination methods for binary outcomes (i.e., the
logistic regression approach and the min—max approach) to maximize VUS for three-
category outcomes. In Section 3, we propose a new parametric approach and a new
nonparametric approach. We present simulation studies in Section 4 for investigating the
performance of different combination methods in maximizing VUS. In Section 5, we apply
the proposed approaches as well as the extensions to a real data set of 118 subjects from a
cohort study in early stage AD from the Washington University Knight Alzheimer’s Disease
Research Center to combine diagnostic tests to increase the accuracy of discriminating
different stages of AD. We present a broader discussion on deriving linear combinations of
diagnostic tests and biomarkers to improve the diagnostic accuracy in Section 6.
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2. Extensions of existing methods

2.1. Notation

We can easily extend two existing methods for binary outcomes, namely, the logistic
regression method and the min—-max method, to outcomes with three ordinal disease
categories. In the following, Section 2.1 presents the notation, and Sections 2.2 and 2.3 will
discuss these two extensions.

Suppose we have p diagnostic tests or biomarkers available on each individual. We denote
the diagnostic category as D = d, where d = 1, 2, 3 stands for non-diseased, intermediate,
and diseased subjects, respectively. Let

Xi:(Xil’Xi% cee 7Xip)vi:1a2a ceey M,

be the p-dimensional observed scores from a random sample of size nq in the non-diseased
category,

Yj:(5/317 }/}27 ... ay}p),j:l, 2, cee N,

be the p-dimensional observed scores from a random sample of size n, in the intermediate
category, and

Zv=(Zk1, Zray - -5 Zip)y k=1,2,... ,n3,

be the p-dimensional observed scores from a random sample of size n3 in the diseased
category. We often stack the data together in a matrix form

1., [Xl]m Xp
2”2 [ Yj]n2><p )
3ns [Zk}ng Xp

where the first column indicates the diagnostic category and the other p columns form the
matrix of observed scores concatenated from X;, Yj, and Zy by row. For simplicity, we use
M, to denote p-variate observed scores for an individual from any diagnostic category.

2.2. The cumulative logistic regression approach

When we use a logistic regression model to model a binary outcome, we can obtain linear
coefficients for multiple predictors. With three ordinal diagnostic categories, the cumulative
logistic model has the form

P(D=1)

log—PgD:2)+P§D:3g:O‘U—"MPC’
P(D=1)+P(D=2
log%zﬁﬁ—Mpc,

Stat Med. Author manuscript; available in PMC 2015 March 05.



1duosnuen Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Kang et al.

Page 5

where c is a vector coefficient of length p, and ayg, /4 are two intercepts. For modeling an
outcome with three or more categories, we also frequently use the multinomial logistic
regression, although it is known that if the outcome variable is truly ordered, which is the
case in this article, cumulative logistic regression will make the model more parsimonious.
Also, the multinomial logistic regression would produce more than one set of vector
coefficients for predictor variables, which is meaningless for the purpose of combinations.
Therefore, we investigate the performance of the combined marker using ¢ obtained from
cumulative logistic regression.

For modeling a binary outcome, we use the logistic regression to maximize the logistic
likelihood function. For such model, Jin and Lu [8] proved that ¢ from a fitted logistic
regression is the optimal linear combination in the sense that it provides the highest
sensitivity uniformly over the entire range of specificity and therefore yields the largest
AUC among all possible linear combinations. This impressive result, however, depends on
the strong assumption that the binary response variable (i.e., disease status) is generated
through a link function of predictors. As a matter of fact, in practice, disease status is not
generated this way. Usually, a binary gold standard is used to determine disease status, and
multiple biomarkers are measured without knowing any information on disease status.
Furthermore, this result does not assume any joint distributions for multiple predictors.
Therefore, it cannot include Su and Liu’s [5] method as a special case, in which multivariate
normality is a fundamental assumption.

For three-category outcomes, the result from Jin and Lu [8] has not been extended to three-
category cases. Despite the lack of analytical results, cumulative logistic regression still
offers a possible combination method for the scenarios with three-category outcomes.
Therefore, it is of interest to investigate the performance of the combination of biomarkers
using ¢ from a fitted cumulative logistic regression for the purpose of maximizing the VUS.

2.3. The min—max combination approach

With binary diagnostic categories, Pepe and Thompson [6] proposed to estimate the optimal
linear combination coefficient ¢ by maximizing the Mann—Whitney U statistic (i.e., the
empirical estimate of AUC) as follows,

n n
1 1 2

ZZI(ClXi1+ st Xp<a Yt 4epYip), (5
i=1j=1

U =
=

where I(-) stands for the indicator function. Pepe and Thompson [6] also pointed out that
because the Mann-Whitney statistic estimate of AUC is not a continuous function of c, a
search rather than a derivative-based method is required for this maximization. It means that
general-purpose optimization algorithms such as conjugate-gradient or Newton-type
methods are not appropriate for this maximization. They illustrated the idea with an
application involving only two markers. In that case, the computation is relatively easy.
However, when the number of markers is large, that is, = 3, this approach is computationally
inaccessible.
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To address such computational difficulty, Liu et al. [7] proposed a nonparametric min—-max
approach that linearly combines only the minimum and maximum values of the p markers to
maximize the AUC, that is,

1 ny no
U(C): ZZI(Xi,maI+CXi,min<ij,maz+CY’j,min)a (6)
N2 o
where
Xi maz=maz Xila Ximin=muin Xil;
’ 1<i<p ’ 1<i<p
and

Y; =mazx Y, Yimin=min Y.
Jj,max 1<1<p gl Ljmin 1<1<p gl

Such a combination only involves searching for a single combination coefficient and thus is
computationally efficient. They showed that, under certain circumstances, the proposed
min—max combination may yield larger AUC than empirical search of ¢ by Pepe and
Thompson [6]. This min-max combination approach can be easily extended to the cases
with three ordinal diagnostic categories by maximizing

1 ni n2 n3
U(C): ZZZI(Xi,maz +CXi)min <Y},mam+C}/j,min<Zk,maz+CZk,min)a
LS LPLLE s g |

where Xi,max» Xi,mins Yj,max» @nd Yj min are defined as earlier and

Z maz=mAax Ly, Zg min= min Zy.
1<I<p 1<i<p

3. The proposed methods

In this section, we will propose two new approaches for linearly combining markers to
improve the VUS. The first approach requires the assumption of multivariate normality and
is designed to maximize the penalized/scaled stochastic distance between three ordinal
diagnostic categories. The second distribution-free stepwise approach aims to find the
optimal combination empirically by maximizing the Mann-Whitney statistic of the VUS at
each step.

3.1. The penalized/scaled stochastic distance method based on normality

Assume that X;, Y j, Z follow a multivariate normal distribution Ny (11, %1), Np (K2, 22),
and Np (U3, X3), respectively. The problem of interest is to obtain a vector combination
coefficient ¢ such that the univariate scores Sy = Xj ¢, S, =Y j ¢, and S3 = Zc have the
largest overall discriminating ability to classify subjects into their corresponding disease
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category, in this case, yielding the largest VUS. Notice that under normality assumption, Sy
(d=1, 2, 3) follows a univariate normal distribution N (c{1q, ¢’34 C).

Because the VUS is equal to P(S; < S, < S3), where Sy, Sy, and S3 are univariate scores after
combination for a randomly selected individual from each diagnostic category, it is
reasonable to conclude that the larger stochastic distance between Sq (d = 1, 2, 3), the larger
VUS would be. Because of the fact that mean and variance completely characterize the
normal distribution, we will define stochastic distance between normally distributed random
variables on the basis of functions of mean and variance.

3 _ 2
For Sq ~ N (c'pg, ¢/ £qc) (d =1, 2, 3) Zd:l(clﬂ'd — ¢'I)” measures the between-group
- . - 3 / . .
variation, where 7z is the mean of g ’s, and Zdzlc ch measures the total within-group
. . . . . 3 —\2
variation. In an ideal situation, we want the quantity Zd:l(clﬂd — )" to be as large as

3
possible while at the same time keeping Zdzlc/zdc minimal because these are two
necessary conditions for large separation of distributions underlying Sy, d = 1;2;3. An
intuitive penalized stochastic distance (PSD) could be defined as

3

3
PSD=Y(c'uy — ¢’ = D> e )
d=1

d=1

Lo 3 —\2 . S 3
such that ¢ maximizing ) _,_,(¢'tta — €'78)” and simultaneously minimizing >, > ¢
may be obtained once by maximizing PSD. With some rearrangement,

3

PSD=c' | 3 (g~ W) (g — 1) - 33 | e
d=1

d=1

Lemma 3.1—Let A be a p x p real symmetric matrix with (real) eigenvalues 11 = 1,= ...

Ap and a corresponding set of orthonormal eigenvectors uy,up, ..., Up, that is, u;ujzl(i:j),
where I(-) stands for the indicator function, such that Au; = Aju;. Then for any x ¢ RP and x #
0, maxjx=1 X’Ax = A, and the maximum occurs when x = uy.

Lemma 3.1 directly follows from Raleigh—Ritz Theorem [9]. Therefore, the ¢ that
maximizes PSD is the eigenvector corresponding to the largest eigenvalue of

3 . . 3
[Zdzl(ll»d —B) (g — 1) — Zd:lzd] Notice that it is not necessary to normalize the
eigenvector to obtain ¢ as indicated in Lemma 3.1 because the eigenvectors are unique apart
from a scalar and the VVUS associated with the linear combination c is invariant to a scaling
constant.

However, this newly defined PSD might have some potential problems. For example, in an

3 3
extreme case, Y, (a —)(ta — 1) —Y_ > could be singular. For this reason, we
also consider a scaled stochastic distance (SSD) defined as follows,
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3

Sy — @)’ &S (me—B)(pa—B)|
SSD=2=1 =—= — )
Zc'zdc c/ {sz c
d=1 d=1

. Lo 3 —\2 . .
such that, again, ¢ maximizing Zdzl(clﬂfd — )" and simultaneously minimizing

ZZ:IC/Z(ZC may be obtained by maximizing SSD. This definition of SSD is similar to a
natural extension of Fisher discriminant for multi-category linear discriminant analysis [10],
except that here we do not assume the common variance matrix g =%, d =1, 2, 3, asitisa
too strong assumption across three ordinal diagnostic categories.

Lemma 3.2—Let A be areal p x p symmetric matrix, and let B be any p x p positive
definite matrix. Let\y 2%, > ... 2 A be the eigenvalues of B~1A with a corresponding set of
right eigenvectors uy,up,...,up (all of which are real), that is, B~1 Au; = \u;. Then for any x

/

' Ax
£RPand x # 0, mazgo m:/\l, with the bounds being attained when x = u. In

ticular, f h vadw
articular, Tor any a we nave max
p y 0 x'Bx

B~1a, apart from some scaling constant.

=a’B™"a, and the maximum occurs when x =

Lemma 3.2 follows from Theorem 6.59 (Seber [11], pp. 109-110). To obtain the maximum
of SSD in Equation (8), we can obtain c as the eigenvector corresponding to the largest

eigenvalue of (Zz:12d> 1 [Zizl(“’d — ) — ﬁ)'] based on Lemma 3.2. In practice,
the mean and variance for each disease category can be estimated from the data, and then the
estimates can be substituted into the preceding formulas for calculating the combination
coefficient c.

Remark—For the scenarios with binary disease status,

¢ [ - _ HitHy _ HitHe /-| c
- L; (Md 2 > <Md 2 ) | R = )y — )|
B 31 +35]e - DRED I [ .

—1
the maximum occurs when e=(>_ +> ) (12 — 11)/ V2 from Lemma 3.2. Apart from

the constant 1/ \/5, this result is exactly the same as that in Su and Liu [5]. In this sense, our
proposed SSD method coincides with Su and Liu’s method for binary disease outcomes.

3 —_— —_— .
Generally speaking, the term Zdzl(“d — ) (g — B)' cannot be written as aa’for some a;
thus, a closed-form solution does not exist. However, eigenvalues and eigenvectors of a
square matrix can be easily computed using statistical packages, such as eigen() in R and
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call eigen() in SAS/IML, and therefore obtaining the vector combination coefficient ¢ using
these proposed PSD or SSD methods is numerically straightforward.

3.2. The distribution-free stepwise approach

The preceding approach makes use of the assumption of multivariate normality. We now
consider maximizing VUS without normality assumption. The empirical estimate of VUS of
the combination c is

n n ne
1 1 2 3

ZZZ[(ClXﬂ—F cee +CpXip<Clyvjl+ cee +Cp}/}p<61Zk1+ e —|—Ckap).
M3 i=1k=1

U(e)=

This is a three-category generalization of Pepe and Thompson [6]. When the number of
markers p is large, that is, = 3, the empirical search for ¢ is computationally inaccessible.
The nonparametric min-max procedure by Liu et al. [7] is easy to implement; however, it
comes with a few drawbacks: (1) feasibility might be an issue when not all biomarkers are
measured on the same scale; (2) the approach may be an inefficient use of the data as it only
considers the minimum and maximum values; (3) interpretation of the estimated
combination coefficient is difficult.

To overcome all the shortcomings of the current existing nonparametric combination
methods, we will develop a distribution-free approach that combines the diagnostic tests or
the scores of all the biomarkers in a stepwise fashion. We consider two stepwise proceeding
procedures, that is, step-down and step-up, which we describe in detail in the following,
using the step-down procedure as an example:

(1) Estimate VUS for each of p diagnostic tests or biomarkers on the basis of the
Mann-Whitney statistic by Equation (4);

(2) Assign the order from 1 to p for each diagnostic test or biomarker on the basis of
their estimated VUS from the largest to the smallest.

(3) Combine the first two markers (i.e., markers with the first two largest VUS)
using empirical search for combination coefficients presented by Pepe and
Thompson [6].

4) Having derived the univariate composite score in step 3 by linearly combining
the first two markers, combine it with the third marker (i.e., marker with the
third largest VUS) using empirical searching combination again.

(5) Proceed in this fashion until the ordered pth marker (i.e., marker with smallest
VUS) is included in the linear combination.

The estimated combination coefficient by searching needs to be saved in each step, and in
the end, the order of p’s combination coefficients needs to be adjusted to match their
corresponding markers. The step-up procedure is exactly the same as the step-down one
except that in step 2, the order from 1 to p for each diagnostic test or biomarker is assigned
on the basis of their estimated VUS from the smallest to the largest.
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Given p biomarkers, there exist p! ways of permuting them, and hence there exist p!
stepwise procedures. The proposed step-down and step-up procedures are just two out of
those p! ways. However, when p is relatively large, it is not feasible to carry out all the p!
ways. For example, when p = 50, there exist 50! ~ 3 x 1064 stepwise procedures. Another
reason that we only consider step-down and step-up procedures is rooted in order restricted
inference [12], where it is argued that any other stepwise method selecting different
proceeding orders would have performance somewhere in between the step-down and step-
up procedures.

The advantages of our proposed stepwise approach are as follows: (1) it is distribution-free,
and therefore it is robust; (2) it is easy to implement with computer iterations, and therefore
it offers a relief from the computational burden in the empirical search of combination
coefficients in p-dimensional space as p > 2 as encountered in Pepe and Thompson [6]; (3)
simulation studies in Section 4 demonstrate that the stepwise approach (especially the step-
down one) may outperform the other methods under some scenarios, and for other scenarios,
its performance is comparable with that of other methods.

4. Simulation studies

We conduct simulations to investigate the performance of the different combination methods
as it is difficult, if not impossible, to analytically evaluate the performance of the
aforementioned methods. For 1z in Equations (7) and (8), both weighted and un-weighted
versions are calculated as follows: [z =(nq py +nopy+n3ps)/ (n1+n2+n3)and

"=, +po+ps) /3. Overall, we empirically investigate the performance of eight
approaches, namely, the SSD method with 7z (SSD1), the SSD method with z“» (SSD2),
the PSD method with 7%, the PSD method with 7z (PSD2), the step-down procedure that
proceeds from the marker with largest VUS to the one with smallest VUS (SW1), the step-
up procedure that proceeds from the marker with smallest VUS to the one with largest VUS
(SW2), the min—-max approach extended to three diagnostic categories (Min—-max), and the
linear combination coefficients from cumulative logistic regression (Cum-logistic).

To investigate the performance of all eight approaches empirically, we consider six different
settings of the joint distributions of five diagnostic tests (p = 5). For each setting, we
generate multivariate observations from the underlying distributions with different sample
sizes. We calculate the univariate composite scores Syj, Spj, and Sz by combining the
observed data using the estimated ¢ from a specific combination method; and then we
estimate the VUS of the combined marker using the unbiased Mann-Whitney statistic in
Equation (4). For each setting, we conduct 10,000 Monte Carlo repetitions. For each
method, we report the mean VUS as well as the chance of obtaining the largest VUS across
10,000 Monte Carlo repetitions in Tables I-VI.

4.1. Multivariate normal distributions with equal variance

We generate data from multivariate normal distributions with different mean vectors and
equal variance matrices corresponding to three ordinal diagnostic categories with
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0.1 0.8 1.6

0.1 1.1 2.2
=1 01 |,po=| 14 |,u3=1] 2.8 |,

0.1 1.7 3.4

0.1 2.0 4.0

and 31 =%y =33 =0.7 X Igxg + 0.3 X Jgx5, 0.5 X Igx5 + 0.5 X J5x5, 0.3 X Igx5 + 0.7 X J5xs,
where | and J stand for an identity matrix and a matrix with all elements equal to 1,
respectively. These three different covariance matrices correspond to scenarios with low,
medium, and high correlation, respectively, and we present the corresponding simulation
results in Tables I-I1I.

Overall speaking, the simulation results presented in Tables I-111 show that SW1, SSD1,
SSD2, and Cum-logistic have better performance than the other approaches. The
performance of each method somewhat depends on the correlation. When correlation is
relatively small, Table I (p = 0.3) shows that SW1 performs much better than SSD1, SSD2,
or Cum-logistic. As correlation increases from small to large, Table 111 (p = 0.7) shows that
the performance of SW1 is slightly inferior to that of SSD1 or Cum-logistic in view of the
mean VUS. Under the setting with correlation p = 0.5 (Table I1), all of SW1, SSD1, SSD2,
and Cum-logistic have comparable good performance.

Although the method using cumulative logistic regression might work well for certain
scenarios, there exist some numerical difficulties with fitting a cumulative logistic
regression model. The iterative algorithms for maximum likelihood estimates of the model
parameters can easily fail to converge, especially when the sample sizes are small. For fair
comparisons, those ill-posed Monte Carlo samples are marked and excluded for calculating
the mean VUS corresponding to Cum-logistic.

4.2. Multivariate normal distributions with unequal variance

Now we consider multivariate normal distributions with different mean vectors and unequal
variance matrices corresponding to three ordinal diagnostic categories. The mean vectors are
the same as in Section 4.1, with variance matrices set as follows,

21:07 X I5><5+03 X J5><5
22:05 X I5><5+0.5 X J5><5
23:03 X I5y54+0.7T X J5x5

As shown in Table IV, under this setting, SSD1, SSD2, SW1, and Cum-logistic have good
and comparable performances.

4.3. Multivariate log-normal distributions with unequal variance—covariance

In this section, we would like to investigate the diagnostic accuracy of the combined marker
from different methods, assuming that multiple biomarkers follow multivariate log-normal
distributions; that is, the log-transformed scores are multivariate normally distributed. We
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first generate data from the multivariate normal setting in Section 4.2 and then exponentiate
the data to get the multivariate log-normal observations.

In this case, the normality assumption does not hold, and the normal-based approaches such
as SSD1 do not work at all, which is expected, as sample means and variance matrices under
this setting cannot measure the location and variation correctly for non-normal data. From
Table V, we suggest that SW1 proceeding from the marker with largest VUS to the marker
with smallest VUS dominate the other methods.

4.4. Multivariate normal—xz—Iog—normal-exponential-gamma distributions via normal copula

We further investigate the performances of different methods assuming that the p-variate
scores follow multivariate normal-y2-log-normal-exponential-gamma distributions coupled
together via normal copula [13] with exchangeable correlations p being 0.3, 0.5, and 0.7 for
non-diseased, intermediate, and diseased categories, respectively. We choose the marginal
distributions of p biomarkers for non-diseased, intermediate, and diseased subjects as
follows, respectively,

N(0.1,1) N(0.8,1) N(1.6,1)
X6.1 Xia X3.2
LN(-2.80,1) |,| LN(=0.16,1) |,| LN(0.53,1)
exp(0.1) exp(1.7) exp(3.4)
r.1,1) I'(2.0,1) I'4.0,1)

Under this setting, the mean structures are exactly the same as in Section 4.1. From Table
VI, we can see that the step-down procedure (SW1) proceeding from the marker with largest
VUS to the one with smallest VUS is far more superior than all the other methods.

In summary, out of all the methods considered, the step-down procedure (SW1) is a good
choice for combining multiple biomarkers, followed by the SSD method (SSD1 and SSD2),
the cumulative logistic regression method, SW2, the PSD method (PSD1 and PSD2), and
Min-max. Although SW1 is not based on normality, it requires p — 1 nonparametric
searching steps. On the other hand, SSD1 (or SSD2) requires normal assumption, but it is
more efficient with large numbers of biomarkers.

5. Analysis of data example

In this section, we apply all eight approaches investigated in simulation studies to a real data
set of 118 subjects from a cohort study in early stage AD from the Washington University
Knight Alzheimer’s Disease Research Center to combine several psychometric tests for
larger discriminating ability, that is, larger VUS, than any individual psychometric test
scores.

Experienced clinicians assessed each individual. The diagnosis of AD was based on the
Clinical Dementia Rating (CDR) according to published rules [14]. In this application, we
are concentrating on three diagnostic categories, non-demented (CDR 0, 45 individuals),
very mildly demented (CDR 0.5, 44 individuals), and mildly demented (CDR 1, 29
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individuals). Approximately 2 weeks after the clinical evaluation, subjects also completed a
battery of psychometric tests. Five of these psychometric tests, the Logical Memory (LM),
Digit Span Forward (DSF), Digit Span Backward (DSB), Associate Learning subtests of the
Wechsler Memory Scale (WMS) [15], and the Visual Retention Test (Form C, 10-s
exposure) (VRT) [16] assessed episodic memory, which involves the recollection of specific
events, situations, and experiences, for example, first day of school or graduation. Xiong et
al. [3] reported the estimated VUS for these five psychometric tests: 0.724 (LM), 0.522
(DSF), 0.599 (DSB), 0.630 (WMS), and 0.587 (VRT).

We provide the linear combinations with associated VUS from the SSD1, SSD2, PSD1,
PSD2, Cum-logistic, SW1, and SW2 methods in the following, where the combination
coefficient corresponding to LM is set to 1 to guarantee a unique solution.

LM DSF DSB VRT  WMS (vUs)

SSD1 1.0000 0.1533 0.2272 0.3915 0.0765 (0.8077)
SSD2 1.0000 0.1513 0.2219 0.3924 0.0747 (0.8066)
PSD1 1.0000 0.4863 0.6464 0.7902 0.7121 (0.8106)
PSD2 1.0000 0.4742 0.6233 0.7810 0.6957 (0.8108)
Cum-logistic  1.0000 0.1610 0.4396 0.2934 0.1654 (0.8138)
Swi 1.0000 0.1162 0.4830 0.1290 0.3558  (0.8296)
SW2 1.0000 0.0729 0.1553 0.0924 0.3360 (0.8235)

The min—max approach provides the following combination

1.0000xmaz {LM, DSF, DSB, VRT, WMS}+1.1956xmin {LM, DSF, DSB, VRT, WMS}

with an estimated VVUS of 0:7724 for the combined marker. The Shapiro-Wilk test for
multivariate normality [17] returns p-values of < 0:0001, < 0:0001, and 0:0184 for non-
diseased, intermediate, and diseased categories, respectively. Therefore, the results using the
procedures based on normality (SSD1, SSD2, PSD1, PSD2) should not be interpreted. All
eight methods provide a linearly combined marker that yields a larger VUS than any of the
original test, and the step-down method (SW1) provides a linear combination with the
largest VUS.

6. Discussion

In this article, we extend two existing combination approaches to deal with three ordinal
diagnostic categories. We also propose two new types of linear combination methods to
combine diagnostic tests or biomarkers to improve diagnostic accuracy measure, VUS. The
first proposed normal-based approach requires only the estimated means and variance-
covariances of multiple diagnostic tests for each diagnostic category to calculate the linear
combination coefficients. Therefore, it is efficient with large numbers of biomarkers, which
is quite common nowadays with high-throughput bioinformatics tools, for instance,
microarray technologies. Under the normality assumption with moderate to large
correlations, our simulations show that the normal-based approach, especially SSD1, has
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relatively good performance in terms of obtaining a combined marker with the largest VUS.
Recently, Zhang [18] proposed to directly maximize the accuracy index VUS with three
diagnostic categories under normality assumption. Although appealing, the mathematical
equations for finding the derivatives are formidable. The author stated that the analytic
solution to directly maximizing the VUS is not generally attainable. For this reason, the
proposed normal-based approach may offer investigators an opportunity to combine the
diagnostic tests and biomarkers for the disease processes with more than three ordinal
categories. The second proposed approach is a stepwise approach that is distribution-free in
nature and hence is robust with non-normal data. The computing effort and cost in obtaining
the combination coefficient is significantly less than the empirical search in p-dimensional
space [6]. Our simulations show, for either non-normal data or normal data with small
correlations, that the step-down procedure (SW1) proceeding from the marker with largest
VUS to the marker with smallest VUS is a reasonable choice for biomarker combination. It
is worthwhile to point out that we could easily generalize both the stepwise approach and the
normal-based approach to diseases with more than three diagnostic categories. The
cumulative logistic regression approach (Cum-logistic) has great chance to produce a
combined marker with largest VUS under normality assumption with large sample sizes.
Note that one of the assumptions underlying cumulative logistic regression model is the
proportional odds. This is to say that the coefficients that describe the relationship between,
say, the lowest versus all higher categories of the response variable are the same as those
that describe the relationship between the next lowest category versus all higher categories,
and so forth. We recommend to test this assumption before applying this approach to the
combination of markers. The min-max combination method is a fast one, although the
performance is not as good as simulations indicated. It is interesting to explore if adding
some other order statistics will improve the combination while maintaining its
computational efficiency in the future research.

Some related research topics are currently under investigation. The methods explored here
implicitly assume that the scaling metric of each of the biomarkers is linear. However, for
some cognitive tests, this may not be the case; see Crane et al. [19]. It will be of great
interest to determine whether some approaches that first produce a linear scaling metric for
each biomarker and then apply the proposed methods may provide additional ability to
distinguish among disease severity categories. Furthermore, it is also of interest to explore
the performance of a generalized version of the cumulative logistic regression approach
discussed in Section 2.2 without the proportional odds assumption.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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