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Abstract

Many researchers have addressed the problem of finding the optimal linear combination of 

biomarkers to maximize the area under receiver operating characteristic (ROC) curves for 

scenarios with binary disease status. In practice, many disease processes such as Alzheimer can be 

naturally classified into three diagnostic categories such as normal, mild cognitive impairment and 

Alzheimer’s disease (AD), and for such diseases the volume under the ROC surface (VUS) is the 

most commonly used index of diagnostic accuracy. In this article, we propose a few parametric 

and nonparametric approaches to address the problem of finding the optimal linear combination to 

maximize the VUS. We carried out simulation studies to investigate the performance of the 

proposed methods. We apply all of the investigated approaches to a real data set from a cohort 

study in early stage AD.
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1. Introduction

Multiple diagnostic tests are often performed on the same individual to provide clinicians as 

much information as possible in order to make more accurate disease diagnosis as it is 

becoming increasingly clear that one single diagnostic test or biomarker is not sufficient to 

serve as an optimal screening device for early detection or prognosis [1]. It is therefore of 
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critical importance to combine the information available in an optimal way to improve 

overall diagnostic accuracy [2].

When the diagnostic outcome is binary, that is, non-diseased and diseased, the receiver 

operating characteristic (ROC) curves and the area under the ROC curves (AUC) are 

commonly used diagnostic accuracy measures. Many conditions are conceptualized as 

having a normal stage, an early/mild/prodromal stage, and a late/diagnosable/fully 

symptomatic stage. For example, mild cognitive impairment and/or early stage Alzheimer’s 

disease (AD) is a transitional stage between the cognitive changes of normal aging and the 

more serious AD. More details can be seen here [3].

With three ordinal diagnostic categories, the ROC surface, analogous to ROC curve, as well 

as the volume under the ROC surface (VUS), analogous to AUC, have been proposed to 

assess diagnostic accuracy [3,4]. Let S1, S2, and S3 denote the scores resulting from a 

diagnostic test or biomarker, and let F1, F2, and F3 be the corresponding cumulative 

distribution functions for non-diseased, intermediate, and diseased subjects, respectively. 

Assume that the results of a diagnostic test are measured on a continuous scale and higher 

values indicate greater severity of the disease. Let p1 = F1. (c1), p3 = 1 – F3.(c3), where C1 

and C3 are threshold values (C1 < C3), be the true classification rates for non-diseased and 

diseased categories, respectively. Then the probability that a randomly selected subject from 

the intermediate group has a score between C1 and C3 is

(1)

The probability p2 is guaranteed positive because of the imposed order restriction of c1 < c3 

such that .

For a pair of thresholds (c1, c3), we could compute the true classification rate p2 for the 

intermediate category. The triplet (p1, p2, p3), where p2 = p2(p1, p3) being a function of (p1, 

p3), would produce an ROC surface in the three-dimensional space for all possible (c1, c3) ε 

ℝ2. The VUS is then defined as

(2)

This is a generalization of the AUC for a binary classification. As in Xiong et al. [3], under 

the normality assumption , d = 1, 2, 3, the VUS can be further expressed as

(3)

where a = σ2/σ1, b = (μ1 − μ2)/σ1, c = σ2/σ3, d = (μ3 − μ2)/σ3, ϕ (·) is the standard normal 

distribution function, and ϕ(·) is the standard normal density function. One could show that 

VUS is mathematically equivalent to the probability P(S1 < S2 < S3), where S1, S2, and S3 

are scores for randomly selected individuals from corresponding diagnostic category. For a 

useless test (when S1, S2, and S3 have identical distributions), VUS is 1/6. Notice that the 

unbiased nonparametric Mann–Whitney U statistic of the VUS is given by
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(4)

where n1, n2, and n3 are the sample sizes for non-diseased, intermediate, and diseased 

subjects, respectively, and I.(·) stands for the indicator function.

The problem of finding optimal combinations of diagnostic tests and biomarkers with binary 

diagnostic categories has been well addressed in literature. Su and Liu [5] derived an 

optimal linear combination that maximizes the AUC when the biomarkers in the non-

diseased and diseased categories follow normal distributions. Without assumptions on the 

distributions of the biomarkers, Pepe and Thompson [6] considered an empirical solution of 

the optimal linear combination that maximizes the Mann–Whitney statistic. However, when 

the number of biomarkers is large, this approach is computationally formidable. Recently, 

Liu et al. [7] developed a min–max combination approach that only involves searching for a 

single coefficient that maximizes the Mann–Whitney U statistic of AUC.

Whereas several studies address optional selection of weights for binary outcomes, the 

problem of finding the optimal linear combinations has rarely been addressed for outcomes 

with three ordinal diagnostic categories. Nevertheless, it is of paramount importance to 

develop such combinations for biomarkers with three disease categories for the purpose of 

maximizing diagnostic accuracy. The importance can be seen through the data example on 

AD. Because AD is irreversible and no pharmaceutical treatments are effective for late 

stages, it is critical to accurately diagnose AD at its early stage. However, as presented in 

Xiong et al. [3], none of the current psychometric tests can be considered as excellent with 

the estimated VUS ranging from 0.522 to 0.752. Therefore, it is important to develop a 

composite score derived from a linear combination of biomarkers for better diagnostic 

accuracy.

The goal of this manuscript is twofold: (1) to present parametric and nonparametric 

combination approaches for the purpose of maximizing the most important diagnostic 

accuracy index for three-category outcomes, namely, the VUS; (2) to empirically compare 

the performance of the proposed methods. We organize the rest of our article as follows. In 

Section 2, we extend two existing combination methods for binary outcomes (i.e., the 

logistic regression approach and the min–max approach) to maximize VUS for three-

category outcomes. In Section 3, we propose a new parametric approach and a new 

nonparametric approach. We present simulation studies in Section 4 for investigating the 

performance of different combination methods in maximizing VUS. In Section 5, we apply 

the proposed approaches as well as the extensions to a real data set of 118 subjects from a 

cohort study in early stage AD from the Washington University Knight Alzheimer’s Disease 

Research Center to combine diagnostic tests to increase the accuracy of discriminating 

different stages of AD. We present a broader discussion on deriving linear combinations of 

diagnostic tests and biomarkers to improve the diagnostic accuracy in Section 6.
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2. Extensions of existing methods

We can easily extend two existing methods for binary outcomes, namely, the logistic 

regression method and the min–max method, to outcomes with three ordinal disease 

categories. In the following, Section 2.1 presents the notation, and Sections 2.2 and 2.3 will 

discuss these two extensions.

2.1. Notation

Suppose we have p diagnostic tests or biomarkers available on each individual. We denote 

the diagnostic category as D = d, where d = 1, 2, 3 stands for non-diseased, intermediate, 

and diseased subjects, respectively. Let

be the p-dimensional observed scores from a random sample of size n1 in the non-diseased 

category,

be the p-dimensional observed scores from a random sample of size n2 in the intermediate 

category, and

be the p-dimensional observed scores from a random sample of size n3 in the diseased 

category. We often stack the data together in a matrix form

where the first column indicates the diagnostic category and the other p columns form the 

matrix of observed scores concatenated from Xi, Yj, and Zk by row. For simplicity, we use 

Mp to denote p-variate observed scores for an individual from any diagnostic category.

2.2. The cumulative logistic regression approach

When we use a logistic regression model to model a binary outcome, we can obtain linear 

coefficients for multiple predictors. With three ordinal diagnostic categories, the cumulative 

logistic model has the form
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where c is a vector coefficient of length p, and α0, β0 are two intercepts. For modeling an 

outcome with three or more categories, we also frequently use the multinomial logistic 

regression, although it is known that if the outcome variable is truly ordered, which is the 

case in this article, cumulative logistic regression will make the model more parsimonious. 

Also, the multinomial logistic regression would produce more than one set of vector 

coefficients for predictor variables, which is meaningless for the purpose of combinations. 

Therefore, we investigate the performance of the combined marker using c obtained from 

cumulative logistic regression.

For modeling a binary outcome, we use the logistic regression to maximize the logistic 

likelihood function. For such model, Jin and Lu [8] proved that c from a fitted logistic 

regression is the optimal linear combination in the sense that it provides the highest 

sensitivity uniformly over the entire range of specificity and therefore yields the largest 

AUC among all possible linear combinations. This impressive result, however, depends on 

the strong assumption that the binary response variable (i.e., disease status) is generated 

through a link function of predictors. As a matter of fact, in practice, disease status is not 

generated this way. Usually, a binary gold standard is used to determine disease status, and 

multiple biomarkers are measured without knowing any information on disease status. 

Furthermore, this result does not assume any joint distributions for multiple predictors. 

Therefore, it cannot include Su and Liu’s [5] method as a special case, in which multivariate 

normality is a fundamental assumption.

For three-category outcomes, the result from Jin and Lu [8] has not been extended to three-

category cases. Despite the lack of analytical results, cumulative logistic regression still 

offers a possible combination method for the scenarios with three-category outcomes. 

Therefore, it is of interest to investigate the performance of the combination of biomarkers 

using c from a fitted cumulative logistic regression for the purpose of maximizing the VUS.

2.3. The min–max combination approach

With binary diagnostic categories, Pepe and Thompson [6] proposed to estimate the optimal 

linear combination coefficient c by maximizing the Mann–Whitney U statistic (i.e., the 

empirical estimate of AUC) as follows,

(5)

where I(·) stands for the indicator function. Pepe and Thompson [6] also pointed out that 

because the Mann-Whitney statistic estimate of AUC is not a continuous function of c, a 

search rather than a derivative-based method is required for this maximization. It means that 

general-purpose optimization algorithms such as conjugate-gradient or Newton-type 

methods are not appropriate for this maximization. They illustrated the idea with an 

application involving only two markers. In that case, the computation is relatively easy. 

However, when the number of markers is large, that is, ≥ 3, this approach is computationally 

inaccessible.
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To address such computational difficulty, Liu et al. [7] proposed a nonparametric min–max 

approach that linearly combines only the minimum and maximum values of the p markers to 

maximize the AUC, that is,

(6)

where

and

Such a combination only involves searching for a single combination coefficient and thus is 

computationally efficient. They showed that, under certain circumstances, the proposed 

min–max combination may yield larger AUC than empirical search of c by Pepe and 

Thompson [6]. This min–max combination approach can be easily extended to the cases 

with three ordinal diagnostic categories by maximizing

where Xi,max, Xi,min, Yj,max, and Yj,min are defined as earlier and

3. The proposed methods

In this section, we will propose two new approaches for linearly combining markers to 

improve the VUS. The first approach requires the assumption of multivariate normality and 

is designed to maximize the penalized/scaled stochastic distance between three ordinal 

diagnostic categories. The second distribution-free stepwise approach aims to find the 

optimal combination empirically by maximizing the Mann–Whitney statistic of the VUS at 

each step.

3.1. The penalized/scaled stochastic distance method based on normality

Assume that Xi, Y j, Zk follow a multivariate normal distribution Np (μ1, Σ1), Np (μ2, Σ2), 

and Np (μ3, Σ3), respectively. The problem of interest is to obtain a vector combination 

coefficient c such that the univariate scores S1 = Xi c, S2 = Y j c, and S3 = Zkc have the 

largest overall discriminating ability to classify subjects into their corresponding disease 
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category, in this case, yielding the largest VUS. Notice that under normality assumption, Sd 

(d = 1, 2, 3) follows a univariate normal distribution N (c′μd, c′Σd c).

Because the VUS is equal to P(S1 < S2 < S3), where S1, S2, and S3 are univariate scores after 

combination for a randomly selected individual from each diagnostic category, it is 

reasonable to conclude that the larger stochastic distance between Sd (d = 1, 2, 3), the larger 

VUS would be. Because of the fact that mean and variance completely characterize the 

normal distribution, we will define stochastic distance between normally distributed random 

variables on the basis of functions of mean and variance.

For Sd ∼ N (c′μd, c′ Σdc) (d = 1, 2, 3)  measures the between-group 

variation, where  is the mean of μd ’s, and  measures the total within-group 

variation. In an ideal situation, we want the quantity  to be as large as 

possible while at the same time keeping  minimal because these are two 

necessary conditions for large separation of distributions underlying Sd, d = 1;2;3. An 

intuitive penalized stochastic distance (PSD) could be defined as

(7)

such that c maximizing  and simultaneously minimizing 

may be obtained once by maximizing PSD. With some rearrangement,

Lemma 3.1—Let A be a p × p real symmetric matrix with (real) eigenvalues λ1 ≥ λ2≥ …≥ 

λp and a corresponding set of orthonormal eigenvectors u1,u2, …, up, that is, , 

where I(·) stands for the indicator function, such that Aui = λiui. Then for any x ε ℜp and x ≠ 

0, max||x||=1 x′Ax = λ1, and the maximum occurs when x = u1.

Lemma 3.1 directly follows from Raleigh–Ritz Theorem [9]. Therefore, the c that 

maximizes PSD is the eigenvector corresponding to the largest eigenvalue of 

. Notice that it is not necessary to normalize the 

eigenvector to obtain c as indicated in Lemma 3.1 because the eigenvectors are unique apart 

from a scalar and the VUS associated with the linear combination c is invariant to a scaling 

constant.

However, this newly defined PSD might have some potential problems. For example, in an 

extreme case,  could be singular. For this reason, we 

also consider a scaled stochastic distance (SSD) defined as follows,
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(8)

such that, again, c maximizing  and simultaneously minimizing 

 may be obtained by maximizing SSD. This definition of SSD is similar to a 

natural extension of Fisher discriminant for multi-category linear discriminant analysis [10], 

except that here we do not assume the common variance matrix Σd = Σ, d = 1, 2, 3, as it is a 

too strong assumption across three ordinal diagnostic categories.

Lemma 3.2—Let A be a real p × p symmetric matrix, and let B be any p × p positive 

definite matrix. Let λ1 ≥ λ2 ≥ … ≥ λp be the eigenvalues of B−1A with a corresponding set of 

right eigenvectors u1,u2,…,up (all of which are real), that is, B−1 Aui = λiui. Then for any x 

ε ℜp and x ≠ 0, , with the bounds being attained when x = u1. In 

particular, for any a we have , and the maximum occurs when x = 

B−1a, apart from some scaling constant.

Lemma 3.2 follows from Theorem 6.59 (Seber [11], pp. 109–110). To obtain the maximum 

of SSD in Equation (8), we can obtain c as the eigenvector corresponding to the largest 

eigenvalue of  based on Lemma 3.2. In practice, 

the mean and variance for each disease category can be estimated from the data, and then the 

estimates can be substituted into the preceding formulas for calculating the combination 

coefficient c.

Remark—For the scenarios with binary disease status,

the maximum occurs when  from Lemma 3.2. Apart from 

the constant , this result is exactly the same as that in Su and Liu [5]. In this sense, our 

proposed SSD method coincides with Su and Liu’s method for binary disease outcomes.

Generally speaking, the term  cannot be written as aa′ for some a; 

thus, a closed-form solution does not exist. However, eigenvalues and eigenvectors of a 

square matrix can be easily computed using statistical packages, such as eigen() in R and 
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call eigen() in SAS/IML, and therefore obtaining the vector combination coefficient c using 

these proposed PSD or SSD methods is numerically straightforward.

3.2. The distribution-free stepwise approach

The preceding approach makes use of the assumption of multivariate normality. We now 

consider maximizing VUS without normality assumption. The empirical estimate of VUS of 

the combination c is

This is a three-category generalization of Pepe and Thompson [6]. When the number of 

markers p is large, that is, ≥ 3, the empirical search for c is computationally inaccessible. 

The nonparametric min-max procedure by Liu et al. [7] is easy to implement; however, it 

comes with a few drawbacks: (1) feasibility might be an issue when not all biomarkers are 

measured on the same scale; (2) the approach may be an inefficient use of the data as it only 

considers the minimum and maximum values; (3) interpretation of the estimated 

combination coefficient is difficult.

To overcome all the shortcomings of the current existing nonparametric combination 

methods, we will develop a distribution-free approach that combines the diagnostic tests or 

the scores of all the biomarkers in a stepwise fashion. We consider two stepwise proceeding 

procedures, that is, step-down and step-up, which we describe in detail in the following, 

using the step-down procedure as an example:

(1) Estimate VUS for each of p diagnostic tests or biomarkers on the basis of the 

Mann–Whitney statistic by Equation (4);

(2) Assign the order from 1 to p for each diagnostic test or biomarker on the basis of 

their estimated VUS from the largest to the smallest.

(3) Combine the first two markers (i.e., markers with the first two largest VUS) 

using empirical search for combination coefficients presented by Pepe and 

Thompson [6].

(4) Having derived the univariate composite score in step 3 by linearly combining 

the first two markers, combine it with the third marker (i.e., marker with the 

third largest VUS) using empirical searching combination again.

(5) Proceed in this fashion until the ordered pth marker (i.e., marker with smallest 

VUS) is included in the linear combination.

The estimated combination coefficient by searching needs to be saved in each step, and in 

the end, the order of p’s combination coefficients needs to be adjusted to match their 

corresponding markers. The step-up procedure is exactly the same as the step-down one 

except that in step 2, the order from 1 to p for each diagnostic test or biomarker is assigned 

on the basis of their estimated VUS from the smallest to the largest.
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Given p biomarkers, there exist p! ways of permuting them, and hence there exist p! 

stepwise procedures. The proposed step-down and step-up procedures are just two out of 

those p! ways. However, when p is relatively large, it is not feasible to carry out all the p! 

ways. For example, when p ≥ 50, there exist 50! ≈ 3 × 1064 stepwise procedures. Another 

reason that we only consider step-down and step-up procedures is rooted in order restricted 

inference [12], where it is argued that any other stepwise method selecting different 

proceeding orders would have performance somewhere in between the step-down and step-

up procedures.

The advantages of our proposed stepwise approach are as follows: (1) it is distribution-free, 

and therefore it is robust; (2) it is easy to implement with computer iterations, and therefore 

it offers a relief from the computational burden in the empirical search of combination 

coefficients in p-dimensional space as p > 2 as encountered in Pepe and Thompson [6]; (3) 

simulation studies in Section 4 demonstrate that the stepwise approach (especially the step-

down one) may outperform the other methods under some scenarios, and for other scenarios, 

its performance is comparable with that of other methods.

4. Simulation studies

We conduct simulations to investigate the performance of the different combination methods 

as it is difficult, if not impossible, to analytically evaluate the performance of the 

aforementioned methods. For  in Equations (7) and (8), both weighted and un-weighted 

versions are calculated as follows:  and 

. Overall, we empirically investigate the performance of eight 

approaches, namely, the SSD method with  (SSD1), the SSD method with  (SSD2), 

the PSD method with , the PSD method with  (PSD2), the step-down procedure that 

proceeds from the marker with largest VUS to the one with smallest VUS (SW1), the step-

up procedure that proceeds from the marker with smallest VUS to the one with largest VUS 

(SW2), the min–max approach extended to three diagnostic categories (Min–max), and the 

linear combination coefficients from cumulative logistic regression (Cum-logistic).

To investigate the performance of all eight approaches empirically, we consider six different 

settings of the joint distributions of five diagnostic tests (p = 5). For each setting, we 

generate multivariate observations from the underlying distributions with different sample 

sizes. We calculate the univariate composite scores S1i, S2j, and S3k by combining the 

observed data using the estimated c from a specific combination method; and then we 

estimate the VUS of the combined marker using the unbiased Mann-Whitney statistic in 

Equation (4). For each setting, we conduct 10,000 Monte Carlo repetitions. For each 

method, we report the mean VUS as well as the chance of obtaining the largest VUS across 

10,000 Monte Carlo repetitions in Tables I–VI.

4.1. Multivariate normal distributions with equal variance

We generate data from multivariate normal distributions with different mean vectors and 

equal variance matrices corresponding to three ordinal diagnostic categories with
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and Σ1 = Σ2 = Σ3 = 0.7 × I5×5 + 0.3 × J5×5, 0.5 × I5×5 + 0.5 × J5×5, 0.3 × I5×5 + 0.7 × J5×5, 

where I and J stand for an identity matrix and a matrix with all elements equal to 1, 

respectively. These three different covariance matrices correspond to scenarios with low, 

medium, and high correlation, respectively, and we present the corresponding simulation 

results in Tables I–III.

Overall speaking, the simulation results presented in Tables I–III show that SW1, SSD1, 

SSD2, and Cum-logistic have better performance than the other approaches. The 

performance of each method somewhat depends on the correlation. When correlation is 

relatively small, Table I (p = 0.3) shows that SW1 performs much better than SSD1, SSD2, 

or Cum-logistic. As correlation increases from small to large, Table III (p = 0.7) shows that 

the performance of SW1 is slightly inferior to that of SSD1 or Cum-logistic in view of the 

mean VUS. Under the setting with correlation p = 0.5 (Table II), all of SW1, SSD1, SSD2, 

and Cum-logistic have comparable good performance.

Although the method using cumulative logistic regression might work well for certain 

scenarios, there exist some numerical difficulties with fitting a cumulative logistic 

regression model. The iterative algorithms for maximum likelihood estimates of the model 

parameters can easily fail to converge, especially when the sample sizes are small. For fair 

comparisons, those ill-posed Monte Carlo samples are marked and excluded for calculating 

the mean VUS corresponding to Cum-logistic.

4.2. Multivariate normal distributions with unequal variance

Now we consider multivariate normal distributions with different mean vectors and unequal 

variance matrices corresponding to three ordinal diagnostic categories. The mean vectors are 

the same as in Section 4.1, with variance matrices set as follows,

As shown in Table IV, under this setting, SSD1, SSD2, SW1, and Cum-logistic have good 

and comparable performances.

4.3. Multivariate log-normal distributions with unequal variance–covariance

In this section, we would like to investigate the diagnostic accuracy of the combined marker 

from different methods, assuming that multiple biomarkers follow multivariate log-normal 

distributions; that is, the log-transformed scores are multivariate normally distributed. We 
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first generate data from the multivariate normal setting in Section 4.2 and then exponentiate 

the data to get the multivariate log-normal observations.

In this case, the normality assumption does not hold, and the normal-based approaches such 

as SSD1 do not work at all, which is expected, as sample means and variance matrices under 

this setting cannot measure the location and variation correctly for non-normal data. From 

Table V, we suggest that SW1 proceeding from the marker with largest VUS to the marker 

with smallest VUS dominate the other methods.

4.4. Multivariate normal-χ2-log-normal-exponential-gamma distributions via normal copula

We further investigate the performances of different methods assuming that the p-variate 

scores follow multivariate normal-χ2-log-normal-exponential-gamma distributions coupled 

together via normal copula [13] with exchangeable correlations p being 0.3, 0.5, and 0.7 for 

non-diseased, intermediate, and diseased categories, respectively. We choose the marginal 

distributions of p biomarkers for non-diseased, intermediate, and diseased subjects as 

follows, respectively,

Under this setting, the mean structures are exactly the same as in Section 4.1. From Table 

VI, we can see that the step-down procedure (SW1) proceeding from the marker with largest 

VUS to the one with smallest VUS is far more superior than all the other methods.

In summary, out of all the methods considered, the step-down procedure (SW1) is a good 

choice for combining multiple biomarkers, followed by the SSD method (SSD1 and SSD2), 

the cumulative logistic regression method, SW2, the PSD method (PSD1 and PSD2), and 

Min-max. Although SW1 is not based on normality, it requires p – 1 nonparametric 

searching steps. On the other hand, SSD1 (or SSD2) requires normal assumption, but it is 

more efficient with large numbers of biomarkers.

5. Analysis of data example

In this section, we apply all eight approaches investigated in simulation studies to a real data 

set of 118 subjects from a cohort study in early stage AD from the Washington University 

Knight Alzheimer’s Disease Research Center to combine several psychometric tests for 

larger discriminating ability, that is, larger VUS, than any individual psychometric test 

scores.

Experienced clinicians assessed each individual. The diagnosis of AD was based on the 

Clinical Dementia Rating (CDR) according to published rules [14]. In this application, we 

are concentrating on three diagnostic categories, non-demented (CDR 0, 45 individuals), 

very mildly demented (CDR 0.5, 44 individuals), and mildly demented (CDR 1, 29 
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individuals). Approximately 2 weeks after the clinical evaluation, subjects also completed a 

battery of psychometric tests. Five of these psychometric tests, the Logical Memory (LM), 

Digit Span Forward (DSF), Digit Span Backward (DSB), Associate Learning subtests of the 

Wechsler Memory Scale (WMS) [15], and the Visual Retention Test (Form C, 10-s 

exposure) (VRT) [16] assessed episodic memory, which involves the recollection of specific 

events, situations, and experiences, for example, first day of school or graduation. Xiong et 

al. [3] reported the estimated VUS for these five psychometric tests: 0.724 (LM), 0.522 

(DSF), 0.599 (DSB), 0.630 (WMS), and 0.587 (VRT).

We provide the linear combinations with associated VUS from the SSD1, SSD2, PSD1, 

PSD2, Cum-logistic, SW1, and SW2 methods in the following, where the combination 

coefficient corresponding to LM is set to 1 to guarantee a unique solution.

LM DSF DSB VRT WMS (VUS)

SSD1 1.0000 0.1533 0.2272 0.3915 0.0765 (0.8077)

SSD2 1.0000 0.1513 0.2219 0.3924 0.0747 (0.8066)

PSD1 1.0000 0.4863 0.6464 0.7902 0.7121 (0.8106)

PSD2 1.0000 0.4742 0.6233 0.7810 0.6957 (0.8108)

Cum-logistic 1.0000 0.1610 0.4396 0.2934 0.1654 (0.8138)

SW1 1.0000 0.1162 0.4830 0.1290 0.3558 (0.8296)

SW2 1.0000 0.0729 0.1553 0.0924 0.3360 (0.8235)

The min–max approach provides the following combination

with an estimated VUS of 0:7724 for the combined marker. The Shapiro–Wilk test for 

multivariate normality [17] returns p-values of < 0:0001, < 0:0001, and 0:0184 for non-

diseased, intermediate, and diseased categories, respectively. Therefore, the results using the 

procedures based on normality (SSD1, SSD2, PSD1, PSD2) should not be interpreted. All 

eight methods provide a linearly combined marker that yields a larger VUS than any of the 

original test, and the step-down method (SW1) provides a linear combination with the 

largest VUS.

6. Discussion

In this article, we extend two existing combination approaches to deal with three ordinal 

diagnostic categories. We also propose two new types of linear combination methods to 

combine diagnostic tests or biomarkers to improve diagnostic accuracy measure, VUS. The 

first proposed normal-based approach requires only the estimated means and variance-

covariances of multiple diagnostic tests for each diagnostic category to calculate the linear 

combination coefficients. Therefore, it is efficient with large numbers of biomarkers, which 

is quite common nowadays with high-throughput bioinformatics tools, for instance, 

microarray technologies. Under the normality assumption with moderate to large 

correlations, our simulations show that the normal-based approach, especially SSD1, has 
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relatively good performance in terms of obtaining a combined marker with the largest VUS. 

Recently, Zhang [18] proposed to directly maximize the accuracy index VUS with three 

diagnostic categories under normality assumption. Although appealing, the mathematical 

equations for finding the derivatives are formidable. The author stated that the analytic 

solution to directly maximizing the VUS is not generally attainable. For this reason, the 

proposed normal-based approach may offer investigators an opportunity to combine the 

diagnostic tests and biomarkers for the disease processes with more than three ordinal 

categories. The second proposed approach is a stepwise approach that is distribution-free in 

nature and hence is robust with non-normal data. The computing effort and cost in obtaining 

the combination coefficient is significantly less than the empirical search in p-dimensional 

space [6]. Our simulations show, for either non-normal data or normal data with small 

correlations, that the step-down procedure (SW1) proceeding from the marker with largest 

VUS to the marker with smallest VUS is a reasonable choice for biomarker combination. It 

is worthwhile to point out that we could easily generalize both the stepwise approach and the 

normal-based approach to diseases with more than three diagnostic categories. The 

cumulative logistic regression approach (Cum-logistic) has great chance to produce a 

combined marker with largest VUS under normality assumption with large sample sizes. 

Note that one of the assumptions underlying cumulative logistic regression model is the 

proportional odds. This is to say that the coefficients that describe the relationship between, 

say, the lowest versus all higher categories of the response variable are the same as those 

that describe the relationship between the next lowest category versus all higher categories, 

and so forth. We recommend to test this assumption before applying this approach to the 

combination of markers. The min-max combination method is a fast one, although the 

performance is not as good as simulations indicated. It is interesting to explore if adding 

some other order statistics will improve the combination while maintaining its 

computational efficiency in the future research.

Some related research topics are currently under investigation. The methods explored here 

implicitly assume that the scaling metric of each of the biomarkers is linear. However, for 

some cognitive tests, this may not be the case; see Crane et al. [19]. It will be of great 

interest to determine whether some approaches that first produce a linear scaling metric for 

each biomarker and then apply the proposed methods may provide additional ability to 

distinguish among disease severity categories. Furthermore, it is also of interest to explore 

the performance of a generalized version of the cumulative logistic regression approach 

discussed in Section 2.2 without the proportional odds assumption.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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