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An innate immune response is essential for survival of the host upon infection, yet excessive in-
flammation can result in harmful complications [1]. Inhibitory signaling evolved to limit host
responses and prevent inflammatory pathology [2,3]. Given the significance of inhibitory path-
ways for immunity and homeostasis, they provide ideal targets for manipulation by bacterial
pathogens. Recent evidence highlights that bacteria have developed diverse strategies to exploit
these inhibitory pathways to avoid host defense for their own benefit. In this review, we cover
these different immune evasion strategies for the first time. The recent literature discussed em-
phasizes that bacteria subvert host immune responses not only by direct engagement of inhibi-
tory receptors (i.e., often through “molecular mimicry” of host ligands [4,5]) but also through
virulence factors that resemble intermediates of host inhibitory signaling and interfere with de-
fense functions [6-8]. Understanding how bacteria manipulate inhibitory signaling affords
promising opportunities to counteract these escape strategies and tip the balance in favor of
the host. In addition, these understandings may provide useful insights on the functional roles
of inhibitory pathways in limiting host responses and preventing pathology.

Inhibitory Signaling Controls Inflammatory Responses in Host
Immune Cells

In response to infection, the host immune system initiates swift and robust inflammatory re-
sponses to protect the host from the spread of invading microbes. Inflammation is launched
when front-line defense cells, such as epithelial cells, macrophages, and neutrophils, detect
alarm signals. The sensing of microbes through pattern recognition receptors (PRRs) activates
the inflammatory functions of sentinel cells. However, if the initial host response is overampli-
fied, inflammation results in host tissue damage and can lead to severe complications. Inhibito-
ry pathways control host immune responses upon infection and prevent collateral tissue
damage. Inhibitory immune receptors attenuate cellular signaling delivered by activating re-
ceptors, including Toll-like receptors (TLRs) [3] and Fc receptors (FcRs), directly or through
their downstream signaling intermediates (see review [9] and Fig. 1). Inhibitory receptors con-
tain specific sequence motifs in their intracellular tails to recruit signaling molecules. The most
common inhibitory motif is the immunoreceptor tyrosine-based inhibitory motif (ITIM). En-
gagement of ITIM-bearing receptors results in ITIM tyrosine phosphorylation and recruitment
of downstream mediators containing Src homology 2 (SH2) domains, such as SHP-1, SHP-2,
SHIP, and Csk [9]. Next, dephosphorylating signaling intermediates causes them to act on
their respective targets to dampen inflammatory signals relayed by activating receptors.
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Fig 1. Negative modulation of inflammatory responses against pathogens by ITIM-bearing inhibitory receptors. Invasion of the host by bacteria
results in the appearance of pathogen-associated molecular patterns (PAMPs). These danger signals are sensed by pattern recognition receptors (PRRs),
including TLRs, on the surface of sentinel cells. Bacteria can be opsonized with antibodies and are recognized by cell surface Fc receptors (FcRs) associated
with the immunoreceptor tyrosine-based activation motif (ITAM)-containing FCR common y chain. FcRs generally transmit activating signals through
activation of the protein tyrosine kinase SYK, while diverse signaling cascades (such as activation of MAPK, NF-kB, and PI3K) are relayed by PRRs. The
inflammatory response against non-self is essential to combat invading bacteria. On the other hand, the antibacterial response needs to be controlled to
prevent collateral tissue damage. Inhibitory receptors often possess immunoreceptor tyrosine-based inhibitory motifs (ITIMs) within their intracellular tails.
Following receptor engagement, tyrosine residues within the ITIMs are phosphorylated and become docking sites for cytosolic protein tyrosine
phosphatases, such as SHP-1 and SHP-2. These negative regulatory proteins terminate activating signals delivered by PRRs and/or ITAM-coupled FcRs
and contribute to dampening of the inflammatory response. MAPK, mitogen-activated protein kinase; NF-kB, nuclear factor kB; PI3K, phosphoinositide

3-kinase.

doi:10.1371/journal.ppat.1004644.9001

ITIM-containing receptors mostly, but not exclusively [3], attenuate immunoreceptor
tyrosine-based activation motif (ITAM)-associated receptors, such as Fcy receptors (FcyRs).
Undesirable outcomes may arise, however, when bacteria take advantage of host inhibitory
signaling. Some bacterial pathogens use surface ligands to directly engage ITIM-bearing recep-
tors, which they can co-ligate with activated PRRs (such as TLRs) or ITAM-paired receptors to
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suppress cellular activation and increase bacterial survival (Fig. 2a). For instance, following in-
halation of Moraxella catarrhalis or Neisseria meningitidis, pulmonary epithelial cells release
IL-8 and GM-CSF in a TLR-2-dependent manner, to recruit neutrophils. To evade immune
clearance, the virulence proteins UspAl of M. catarrhalis and Opa of N. meningitidis ligate the
ITIM-containing receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEA-
CAML1) with TLR-2 on epithelial cells, thus inhibiting co-engaged TLR-2 signaling and cyto-
kine release [10]. Similarly, Nakayama et al. reported that Staphylococcus aureus targets the
murine ITIM-bearing inhibitory receptor paired Ig-like receptor B (PIR-B) through the essen-
tial cell wall component lipoteichoic acid (LTA) to blunt TLR-induced inflammatory cytokine
release by macrophages in response to the bacteria [5,11]. S. aureus, a major source of mortality
in hospitals, can spread to the bloodstream and cause life-threatening sepsis. Following chal-
lenge with S. aureus, Pirb-knockout mice show enhanced inflammatory responses, and are bet-
ter at clearing the bacteria and resistant to S. aureus-induced sepsis.

In addition, Group B Streptococcus (GBS) uses an evasion strategy to oppose ITAM-
mediated inflammatory responses. The surface -protein and sialic acid of GBS both suppress
host defense by engaging inhibitory sialic acid-binding Ig-like lectins (Siglecs). GBS, an impor-
tant cause of neonatal infections, targets ITIM-bearing Siglec-5 and Siglec-9 to recruit SHP-2
and escape killing by monocytes and/or neutrophils in vitro [12,13]. In line with these findings,
mice lacking Siglec-E (the orthologue of human Siglec-9) clear GBS more quickly than
wild-type mice [4]. Recently, the ITAM-coupled Siglec-14 was shown to counteract
Siglec-5-dependent host immune suppression by GBS, thus forming a paired receptor system
that balances inflammatory responses to bacterial pathogens [14]. Together, an increasing
number of studies demonstrate that bacterial pathogens target ITIM-containing inhibitory re-
ceptors to suppress immune cell function and increase their survival within the host.

ITAMs That Deliver Inhibitory Signals—And Their Manipulation by
E. coli

Although ITAM motifs generally deliver activating signals, growing evidence now supports a
role for ITAM-associated receptors in mediating inhibitory signals. ITAMs are found in the cy-
toplasmic domains of host receptors but also in certain transmembrane adaptors, such as the
FcR common 7y chain (FcRy) in myeloid cells, that pair with specific receptors. ITAM-mediated
cell activation requires high-avidity ligation of the ITAM-coupled receptors. In contrast, low-
avidity ligation of these receptors generates inhibitory signals [15,16]. An ITAM that is func-
tioning in an inhibitory mode is referred to as an “ITAMi”. Bacterial pathogens can hijack
ITAMi signaling as a means to subvert defense responses. Specifically, E. coli binds FcyRIII di-
rectly in an antibody-independent manner, and this low-avidity interaction induces FcRy
phosphorylation, followed by SHP-1 recruitment (Fig. 2b). In turn, recruitment of SHP-1 is as-
sociated with a reduction in phosphorylation of PI3K, which is thereby unable to support
MARCO-mediated phagocytosis of E. coli [17]. Consequently, mice deficient in FcyRIII or
FcRy have increased survival rates in models of sepsis, and this is attributed, in part, to their en-
hanced ability to clear E. coli. Thus, E. coli can overcome the inflammatory response through
manipulation of the FcyRIII-FcRy signaling complex, resulting in severe consequences during
sepsis. To date, the identity of the FcyRIII-interacting ligand of E. coli remains unknown. Also,
since these findings are not exclusive to pathogenic E. coli, it is conceivable that this crosstalk
instead evolved to limit and control unwarranted inflammatory responses to commensal or-
ganisms, such as gram-negative bacteria in the gut.
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Hijacking ITIM-bearing inhibitory receptors:

Various human bacterial pathogens evolved

virulence factors that co-ligate inhibitory receptors
with recognized activating receptors. This leads to
the suppression of several antimicrobial functions and
evasion of the host immune response.

Exploiting inhibitory ITAM signaling:

E. coli escapes phagocytosis through low-avidity
engagement of FcyRs and the induction of inhibitory

ITAM signaling. This serves to resist clearing of the bacterial
pathogen by the host.

Altering first-line immune functions:

After translocation into the host cell cytoplasm,
the ITIM-containing effector protein CagA
modulates epithelial defense responses,
including IFN-y signaling. This strategy helps

to overcome the first-line inflammatory response.

Dampening TLR signaling:

E. coliinserts the ITIM-bearing virulence factor Tir

into the epithelial cell membrane to attenuate first-line
TLR responses and pro-inflammatory cytokine release.

Mimicking host protein tyrosine phosphatases:

Salmonella and Yersinia developed effector proteins

that resemble host phosphatases and target essential
signaling intermediates to dampen inflammatory responses
and increase survival within the host.

Fig 2. Bacterial pathogens evade host defense responses by manipulating inhibitory signaling. A. V.
catarrhalis, N. meningitidis, Group B Streptococcus and Staphylococcus aureus evolved specific virulence
factors to engage inhibitory receptors, which co-ligate with and attenuate pattern recognition receptor (PRR)

signaling. B. Escherichia coli escapes macrophage receptor with collagenous structure (MARCO)—

dependent killing through hijacking of inhibitory ITAM signaling. Non-opsonized E. coli binds to FcyRIIl with
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low affinity and induces weak phosphorylation of the FCR common y chain (FcRy), leading to recruitment of
SHP-1. In turn, SHP-1 dephosphorylates PI3K and abrogates MARCO-dependent phagocytosis. C. Upon
infection, Helicobacter pylori translocates the ITIM-containing virulence protein, CagA, into host cells, and
CagA-SHP-2 interactions lead to dephosphorylation of activated STAT1 and epidermal growth factor
receptor (EGFR). This abrogates IFN-y signaling and human B-defensin 3 (hBD3) synthesis, and enhances
bacterial survival. D. During infection with the bacterium enteropathogenic E. coli (EPEC), the intimin receptor
(Tir) translocates into the epithelial cell. The intracellular tail of EPEC Tir recruits host cell phosphatases
SHP-1 and SHP-2. As a result, the activation of TRAF6 is inhibited, and EPEC-induced expression of pro-
inflammatory cytokines is suppressed. E. Salmonella and Yersinia secrete protein tyrosine phosphatases
SptP and YopH, respectively. SptP targets the protein tyrosine kinase SYK in mast cells and suppresses
degranulation. During in vivo infection, YopH targets the signaling adaptor SLP-76 in neutrophils. This leads
to reduced calcium responses and IL-10 production.

doi:10.1371/journal.ppat.1004644.9002

H. pylori and Enteropathogenic E. coli Hack into Host Inflammatory
Signaling Through ITIM-Containing Effector Secretion

The above-mentioned examples include strategies where bacterial cell surface ligands directly
interact with ITIM-bearing or ITAMi-paired host receptors to overcome host defenses. Suc-
cessful bacterial pathogens may also use virulence factors that are delivered into host cells via
specialized secretion systems and interfere with cellular signaling. These bacterial proteins are
commonly referred to as “effectors”. Remarkably, recent studies have revealed that bacterial
pathogens secrete effectors to relay inhibitory signals. Enteropathogenic E. coli (EPEC) and H.
pylori release effectors containing ITIM-like motifs within target cells to suppress immune re-
sponses [8,18-20], while Yersinia and Salmonella attenuate inflammatory signaling through se-
cretion of effectors that bear resemblance to host cellular protein tyrosine phosphatases
(PTPases) [6,7].

The first identified bacterially encoded effector containing tyrosine-based motifs resembling
ITIMs, is the major virulence factor cytotoxin-associated gene A (CagA) from H. pylori, a
cause of gastric inflammation. During H. pylori infection, a type IV secretion system is formed
that exports CagA into host cells. Translocated CagA undergoes tyrosine phosphorylation in
the host cells and directly mediates SHP-2 activation by binding to SH2 domains in a phos-
phorylation-dependent manner [21]. Work by Wang et al. described that the effector
CagA modulates epithelial cell inflammatory responses by preventing the induction of
IFN-y-dependent STAT1 phosphorylation and IRF1 transactivation in targeted epithelial cells
(Fig. 2¢) [8]. Similarly, H. pylori counteracts the expression of the antimicrobial defensin pep-
tide human B-defensin 3 (hBD3), to which H. pylori is highly susceptible (Fig. 2c) [20]. Follow-
ing activation by CagA, SHP-2 dephosphorylates the intracellular domains of EGFR, thereby
abrogating hBD3 synthesis and increasing bacterial survival.

Bioinformatics approaches revealed that the bacterial effector translocated intimin receptor
(Tir) of enterohaemorrhagic E. coli (EHEC) and EPEC encodes similar ITIM-like motifs [22].
EPEC uses a strategy where it injects bacterial Tir into the epithelial cell membrane (Fig. 2d).
The extracellular part of Tir is engaged by the bacterial surface ligand intimin, while the intra-
cellular part of Tir contains a region with similarity to host ITIMs. The bacterial Tir ITIMs re-
cruit the host tyrosine phosphatases SHP-1 and SHP-2 [18,19], which enhance its binding to
TRAF6. The resulting interaction inhibits the ubiquitination and activation of TRAF6 and
thereby suppresses EPEC-induced expression of inflammatory cytokines.

Salmonella and Yersinia Break Down Host Defense Responses
through Bacterial PTPases

Salmonella and Yersinia contain effector proteins that resemble host PTPases and target central
inflammatory signaling to shut down host immune cells (Fig. 2e) [6,7]. Like CagA and Tir,
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PTPase-like bacterial effectors were discovered by sequence homology studies [23]. The struc-
turally related effectors SptP and YopH share homology with eukaryotic PTPases [23] and are
essential for virulence of Salmonella and Yersinia, respectively. Bacterial PTPases have a myri-
ad of known host targets and other well-established functions. In this review, we focus on the
bacterial strategies that disrupt inflammatory responses through dephosphorylation of signal-
ing intermediates by bacterial PTPases. We do not cover general tactics used by bacteria to in-
terfere with inflammatory signaling through inactivation of signaling molecules by other
effector proteins, such as the Yersinia leucine-rich repeat effector YopM [24,25]. Choi et al.
demonstrated that Salmonella typhimurium secretes SptP to impede inflammatory responses
[6]. SYK is an essential protein tyrosine kinase for IgE-mediated mast cell degranulation. WT
S. typhimurium suppresses IgE-induced phosphorylation of SYK, whereas an isogenic AsptP
mutant is not able to do so. In vivo, mast cells fail to degranulate and recruit neutrophils upon
infection with S. typhimurium. In the absence of SptP, however, mast cells do degranulate and
neutrophils are rapidly recruited to sites of infection, demonstrating a direct role for SptP in
suppressing mast cell activation, neutrophil influx and bacterial clearance.

Neutrophils are also recruited to inflammatory lesions after infection with Yersinia pseudo-
tuberculosis (Yptb), another gram-negative human pathogen. In a recent study, it was shown
that the PTPase-like effector YopH affects phosphorylation of the crucial signaling adaptor
SLP-76 and activation of its downstream effectors in recruited neutrophils, dampening calcium
responses and IL-10 production [7]. Depletion of neutrophils allows the outgrowth of a mutant
lacking YopH, indicating that YopH is critical for attenuating neutrophil bactericidal functions
to enhance survival of Yptb.

Concluding Remarks

Since the first descriptions of an ITIM in FcyRIIB and CD22 over 15 years ago [26,27], many
inhibitory receptors are still being discovered by the presence of intracellular inhibitory motifs.
To date, genomic and proteomic informatics revealed more than 300 ITIM-bearing proteins
[28,29], and many of them still await demonstration of function. Studying the mechanisms of
bacterial manipulation of inhibitory signaling may provide useful insights on the functional
roles of novel ITIM-bearing receptors. Clearly, bacteria have evolved sophisticated strategies to
successfully instigate host inhibitory signaling, allowing evasion of immune defense mecha-
nisms. Insight regarding these strategies is crucial to design approaches to control infection. In
an era of growing resistance to antibiotics, blocking of subverted host receptors or counteract-
ing the virulence factors involved affords promising approaches to overcome immune evasion
by pathogens.
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