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The relative weights of empirical facts (data) and assumptions (theory) in causal inference vary across disci-

plines. Typically, disciplines that ask more complex questions tend to better tolerate a greater role of theory and

modeling in causal inference. As epidemiologists move toward increasingly complex questions, Marshall and

Galea (Am J Epidemiol. 2015;181(2):92–99) support a reweighting of data and theory in epidemiologic research

via the use of agent-based modeling. The parametric g-formula can be viewed as an intermediate step between

traditional epidemiologic methods and agent-basedmodeling and therefore is a method that can ease the transition

toward epidemiologic methods that rely heavily on modeling.

agent-based models; causal inference; parametric g-formula

Causal inferences typically combine empirical facts (data)
and assumptions (theory). The acceptable relative weights of
data and theory vary across scientific disciplines. Marshall
and Galea (1) propose a rearrangement of the traditional
roles of data and theory for causal inference in epidemiology.

To see this, let us start with an oversimplification. Consider
a spectrum from “causal inference based exclusively on data”
to “causal inference based exclusively on theory” and the po-
sitions of medicine and social science, 2 disciplines closely
related to epidemiology, along the spectrum (Figure 1). Part
of the oversimplification arises from the proposed clear-cut
separation between data and theory, which has been con-
tested by several authors (2, 3). For expediency, this com-
mentary will sidestep the nuances of the data-theory debate.

In modern medicine, the demonstration of cause-effect re-
lations requires randomized experiments. Statements such as
“drug A is better, on average, than drug B for patients with
cancer X” carry little weight unless they are supported by
findings from a randomized clinical trial in which patients
with cancer X are randomly assigned to either A or B. The
goal is to make causal inferences as independent of theoreti-
cal arguments and expert opinion as possible. If a large, well-
designed, randomized trial finds a difference, we will accept
that there is an average causal effect in that population,
regardless of our preconceptions. From that viewpoint,
even well-conducted and analyzed observational studies are

suspect because they typically require unverifiable as-
sumptions about the comparability of the persons receiving
each treatment, for example, the assumption that investi-
gators have appropriately measured and adjusted for all
confounders.

In social sciences, statements such as “economic inequal-
ity decreases the growth domestic product” are often taken se-
riously by many, even in the absence of an experiment that
randomly assigns entire countries to different levels of in-
equality. Because such an experiment is impossible to carry
out, social scientists making causal inferences about econom-
ic inequality need to integrate data from multiple sources—
more modest experiments that test related issues, nationwide
ecologic data, multiple observations across populations, time
series, etc.—using some theoretical framework and possibly
a mathematical model.

Thus, social sciences are generally closer to the pole
“causal inference based exclusively on theory” than is med-
icine, which is closer to the other end of the spectrum. This
relative position reflects the fact that medicine is blessed with
scientific questions that can often be addressed by random-
ized experiments. (However, it took hardwork by the pioneers
of evidence-based medicine to free medicine from decisions
founded exclusively upon expert opinion.) Social sciences,
on the other hand, tend to ask questions that do not lend them-
selves to experimentation or even to emulation of an experiment
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using observational data. Hence, there is greater dependence on
theoretical models to fill in the gaps and to provide a scaffolding
to organize the various empirical findings.
What about epidemiology? Like medicine, epidemiology

asks causal questions about effects on human health. Many
epidemiologic questions (e.g., What are the effects of ciga-
rette smoking?) cannot be answered via randomized experi-
ments because of ethical, logistic, or practical constraints but
could be hypothetically answered via randomized experi-
ments in a world free of those constraints. That is, it is logi-
cally possible to imagine a randomized trial in which teenagers
are randomly assigned to (and forced to comply with) either a
lifetime of cigarette smoking or no smoking at all. As a result,
many epidemiologic studies use observational data to mimic
a hypothetical randomized experiment in a particular popula-
tion at a particular time. For example, a study that compares
the mortality rate between smokers and nonsmokers after ad-
justment for confounders is an implicit attempt to emulate a
hypothetical randomized trial of cigarette smoking. Epidemi-
ologists who combine individuals’ data on smoking, lung
cancer, and confounders with untestable assumptions, such as
no unmeasured confounders, are, knowingly or not, adhering
to the experimental paradigm to identify causal effects. (Some
of us have called for a more explicit identification of the em-
ulated or target experiment in observational studies (4, 5)).
Thus, the practice of epidemiology suggests that many ep-

idemiologists desire to be closer to the methods of medicine
than to those of the social sciences; the focus is on obtaining
high-quality data from many individuals while relying as lit-
tle as possible on theory and modeling. However, epidemi-
ologists pay a hefty price for this strategy of emulation of
experiments with observational data. As Glass et al. noted,
“Epidemiologists and public health practitioners can be in-
duced to prioritize the study of proximal, downstream interven-
tions at the individual level. For example, it is easier to conduct,
or emulate using observational data, randomized trials of
smoking-cessation programs that target individuals than to con-
duct trials about the behavior of well-funded corporate entities
with vested interests and political connections” (6, p. 70).
Such is the cost of minimizing the role of theory: It neces-

sitates addressing narrower questions. As an example, we ask
questions about the health effects of hypothetical interventions
on individuals’ behavior, such as diet and physical activity,
more often than questions about the health effects of hypothet-
ical interventions on key components of societal structure,
such as our tax system, educational policy, corporate behavior,
and intergenerational wealth redistribution. What can be done

by epidemiologists who are interested in more upstream inter-
ventions for which the randomized experiment cannot be con-
ducted or emulated but that might have the greatest potential to
change health outcomes? What about epidemiologists inter-
ested in interventions in complex systems for which data to pro-
duce informative estimates do not exist? Marshall and Galea,
like others before, provide an answer: Increase the weight of
theory relative to data by using agent-based modeling.
Modelers create a mathematical model of reality. To do so,

they combine empirical findings with essentially unverifiable
assumptions (theory) about how the world works. By using
data from multiple sources to guess the parameters that define
the model, agent-based models become a scientific collage
that can be used to make causal inferences across popula-
tions, calendar periods, exposures, and levels of intervention.
AsMarshall and Galea remind us, agent-based models can be
naturally studied within the counterfactual framework; these
models are obviously used to estimate counterfactual quanti-
ties, that is, to estimate how much the world would have
changed if we had implemented a particular intervention.
Mathematical models, including agent-based models, are

common tools in scientific disciplines that ask complicated
causal questions, such as social sciences, systems biology, cli-
mate science, health policy, and neuroscience. These models
describe systems that exhibit dynamically complex properties,
such as interdependence of causal effects, feedback loops, and
interference. If approximately correct, the model becomes a
powerful tool to answer questions so complex that no data
set in the world can answer them directly. For example, agent-
based models can be used to determine the optimal way to pre-
vent coronary heart disease in the United States by combining
parameters estimated in the Framingham Heart Study with ex-
pert knowledge about disease progression in human popula-
tions; to find the optimal schedule for colon cancer screening
by combining parameters estimated from randomized trials
with basic sciencesfindings about tumor biology; or to compare
the nationwide effects (on health and cost) of several policies to
implement personalized strategies for antiretroviral therapy ini-
tiation and maintenance in South Africa over a 60-year period
by combining information from multiple sources.
On the other hand, the inferences from the model cannot be

experimentally tested or even approximated from a traditional
observational study in a timely fashion. Otherwise, we would
have used traditional epidemiologic study methods—the infer-
ences of which depend less on theory and more on data—from
the start. That is, if the model is essentially incorrect, we may
never find out about it. To tackle model misspecification, dis-
ciplines with awide use of agent-based models have developed
a set of generally accepted principles to build models, populate
and calibrate their parameters, and test their predictions.
Marshall and Galea recognize that a consensus on best

practice methods to evaluate the validity of agent-based mod-
els is also needed in epidemiologic research. It is to be hoped
that future work will focus on hard questions related to the
combination of theory and data in agent-basedmodels.Where
will the data come from?What data are allowed? How can we
combine data from different populations, time periods, and
definitions of exposure that are collected at different levels
(cellular, individual, local, regional, global)? How do we de-
cide which sensitivity analyses must be conducted? Most
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Figure 1. The relative position of several scientific disciplines along
the causal inference spectrum according to the relativeweights of data
and theory.
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importantly, which complex systems do we understand well
enough for modeling to be a reasonable option? (Much acri-
mony has erupted over the billion-Euro Human Brain Project
because many neuroscientists simply do not think that it is
possible to simulate the brain at this time (7).)

Many practicing epidemiologists, attached to their cher-
ished data, may not be prepared to jump head first into the
world of agent-based modeling. Interestingly, there is a mid-
dle ground between causal inference from mathematical
models and traditional epidemiologic studies: the parametric
g-formula (8). The parametric g-formula is a hybrid approach
that uses a mathematical model (formally equivalent to an
agent-based model) to estimate (via regression and Monte
Carlo simulation) the effects of hypothetical interventions
from a single data set. This method allows us to naturally
handle interdependences of causal effects, feedback loops
(including time-varying confounders affected by prior expo-
sure), and other components of complex dynamic systems de-
scribed by Marshall and Galea.

The parametric g-formula can be used to answer complex
questions in a particular population without wandering too
far from the study data. For example, we have used the para-
metric g-formula to compare the effects of joint dietary and
lifestyle interventions on coronary heart disease (9, 10), dia-
betes (11), and asthma (12) in the Nurses’ Health Study, as
well as to compare the effects of therapeutic interventions in
persons infected with the human immunodeficiency virus
(13, 14). As of today, there seem to be no applications of
the g-formula that incorporate interference or transmission,
which hints at promising avenues for methodologic research.

The reliance on a single data set may make the parametric
g-formula a more palatable form of modeling for epidemiol-
ogists because the method ensures less extrapolation from the
data and a more direct calibration of the model. However, this
protection against extrapolation comes at a cost: The parame-
tric g-formula is restricted to causal inferences that do not go
beyond the context and timeframe of the studied population.
In contrast, agent-based models can be used to make causal
inferences for any population, setting, and timeframe of inter-
est. For example, one could apply the parametric g-formula to
an observational cohort of Spaniards infected with the human
immunodeficiency virus and followed for 5 years to estimate
the 5-year survival curve under 3 dynamic strategies of anti-
retroviral therapy initiation that are actually observed in the
cohort. However, one would not apply the parametric g-
formula to that cohort to estimate the lifetime survival curve
in all countries under dynamic strategies of antiretroviral
therapy initiation that have never been tried in humans. That
is precisely the type of questions that agent-based models at-
tempt to answer, at the risk of extrapolation error.

In summary, Marshall and Galea have joined other inves-
tigators who believe that answering complex causal questions
requires shifting the dial of causal inference away from data
and toward a greater reliance of theory. They seem to be gen-
uinely correct. However, using agent-based modeling will re-
quire a tectonic change in many epidemiologists’ attitude
about the relative roles of data and theory. The parametric
g-formula may be an intermediate step that more epidemiol-
ogists are willing to try, and one that can ease the transition
into full-blown agent-based modeling.

ACKNOWLEDGMENTS

Author affiliation: Department of Epidemiology Harvard
School of Public Health, Boston, Massachusetts (Miguel
A. Hernán); Department of Biostatistics, Harvard School of
Public Health, Boston, Massachusetts (Miguel A. Hernán);
and Harvard-MIT Division of Health Sciences and Technol-
ogy, Boston, Massachusetts (Miguel A. Hernán).

This work was partly funded by National Institutes of
Health grant R01 AI102634.

I thank Drs. Sander Greenland and Nancy Krieger for their
helpful comments.

Conflict of interest: none declared.

REFERENCES

1. Marshall BDL, Galea S. Formalizing the role of agent-based
modeling in causal inference and epidemiology. Am J
Epidemiol. 2015;181(2):92–99.

2. Ziman JM. Real Science: What It Is and What It Means.
Cambridge, UK: Cambridge University Press; 2000.

3. Krieger N. Does epidemiologic theory exist? On science, data,
and explaining disease distribution. In: Krieger N, ed.
Epidemiology and the People’s Health: Theory and Context.
New York, NY: Oxford University Press; 2011.

4. Hernán MA. With great data comes great responsibility:
publishing comparative effectiveness research in epidemiology
[editorial]. Epidemiology. 2011;22(3):290–291.

5. Petersen ML, van der Laan MJ. Causal models and learning
from data: integrating causal modeling and statistical
estimation. Epidemiology. 2014;25(3):418–426.

6. Glass TA, Goodman SN, Hernán MA, et al. Causal
inference in public health. Annu Rev Public Health. 2013;34:
61–75.

7. Brain fog [editorial]. Nature. 2014;511:125.
8. Robins J. A new approach to causal inference in mortality

studies with a sustained exposure period—application to
control of the healthy worker survivor effect. Math Model.
1986;7(9-12):1393–1512.

9. Taubman SL, Robins JM, Mittleman MA, et al. Intervening
on risk factors for coronary heart disease: an application of
the parametric g-formula. Int J Epidemiol. 2009;38(6):
1599–1611.

10. Lajous M, Willett WC, Robins JM, et al. Changes in fish
consumption in midlife and the risk of coronary heart disease
in men and women. Am J Epidemiol. 2013;178(3):
382–391.

11. Danaei G, Pan A, Hu FB, et al. Hypothetical midlife
interventions in women and risk of type 2 diabetes.
Epidemiology. 2013;24(1):122–128.

12. Garcia-Aymerich J, Varraso R, Danaei G, et al. Incidence
of adult-onset asthma after hypothetical interventions on
body mass index and physical activity: an application of
the parametric g-formula. Am J Epidemiol. 2014;179(1):
20–26.

13. Young JG, Cain LE, Robins JM, et al. Comparative
effectiveness of dynamic treatment regimes: an application
of the parametric g-formula. Stat Biosci. 2011;3(1):
119–143.

14. Westreich D, Cole SR, Young JG, et al. The parametric
g-formula to estimate the effect of highly active antiretroviral
therapy on incident AIDS or death. Stat Med. 2012;31(18):
2000–2009.

Data and Theory in Epidemiology 105

Am J Epidemiol. 2015;181(2):103–105



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


