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Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemi-

ology have largely centered on the potential for such methods to examine complex disease etiologies, which are

characterized by feedback behavior, interference, threshold dynamics, andmultiple interacting causal effects. How-

ever, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and

evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how

agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show

that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of inter-

dependence between multiple causal effects and when interference (i.e., one person’s exposure affects the out-

come of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based

modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate

complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of eti-

ologic inquiry.

agent-based models; causal inference; complex systems; complexity; population health; public health

Abbreviation: ABM, agent-based model.

Editor’s note: Invited commentaries on this article appear
on pages 100 and 103, and the authors’ response appears on
page 106.

Although those in the field of epidemiology have long
recognized that the production and perpetuation of disease
occurs within complex population systems (1), much epide-
miologic inquiry has sought to reduce such systems to a series
of isolated and independent associational effects, from which
biological, behavioral, or social causal processes are then
inferred. The development of causal heuristics, from the
Bradford Hill criteria (2), to the sufficient-component “causal
pie”model (3), to thepotential outcomes frameworkofdisease
causation (4), have all played central roles in the refinement
of causal inference and the specific circumstances under
which causation can be appropriately ascribed.

The approach shared by these frameworks is that a popu-
lation health system can be compartmentalized, modeled, and
analyzed as a series of cause-effect relationships, in which a
particular condition (i.e., exposure) leads to a specific disease
state (i.e., outcome). Causal frameworks, such as the sufficient-
cause model, seek to examine particular causal elements
within a population system (5), with the goal of identifying
specific foci for public health intervention.
The paradigm of “compartmental” causation is deeply en-

grained in the public health structures, interventions, and
clinical care models of the 20th and early 21st centuries (6).
Notwithstanding the innumerable successes in population
health facilitated by disease-causation models that parse
and identify individual causal effect(s), many contemporary
public health problems have proved difficult to solve despite,
in some cases, decades of intervention. Examples include the
rise and persistence of obesity (7) and the increasing costs
and ineffective management of chronically ill patients (8).
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Although the reasons for these failures are many, it is increas-
ingly clear that these problems are characterized by complex,
multifactorial processes that are highly resistant to interven-
tions that address only one or a few causal effects. Therefore,
multiple, highly interdependent causal pathways, which are
fundamental characteristics of complex systems (9), are inte-
gral to the challenges that public health now faces. To this
end, the application of complexity theory to understand how
disease is generated and reproduced within populations sys-
tems has begun to gain traction and currency (10).

Although first used within the context of infectious dis-
eases (11), agent-based models (ABMs), which constitute
one class of complex systems methods, have been utilized
in other areas of population health, including chronic disease
research and social epidemiology (12, 13). Their methodo-
logical congruency with macro- and eco-social frameworks
that position health as a production of intersecting and inter-
acting biological, social, and environmental factors (14) has
also contributed to the increased use of these methods in pub-
lic health (15). Examples of their successful implementation
appear in diverse fields, such as substance-use epidemiology
(16, 17), human immunodeficiency virus prevention (18),
and the study of neighborhood-level effects on physical ac-
tivity and diet (19–21).

CAUSAL INFERENCE IN THE FACE OF COMPLEXITY

Disease causes can be said to exhibit dynamic complexity
if some or all of the following characteristics are observed:
structural nonlinear relationships (e.g., phase transitions)
between causes and outcomes; adaptivity, in that individual
and population behavior can evolve based on past history;
feedback loops, such that causal effects are magnified (i.e.,
positive feedback) or dampened (i.e., negative feedback)
as disease processes progress; contextual effects, such that
health outcomes are shaped by specific social, economic,
and political contexts; and finally, a high degree of sensi-
tivity to initial conditions (22, 23). Many causal inference
frameworks in epidemiology assume that these features
are absent (e.g., unidirectionality of causal effects, noninter-
ference, etc.).

We argue, as have others (19, 24), that agent-based mod-
eling holds promise to elucidate complex causal processes in
epidemiology. However, considerable theoretical and practi-
cal issues impede the capacity of these methods to improve
ourunderstandingofdisease etiologyand illuminatenewareas
for intervention. First, the conditions under which agent-
based simulations produce valid and meaningful estimates
of average causal effects are poorly understood. Second, like
in all types of epidemiologic modeling, the strength of causal
inference relies on underlying assumptions, yet there exists
little if any consensus on what these fundamental assump-
tions may be. Third, unified recommendations for testing these
assumptions (and how failing to meet these assumptions might
weaken causal inference in the presence of complexity) are
poorly developed.

Although several authors have argued that agent-based
modeling permits novel analyses of complex disease mecha-
nisms (15, 25), to our knowledge, there exists no framework
to evaluate the capacity of ABMs to provide valid estimates of

average causal effects. Thus, drawing on the counterfactual
theory of causation (26–29), the objectives of the present
article are to: 1) formalize the adoption of counterfactual
thinking as a foundational aspect of complex systems theory
as applied in epidemiology and 2) introduce notation and ter-
minology that we hope will be used to promote and articulate
a more rigorous formalism in the estimation of causal effects
in the presence of complexity. Finally, we document how
agent-based modeling can address 2 of the key methodolog-
ical challenges in causal inference: understanding the action
(s) of multiple interdependent causal effects and examining
causal processes that operate through interference. Although
other complex systems methods, such as system dynamics
and network analysis, have been used in different fields of
public health (30), we focus our discussion on agent-based
modeling, as the approach has become one of the most com-
monly used complex systems methods in epidemiology
specifically (19).

SIMULATING COUNTERFACTUALS

ABMs simulate the behaviors and interactions of autono-
mous agents fromwhich social structures and population-level
outcomes emerge (31). In most epidemiologic applications of
agent-based modeling, agents represent persons and are
encoded with heterogeneous characteristics that can include
endogenous phenomena (i.e., biological functions), spatial
positioning, and various exposure and disease states (19).
The multidimensional nature of ABMs, which can include
time and space (as well as other high-dimensional covari-
ates), can give rise to dynamic network effects (i.e., the for-
mation and reconstitution of relationships between agents
generate network structures that change over time). In epide-
miologic applications, agent networks frequently represent
contact patterns, spatial clustering, and other social processes
of interest (e.g., the diffusion of health information).

Methodologically, ABMs function as an in silico labora-
tory in which the researcher inputs agent characteristics,
specifies initial conditions, applies rules for agent-agent in-
teractions, and programs static or transitory exposure and dis-
ease states. By running the simulation (i.e., a model “run”)
many times and observing outcomes under different input pa-
rameters (collectively referred to as a “treatment”), the inves-
tigator can compare outcomes obtained from any number
hypothetical scenarios. Given that all agents in the population
receive the treatment under various scenarios specified by the
researcher, the results obtained from an ABM are directly
analogous to potential outcomes as defined in modern epi-
demiologic literature (32). Unlike observational studies in
which only 1 treatment condition is observed, the outputs of
an ABM can be obtained repeatedly and thus have direct in-
terpretation as counterfactual outcomes (Figure 1). We define
a specific condition or scenario of interest for which outputs
are evaluated as an “agent-based counterfactual” treatment.

NOTATION AND TERMINOLOGY

We define a population consisting of N > 1 agents. For
each agent i = 1, . . . , N, a set ofm = 1, . . . ,M internal traits
is described, such that the agent population at a time step
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t = 1, . . . , T can be represented by an N-by-M matrix St,

St ¼

st1;1 st1;2 : : : st1;M

st2;1 st2;2 : : : st2;M

..

. ..
. . .

. ..
.

stN;1 stN;1 : : : stN;M

2
666664

3
777775
;

where each row describes the values for the set of agent i’sM
internal traits at time t. Traits are defined generally and can be
continuous (real valued), nominal (categorical), or dichoto-
mous and can represent sociodemographic characteristics,
genetic traits, exposures, propensity to engage in some health
behavior, social influence, etc.
At each time step t (t = 1, . . . ,T ), each agent i interacts

with a subset of the population {1, . . . , i − 1, i + 1, . . . ,
N}, described by an agent-agent interaction matrix Kt. That
is, each element kti; j of K

t indicates whether agent i interacts
with agent j during time step t, where i and j = 1, . . . ,N. Note
thatKt is not necessarily symmetric; for example, agent imay
know j but not vice versa or information (e.g., disease trans-
mission) may be unidirectional and “flow” only oneway. The

matrix can be dichotomous, where each element kti; j ∈ f0; 1g
defines an unweighted agent network, or take on other val-
ues, in which case the matrix represents a weighted network
structure. We note that the special circumstanceKt ¼ IN (i.e.,
K takes the form of an identity matrix) is analogous to the
assumption of noninterference (i.e., one agent’s exposure
does not affect the outcome of others). In addition to the in-
teraction network, agents can also be placed in different en-
vironments, represented by a matrix Et, where each agent is
located within one of p = 1, . . . , P possible environmental
states at time t:

Et ¼

et1;1 et1;2 : : : et1;P

et2;1 et2;2 : : : et2;P

..

. ..
. . .

. ..
.

etN;1 etN;1 : : : etN;P

2
666664

3
777775
:

We note that the effect of spatial position is captured both by
the agent-agent interaction matrix (i.e., agents in close prox-
imity can influence each other) and by the environmental
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Figure 1. Epidemiologic methods to estimate average causal effects. The black and white dashed areas indicate the subgroup of the population
with disease; the dark gray areas indicate exposed/treated subjects; and the dotted gray area indicates that the exposure is present in the population
before manipulation. In an observational study, average causal effects are estimable under the assumptions of exchangeability, consistency, pos-
itivity, and correct model specification. In a simulation study, causal effects are estimable under the assumptions of ergodicity and correct model
specification.
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state matrix, which encompasses the effect of environmental
factors that are independent of the location of other agents.

An ABM is initialized by populating the baseline agent
trait matrix S0, environmental states (i.e., setting the matrix
E0), and the interaction matrix K0 with values drawn from
a priori–defined probability distributions and parameter func-
tions. Random-number generators are used to define the
model’s initial conditions and distribute the traits, interac-
tions, and environmental state values randomly in the agent
population, conditional on the input parameter functions and
probability distributions. A model run is defined as one exe-
cution of the model with a specific set of initial conditions
(i.e., a random “seed”).

The simulation proceeds by defining a set of rules Z. Rules
govern how agents update their internal states (agent rules),
interact with other agents (agent-agent interaction rules),
and move between or interact with environmental states
(agent-environment rules). If we assume that the rules are sta-
ble and independent of agent behavior and interactions, the
evolution of the model can be described by the functions

kti; j ¼ gðSt�1;Kt�1;Et�1; ξi; j;tÞ
sti;m ¼ f ðSt�1;Kt;Et�1; εi;m;tÞ
eti;p ¼ hðSt�1;Kt;Et�1; ζi;p;tÞ

for all agents i, j = 1, . . . , N, internal traits m = 1, . . . , M,
environmental states p = 1, . . . , P, and time steps t = 1, . . . ,
T. The functions f(), g(), and h(), which include random error
terms (ε, ξ, ζ) that are independent and identically distribu-
ted, map the space of all states at time t − 1 to the space at
time t. Thus, the rules Z are coded in the model by defining
functions f(), g(), and h() and by specifying the distribution
of the random error terms. In other words, at each time step,
the microsimulation updates the agent trait matrix, interac-
tion matrix, and environmental state matrix based on previ-
ous values and on rules set by the modeler. For a given run
r (r = 1, . . . ,R), after an arbitrary number of time steps T, the
outcome(s) of interest can be evaluated in the agent popula-
tion. The simulation can produce multiple outputs contem-
poraneously and can include epidemiologic outcomes of
interest such disease incidence, prevalence, mortality, etc.
The vector of O outcomes for run r at time T is denoted as
YT
r ðST;KT;ETÞ ¼ ðyTr;1yTr;2 � � � yTr;OÞ, which as shown is a func-

tion of the elements within matrices ST, KT, and ET.

ESTIMATING CAUSAL EFFECTS IN THE PRESENCE OF

COMPLEXITY

We now use counterfactual notation to define an average
causal effect obtained from an ABM. However, instead of
considering 1 counterfactual treatment condition or exposure
level(s), we define an agent-based counterfactual treatment as
a uniquely specified set of internal traitsS, interactionmatrices
K, or environments E. In other words, agent-based model-
ing permits the examination of ensembles of counterfactual
policy and programmatic scenarios, which may represent
different populations (agent states), social interactions, envi-
ronments, or combinations thereof. Specifically, we wish to

compare the disease outcomes at time T of the agent popu-
lation subjected to counterfactual scenario A (denoted as
½Z; STA;KT

A; E
T
A�) versus counterfactual scenario B (denoted

as ½Z; STB;KT
B; E

T
B�).

AMonte Carlo simulation is used to obtain outcomes from
runs r = 1, . . . , R at time T for counterfactual scenarios A and
B, respectively. The expectation of outcomes for runs r =
1, . . . , R are obtained for both counterfactual scenarios A
and B. Specifically, by executing the model R times, we de-
fine μ̂T ;Ro;A and μ̂T;Ro;B for scenarios A and B, respectively, and
outcome o (o = 1, . . . , O) as

μ̂T;Ro;A ¼
PR

r¼1 y
T
r;o;A

R

μ̂T;Ro;B ¼
PR

r¼1 y
T
r;o;B

R
;

where μ̂T ;Ro;A and μ̂T;Ro;B represent point estimators for the ex-
pected value of the outcome of interest derived from R runs
under hypothetical scenarios A and B, respectively, at time
step T.

Given that the entire agent population is subjected to coun-
terfactual scenarios A and B, exchangeability is guaranteed
(i.e., the outcome observed in a set of simulations under sce-
nario A is the same as the outcome that would have been ob-
served in the set of simulations under scenario B if scenario A
had been applied instead). Therefore, there exists a non-null
average causal effect of scenario A compared with scenario B
for an outcome o if

μ̂T;Ro;A ≠ μ̂T;Ro;B

for a sufficiently large agent population N and number of
executions R at time step T. We now turn to our discussion
to 2 key challenges in causal inference that we argue can be
addressed using agent-based modeling.

Interdependence of causal effects

Many statistical methods in epidemiology, including
regression-based models with “main-effects only” forms, as-
sume that the actions of multiple causes are linear and in-
dependent. In part because of a historical lack of adequate
statistical methodology to examine multiple causal mecha-
nisms acting contemporaneously, epidemiologic inquiries
are frequently limited to the estimation of one causal effect.
If more than one cause is of interest, conventional epidemi-
ologic study designs may require prohibitively large sample
sizes to detect higher-order terms, and regression-based anal-
yses typically make strict and frequently untestable assump-
tions regarding the functional form of the causal interaction
(i.e., joint exposure) (33). Marginal structural models have
recently been proposed as a plausible method to account
for more complicated multicausal relationships (34), includ-
ing the case in which the causes are interdependent (i.e.,
one cause affects both the second factor of interest and the
outcome).

We argue that agent-based modeling offers an alternative
and complementary approach to elucidate complex causal
interdependencies that are of interest in epidemiology.
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Specifically, the forms of the relationships among causes
(which are broadly defined here and can include agent traits
as well as environments) are operationalized by the rules Z.
The rule set consisting of functions f(), g(), and h() can in-
clude nonlinear components, including feedback loops,
such that linear independence need not be assumed. By alter-
ing the rule set Z and running the simulation under different
assumed causal relationships and processes, the effect(s) of
interdependent (i.e., joint) exposures can be explored and
interrogated.
By incorporating hypothesized actions of unmeasured

confounders into the rule sets, simulation methods can also
be used to confirm or repudiate previously observed causal
mechanisms. For example, an ABM that simulates friendship
formation has been used to examine the causal effect of social
influence on adolescent obesity (35). In observational stud-
ies, this relationship has been confounded by homophily
(the tendency of persons to select friends who are similar to
themselves) and shared environmental influences (36). The
study found evidence for social influence on adolescent
body mass index and obesity-related behaviors, even after ac-
counting for both shared environmental factors and multiple
sources of homophily in friendship selection (35). Finally,
constructing the ABM and defining causal processes may ex-
pose tacitly held assumptions regarding the form of the
causal relationships (or lack thereof ) in the analysis of obser-
vational study data and thus may illuminate novel mecha-
nisms for empiric investigation.

Interference

A second important assumption of many counterfactual
frameworks used to estimate causal effects is that of noninter-
ference. Interference, otherwise known as “spillover effects,”
is said to be present when the exposure or treatment assign-
ment of an individual is influenced by the outcome(s) of
others in the population. This assumption has long been char-
acterized and is encompassed by the stable unit treatment
value assumption (37). The assumption of noninterference
is continually violated in the context of infectious disease
epidemiology, in which an individual’s risk of infection is
dependent on other the disease statuses of others (38), and
in studies of social processes and neighborhood-level effects
(29, 39). Ignoring interference has been found to result in
misleading or incorrect inference, given that the difference
of the expected value of the outcome distributions derived
from a treatment condition and an unexposed condition esti-
mates not an average causal effect of treatment but the differ-
ence between the average effect among those exposed/treated
and the spillover effect on the unexposed/untreated (39).
Thus, an exposure or treatment can be inferred to be benefi-
cial even when it is universally harmful. Moreover, spillover
effects are often of intrinsic interest (e.g., in the case of herd
immunity) and cannot be analyzed with methods that do not
account for interference.
To address these issues, several methods have been devel-

oped. For example, one can estimate causal effects that are
conditional on contact with an exposed individual, such that
the potential outcome is a 2-stage counterfactual statement
dependent on both coming into contact with an exposed

person (due to interference) and treatment assignment (38).
Recent work has also focused on developing inverse proba-
bility weighting estimators to obtain causal estimands of in-
terest in the presence of interference (40).
We demonstrate here that agent-based modeling offers an

alternative and appropriate method to examine spillover ef-
fects and to test how sensitive analyses are to the presence
or absence of interference. In fact, given that an ABM explic-
itly accounts for interactions between heterogeneous units,
elucidating the effects of interference should be a primary
purpose of the application of agent-based modeling in epi-
demiology. Although a complete discussion is beyond the
scope of this article, we note that the magnitude and influence
of spillover effects can be examined by running simulations
that assume different interaction matrices KT

A and KT
B. For ex-

ample, the magnitude of bias arising from an assumption of
noninterference can be estimated by comparing the expected
value of outcomes from scenarioA, defined by ½Z; STA;KT

A;E
T
A�,

to that from scenario B, defined by ½Z; STA; IN ; ET
A�. Specifi-

cally, the bias of an outcome brought about by ignoring in-
terference at time T for a given interaction matrix KT

A is
estimated by

BIAST ¼ μ̂T;Ro;A � μ̂T ;Ro;B :

Note that if no interference is present (i.e., the outcome is in-
dependent of the structure of the agent-agent interactions),
the 2 terms will be equivalent and the bias arising from inter-
ference will be equal to 0.

DEFINING ASSUMPTIONS TO ESTIMATE AGENT-BASED

CAUSAL EFFECTS

ABMs, like all statistical models, represent simplified
abstractions of the reality and context in which disease is pro-
duced. In a manner analogous to traditional modes of epi-
demiology inquiry for causal inference, the assumption of
correct model specification in an agent-based modeling ap-
proach implies that all relevant causal mechanisms (e.g., con-
founding) must be identified and incorporated into the model
and that these mechanisms resemble those that operate in the
real world (41). Demonstrating that the model reproduces
empirically observed data (through calibration procedures) is
one such method for testing this assumption, but we note
there currently exists no consensus on best practice statistical
or ad hocmethods to evaluate the validity of competingmodels.
Although several standard causal inference assumptions

are not relevant in agent-based modeling (e.g., exchangeabil-
ity is assured by design), a regularity assumption, referred to
as ergodicity (i.e., that the means of the outcome across runs
in well-defined), needs to be met. As described in the Web
Appendix (available at http://aje.oxfordjournals.org/), coun-
terfactual contrasts and corresponding causal effects are not
well defined in models that exhibit nonergodic properties. In
chaotic systems, nonergodic behavior can be observed even
when differences in initial conditions across runs are small
(41). It is likely that some population health systems and the
corresponding ABMs constructed to analyze them will ex-
hibit nonergodic, chaotic behavior and thus may violate the
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ergodicity assumption. In other disciplines, including eco-
nomics, several authors have questioned the utility of agent-
based modeling and counterfactual frameworks broadly, given
that modern economic systems exhibit highly dynamic, non-
ergodic behavior that evolves over time (41, 42). We argue
that agent-based modeling should not be seen as a panacea
for the analysis of all complex systems in population health,
particularly those systems for which phase changes, emer-
gent properties highly sensitive to initial conditions, and
other nonergodic behaviors are likely to be present. To this
end, researchers utilizing agent-based modeling should con-
duct tests of ergodicity using recently published recommen-
dations (43).

In addition to the important caveat that under high sensitiv-
ity to initial conditions, the assumption of ergodicity is vio-
lated, the nature of complex and dynamical systems is such
that ABMs can be highly sensitive to model parameterization
and inputs. Although a comprehensive discussion of ABM
validation procedures is beyond the scope of this paper and
is the topic of other previously published reports (41), we
note that detailed sensitivity analyses are essential to estab-
lish model validity. In addition to examining how results
depend on sensitivity to initial conditions and across-run
variability (arising from stochastic elements in the model),
current recommendations include investigating model ro-
bustness against changes in model rules (41). To advance the
adoption of agent-based modeling approaches in epidemiol-
ogy, we recommend the development of discipline-specific
methodological standards and a minimally acceptable set of
protocols for ABM construction, analysis, and validation, sim-
ilar to those in other fields of science such as sociology (44).

DISCUSSION AND FUTURE RESEARCH DIRECTIONS

The intent of the present article was to illuminate under
what circumstances agent-based modeling might be an
appropriate method to examine causal effects in epidemio-
logic research. We have argued that agent-based modeling
is of particular utility when interference and other stochastic
person-to-person processes dominate the behavior of the sys-
tem and thus influence exposure-disease relationships in crit-
ical ways. Additionally, ABMs can be used to examine the
effect of multiple exposures that interact in nonlinear and dy-
namic ways to affect population-level health outcomes.

We do not wish to suggest that agent-based modeling is the
only method (or even a superior method) by which dynami-
cally complex processes can be explored in epidemiology.
Rather, agent-based modeling is one of many recently devel-
oped approaches that seek to account for complex phenom-
ena in population health. These include causal diagrams
and marginal structural models (27), as well as novel ap-
proaches that assess interference using potential outcomes
frameworks (40). Future research is required to determine
under what conditions ABMs provide similar or novel in-
sights into the causes of disease compared with traditional
epidemiologic approaches and other modern methods.

Published studies in which ABMs have been used to cap-
ture complex disease processes (with results that provide
practical insights into improved public health strategies)
do exist. For example, an ABM was used to evaluate various

mitigation strategies for pandemic influenza in the United
States (45). The results of this model demonstrated that travel
restrictions are unlikely to decrease the total number of ill per-
sons within highly mobile populations but that the rapid pro-
duction and distribution of vaccines, even if poorly matched
to the circulating strain, could slow transmission and limit
the number of ill persons to less than 10% of the total popu-
lation (45). However, currently missing from the literature are
comparative studies in which investigators interrogate an ep-
idemiologic question with different types of causal infer-
ence models, including those that are agent-based. These
may fruitfully be the focus of future work. For example,
the “spread” of obesity in social networks has been examined
using network analyses and standard regression-based ap-
proaches (46). Constructing and calibrating an ABM with
these same data would permit direct comparisons of the as-
sumptions made by each method and would also reveal spe-
cific situations in which the agent-based modeling approach
may provide novel and important public health insights to
curb obesity. Moreover, conducting comparative investiga-
tions will aid in the determination of the circumstances in
which ABMs are likely to produce reliable results and valid
causal inference.

CONCLUSIONS

In the present article, we sought to provide an inceptive
formalism to the adoption of counterfactual thinking in the
determination of disease causes as they operate within
complex population systems. We have focused our dis-
cussion on 2 commonly made assumptions in counterfac-
tual causal inference—independence of causal effects and
noninterference—because agent-based modeling represents
a novel and particularly apt way to tackle these challenges in
modern epidemiology. As the role of these methods within
an epidemiologist’s expanding toolbox remains to be fully
elucidated, their continued adoption in the field is and
should be predicated upon their potential contribution to
causal inference.
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