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Background. The diversification of human immunodeficiency virus (HIV) is shaped by its transmission history.
We therefore used a population based province wide HIV drug resistance database in British Columbia (BC),
Canada, to evaluate the impact of clinical, demographic, and behavioral factors on rates of HIV transmission.

Methods. We reconstructed molecular phylogenies from 27 296 anonymized bulk HIV pol sequences represent-
ing 7747 individuals in BC—about half the estimated HIV prevalence in BC. Infections were grouped into clusters
based on phylogenetic distances, as a proxy for variation in transmission rates. Rates of cluster expansion were re-
constructed from estimated dates of HIV seroconversion.

Results. Our criteria grouped 4431 individuals into 744 clusters largely separated with respect to risk factors,
including large established clusters predominated by injection drug users and more-recently emerging clusters com-
prising men who have sex with men. The mean log;, viral load of an individual’s phylogenetic neighborhood (com-
posed of 5 other individuals with shortest phylogenetic distances) increased their odds of appearing in a cluster by
>2-fold per logo viruses per milliliter.

Hotspots of ongoing HIV transmission can be characterized in near real time by the secondary
analysis of HIV resistance genotypes, providing an important potential resource for targeting public health initiatives
for HIV prevention.

Conclusions.

Keywords. molecular epidemiology; human immunodeficiency virus (HIV); phylogenetic clustering; transmis-
sion network; injection drug use; men who have sex with men (MSM).

In the developed world, men who have sex with men
(MSM), injection drug users, and individuals who enga-
ge in survival sex work have disproportionately higher
rates of human immunodeficiency virus (HIV) infec-
tion. In Vancouver, Canada, the majority of infections
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during the initial rise of the epidemic, in the 1980s,
could be attributed to transmissions among MSM [1].
The incidence of HIV infection among MSM subsided
in the late 1980s [2], even before the advent of antiretro-
viral therapy. In the mid-1990s, a new wave emerged, in
large part because of the spread of HIV among injection
drug users in Vancouver [3, 4]. During this period, the
estimated prevalence of HIV infection among women
engaged in survival sex work was even greater than
that among the injection drug user population as a
whole [5]. Thus, the HIV epidemic in Vancouver has
been complex, with extensive heterogeneity in modes
and rates of HIV transmission among risk groups.
Molecular phylogenetics can provide the tools to
infer the fine structure of an epidemic, especially for
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rapidly evolving pathogens, such as HIV [6-11]. A molecular
phylogeny is a tree-based model of how genetic sequences are
related by common ancestors. Phylogenies reconstructed from
HIV sequences are shaped by the transmission history of the
virus because the rapidly evolving virus populations can mea-
surably diverge in their genetic makeup on the time scale of
transmission, owing to host-specific selection [6]. When virus
populations in 2 infections retain a high degree of genetic sim-
ilarity, one can infer that they are related by 1 or more recent
transmission event. Since detection of HIV drug resistance by
sequencing (genotyping) and subsequent modification of a pa-
tient’s drug regimen have been shown to significantly improve
virological outcomes [12, 13], routine HIV genotyping has be-
come standard of care in the developed world. Consequently,
enormous amounts of HIV sequence data have accumulated
at centers of HIV research and primary care around the
world. Moreover, current software can reconstruct phylogenies
relating tens of thousands of sequences with relative ease [14].
Sociodemographic characteristics can be superimposed on phy-
logenies with appropriate safeguards to protect individual pri-
vacy. It is therefore feasible to perform large-scale secondary
analyses of HIV resistance genotypes to extract meaningful ep-
idemiological information from their evolutionary relationships
[15-17].

In this study, we use an extensive database maintained as a
part of the Drug Treatment Program (DTP) at the BC Centre
for Excellence in HIV/AIDS, which is the provincial agency re-
sponsible for all fully subsidized HIV laboratory monitoring, in-
cluding HIV resistance genotyping and antiretroviral therapy
distribution to all HIV-infected individuals in BC. To date, ap-
proximately 11 000 individuals, roughly 75% of all individuals
(n=14054) with a new diagnosis of HIV infection between
1985 and 2011, have enrolled in the DTP [18]. Under current
provincial treatment guidelines, the BC Centre laboratory per-
forms an HIV resistance genotype test on all baseline samples
submitted for viral load testing and in selected samples derived
from patients receiving therapy who experience virologic fail-
ure. Over 27 000 resistance genotypes have been generated for
>7700 individuals in the DTP. We therefore used this extensive
and centralized database combining HIV drug resistance and
sociodemographic data from the DTP to reconstruct the dy-
namics of the regional epidemic and characterize the impact
of clinical, demographic, and behavioral factors on rates of
HIV transmission.

METHODS

Data Collection

Ethical approval for this study was granted by the Providence
Health Care/University of British Columbia Research Ethics
Board (H07-02,559). At the time of analysis, there were
27296 HIV resistance genotype tests corresponding to 7747

individuals in BC. The majority of individuals were represented
by multiple HIV sequences (mean, 3.5 sequences/patient; range,
1-42 sequences/patient). For every individual, the earliest avail-
able sample is referred to as the baseline sample; the cor-
responding visit tended to mark the initiation of antiretroviral
therapy. Most of these sequences (n =24 120) spanned 1497 bp,
covering HIV protease and the first 400 codons of reverse tran-
scriptase (RT). An additional 2694 sequences were 1017 bp in
length and covered protease and the first 240 codons of RT.
The remaining 482 sequences were each assembled from 3 par-
tial sequences of 276, 297, and 363 bp into a 936-bp contig
spanning protease and RT codons 24-236. Sequences were re-
anonymized and annotated with the following information:
sample collection date; date of antiretroviral therapy initiation;
estimated date of HIV seroconversion, either physician-re-
ported (n =3912) or the midpoint between the last HIV sero-
negative and first HIV seropositive samples for participants in
HIV prospective cohort studies (n=200); plasma viral load;
CD4" T-cell count; HIV drug resistance levels, as predicted
by the vircoTYPE algorithm [19]; sex; birth year; AIDS-defin-
ing illness before the first resistance test; having ever tested
positive for hepatitis C virus infection; and risk group status
(ie, any injection drug use, self-identification as a homosexual
or bisexual man [ie, MSM]), any receipt of a blood (transfu-
sion) product or exposure to any other blood risk, and expo-
sure to any other risk). We used the SCUEAL algorithm [20]
to generate HIV subtype classifications.
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Figure 1. Comparison of the mean patristic distance between human

immunodeficiency virus (HIV) sequences from the same patient (solid)
against the shortest distance between patients (hatched). The distances,
measured in units of expected nucleotide substitutions per site, were ex-
tracted from the maximum likelihood estimate of the phylogeny recon-
structed from the original HIV sequence alignment (without bootstrap
resampling). The cutoff used in our study (dashed line, 0.02 expected nu-
cleotide substitutions per site) corresponded to the 95% quantile of intra-
patient distances (0.1% quantile of interpatient distances). Histograms
were scaled such that the total area sums to 1; the interpatient histogram
was truncated at 0.075.
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Table 1. Composition of Study Population and Individuals Within Clusters

Characteristic (Sample Size?) All Subjects, No. (%) Subjects in Cluster, No. (%) Odds Ratio® P Values
Participants 7747 (100) 4431 (57.2)
Sex (n=7338)

Male® 5958 (81) -

Female® 1380 (19) 1.7 <107®
Age at baseline sample collection, y (n = 7340) 40 (33-47) .8 <107®
HIV subtype

B 7194 (92.9) 4280 (96.6) 3.9 <107®

C 240 (3.1) 0 (1.4)

CRFO1AE 90 (1.2) 6 (0.6)

Al 1(0.7) 110.2)

D 38 (0.5) 0(0.2)

CRF02AG 28 (0.4) 2(0.2)

Other 106 (1.4) 2 (0.7) -

Baseline plasma viral load, logyo per mL 4.5 (3.8-5.0) 6 (3.9-5.0) o <107®
Baseline CD4* T-cell count < 500 cells/mL 4668 (78) 2466 (75) 0.68 <107®
Previous AIDS-defining iliness 923 (12) 339 (7.6) 0.39 <107
Any history of HIV drug resistance 3351 (43.2) 1583 (35.7) 0.49 <107®
Transmitted HIV drug resistance (n = 6784) 428 (6.6) 283 (7.7) 1.5 7.6x107°
HCV coinfection (n = 6869) 2695 (39.2) 1913 (48.6) 2.6 <107®
HIV exposure

Injection drug use (n =6413) 2725 (42.5) 1932 (53.5) 2.9 <107®
Men who have sex with men (n =5572) 2396 (43) 958 (30.3) 0.29 <107®
Heterosexual sex (n =5572) 1627 (29.2) 988 (31.2) 1.3 12x107%
Receipt of blood products (n =5572) 193 (3.5) 5(2.4) 0.47 <107®
Other (n =5572) 249 (4.5) 124 (3.9) 0.75 .026

Data are no. (%) of participants or median value (interquartile range).
Abbreviations: HCV, hepatitis C virus; HIV, human immunodeficiency virus.
@ Exclusive of cases with missing values.

® Univariate odds ratios between categorical variables and membership in a cluster were evaluated using the Fisher exact test.

¢ Transgender male to female.
9 Transgender female to male.
¢ t=-7.9, by the univariate Student t test for continuous variables.
ft=12.1, by the univariate Student t test for continuous variables.

Phylogenetic Analysis

All nucleotide sequences were translated into amino acids and
aligned pairwise against an HXB2 reference protein sequence
(GenBank accession K03455). Codons associated with HIV sur-
veillance drug resistance mutations based on World Health
Organization definitions [21] were removed. To control for un-
certainty in phylogenetic reconstruction, we generated 100 boot-
strap samples by resampling columns from the alignment at
random with replacement. For each bootstrap, we reconstructed
a tree using the approximate maximum likelihood heuristics as
implemented in FastTree2 [22]; all sequence data were then se-
curely erased. For each tree, we identified all pairs of tips in
which (1) the tip-to-tip (ie, patristic) distance was <0.02 expected
nucleotide substitutions per site, (2) the tips represented HIV se-
quences from different infections, and (3) at least one of the se-
quences was derived from the earliest available sample from that
individual. Below this cutoff, patristic distances between

sequences from different individuals resembled the distances ob-
served within patients (Figure 1). All pairs of tips that met these
criteria in >50% of the bootstrap trees (Supplementary Figure 1)
were used to construct a graph in which each node represented all
HIV sequences sampled from a given individual.

Clustering Analyses

For every individual in each bootstrapped phylogeny, we iden-
tified 5 other tips in the tree with the shortest patristic distance
that corresponded to 5 different individuals. These 5 individuals
composed the set of nearest neighbors to the reference individ-
ual for that phylogeny. We fit a logistic regression to the prob-
ability of observing a patristic distance below our cutoff. Model
terms representing summary attributes of nearest neighbors
were computed as means weighted by the inverse of their re-
spective patristic distances to the earliest sequence of the refer-
ence individual. Since plasma viral loads and CD4" T-cell
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Table 2. Parameter Estimates From Fitting Sigmoidal Models to Cluster Growth Curves

Cluster Size
Cluster Type IDU, % MSM, % TDR, % Current Predicted Maximum (95% CI?) ™5 Slope (Maximum)®
Predominantly IDU
1 84 4 4 330 349 (342-353) 1999 4.7 (24.9)
2 92 6 4 129 138 (133-140) 1999 1.8 (9.4)
3 87 7 7 107 103 (102-104) 1997 0.1 (13.2)
4 84 5 3 82 83 (80-85) 1997 0.4 (7.7)
9 71 0 21 56 55 (563-59) 2005 0.2 (4.8)
10 84 8 2 51 50 (48-53) 1999 0.4 (4.1)
11 89 0 10 48 47 (46-49) 1998 0(3.5)
12 73 0 15 47 78 (49-105) 2005 1.9 (2.6)
14 85 5 5 45 42 (41-43) 1997 0 (7.5)
16 90 0 5 42 44 (42-45) 1997 0.1 (4.9)
17 76 0 3 40 38 (37-40) 1999 0(5.2)
18 60 0 0 37 36 (35-38) 2007 0(5.2)
19 90 0 4 33 39 (35-56) 1998 0.7 (2.5)
Predominantly MSM
5 9 77 6 75 74 (72-77) 2005 0.3 (6.1)
6 17 69 2 68 151 (95-186) 2013 4.3 (4.2)
7 14 62 0 65 90 (68-103) 2009 4.6 (6.7)
8 B 30 12 60 62 (59-64) 2007 1.5(10.2)
15 3 86 6 43 42 (41-43) 2004 0(4.0)
20 28 70 0 32 68 (30-3209) 2009 1.8(1.9)
Mixed
13 50 59 0 46 NA®
Nonclustering individuals
28 60 5 3316 4413 (4348-4437) 2004 91.5 (129.7)

To quantify the growth of clusters over time, we used the gpcR package in R to fit nested sigmoidal models [24] that were derived from the equation

d—c
(1 4 explb(log(x) — log(e))])

F(x)=c+ 7

where x is the estimated date of HIV seroconversion for the F(x)-th individual; b controls the steepness of the curve; ¢ and d are the minimum and maximum
predicted values of F(x), respectively; log(e) corresponds to the estimated point of inflection (midpoint); and fis an exponential tuning parameter to allow for
asymmetry between the upper and lower portions of the sigmoidal curve. We used the gpcR function pcrfit, which applies a weighted nonlinear least-squares
minimization (Levenberg-Marquardt) algorithm to fit the full model and a constrained model in which f=1, and selected the best-fitting model based on an F test.

Abbreviations: Cl, confidence interval; HIV, human immunodeficiency virus; IDU, injection drug use; MSM, men who have sex with men; NA, not available; TDR,
transmitted drug resistance.

@ Ninety-five percent Cls for predicted maximum cluster sizes were generated by bootstrap resampling within clusters.
® T, the midpoint, was estimated by the equation
log(2"/F —1
X172 = €Xp <¥> +log(e),
and the slope at T, was estimated by the derivative
bf (¢ — d)z
Pl =20 d2
x12(1+2)
where z = exp(b(log(x2) — log(e))). The full model was the best fit in all cases, with the exception of clusters 14, 19, and 20.
¢ Slope (maximum) is defined as the mean number of HIV seroconversions per year at present (and at T;.,).
d Estimates of the Cl of maximum sizes from the I, model were numerically unstable for cluster 20, so we used interval estimates from the full model.
¢ Not available because none of the model fits to cluster 13 yielded meaningful parameter estimates.

counts from the same individual varied over time, we used the Analysis of Cluster Dynamics

measurements obtained from the same sample as the sequence The expansion of clusters over time was reconstructed by map-
with the shortest patristic distance to the reference for nearest ~ ping the accumulation of individuals in each cluster to estimat-
neighbors with multiple samples. ed dates of HIV seroconversion. Missing estimated dates of HIV

Phylogenetic Analysis of a Regional Epidemic o JID 2015:211 (15 March) e 929



seroconversion were imputed using a multiple hot-deck impu-
tation procedure [23] (Supplementary Figure 2). Simply put,
dates of HIV seroconversion were imputed by taking the differ-
ence between the estimated date of seroconversion and baseline
sample date of a similar individual and applying this difference
to the incomplete case. We repeated this imputation 100 times
and assigned the mean imputed date as the estimated date of
HIV seroconversion. Physician-reported dates of HIV serocon-
version prior to 1960 (n = 2) or dates that were preceded by the
earliest sample collection date (n = 143) were discarded as inva-
lid values. Trends in cluster size and composition were analyzed
in R (version 2.15.2).

RESULTS

Analysis of Clusters

In total, 7747 HIV-infected BC residents, roughly half of the es-
timated individuals with HIV infection in the province, were
represented by a total of 27 296 anonymized HIV pol sequences
in our data. Based on the tip-to-tip (patristic) distances between
sequences in 100 replicate phylogenies generated from these
data, we extracted a graph comprising 744 clusters that encom-
passed 4431 individuals (57.2%), dominated by a single large
cluster of 330 individuals. Characteristics of the total population
and of individuals within clusters are summarized in Table 1.
Overall, injection drug users were significantly more likely to
appear in a cluster (odds ratio [OR], 3.0; P < 107, by the Fisher
exact test), consistent with an overall higher rate of HIV trans-
mission among injection drug users, which predominated the
regional epidemic in the 1990s. A total of 93% of the infections
were categorized as subtype B (Table 1); non-B subtypes were
significantly less likely to appear in clusters (OR, 0.26;
P<107°) and may represent transmissions that originated
outside of BC, although we cannot exclude the possibility that
non-B subtype infections were undersampled in our study
population. Individuals within clusters were significantly more
likely to show evidence of transmitted drug resistance (TDR;
OR, 1.5; P< 7.6 x 107°), defined as the presence of 1 or more
drug resistance mutations in their earliest pretherapy sample.
Note that codon positions associated with drug resistance had
been removed from the alignment prior to phylogenetic recon-
structions; hence, convergent evolution under drug pressure
could not have played a role in this association. However,
they were subsequently less likely to show evidence of drug re-
sistance after starting therapy (OR, 0.5; P < 10™°). The sizes and
individual characteristics of the 20 largest clusters are summa-
rized in Table 2. We observed significant separation between
injection drug users and MSM among clusters (Spearman
p=—0.71; P<10°% Figure 2). In addition, the prevalence of
TDR varied significantly among these clusters (range, 0%-
21%; log-linear y* = 44.6; P < 7.8 x 10~*), with disproportion-
ately high rates in clusters 9 and 12. These results were robust

Proportion who use injection drugs

0.0 0.2 0.4 0.6 0.8 1.0
Proportion who are MSM

Figure 2. Scatterplot of all phylogenetic clusters with >10 individuals
(n=71) indicating the proportion of individuals having ever used injection
drugs and the proportion reporting male-male sex. Denominators of these
proportions were adjusted for cases with missing values. Each circle rep-
resents a cluster; the area of each circle is scaled in proportion to the num-
ber of individuals in that cluster. Circles are colored red and blue in
proportion to the cluster-specific prevalence of MSM and injection drug
use, respectively, to underscore contrasts in the composition of clusters
with respect to these risk factors. Abbreviation: MSM, men who have
sex with men.

to varying the patristic distance and bootstrap support cutoffs
used to define phylogenetic clusters (Supplementary Table 1).
For each bootstrap phylogeny, we assessed the effect of clin-
ical, demographic, and risk factors of each individual’s 5 nearest
neighbors on their odds of appearing in a cluster, which pro-
vides a rudimentary marker for localized HIV transmission
rates (Figure 3). Since the majority of individuals were repre-
sented by multiple samples, for each nearest neighbor we
used the clinical measurements (such as viral load and CD4*
T-cell count) associated with the sample whose HIV sequence
minimized the patristic distance to the earliest sequence of
the reference individual. The prevalence of acute infection
among nearest neighbors was calculated as the proportion of
minimum-distance samples with collection dates within 3
months of the estimated date of seroconversion. On average,
the multivariate logistic models explained about 25.4% of vari-
ation (interquartile range, 24.2%-26.7%) in the odds of cluster-
ing. The odds of clustering increased significantly with the
mean viral load of nearest neighbors (median OR, 2.0 per
log; increase; P < 107%). Greater CD4" T-cell counts (OR, 1.1
per 100 cells/mL increase; P < 10~°), lower prevalence of previ-
ous AIDS-defining illness (OR, 0.39; P < 107°), and the preva-
lence of acute infection (OR, 12.7, P<10™°) in nearest
neighbors were also associated with an elevated odds of cluster-
ing. These associations were consistent with a tendency to

930 e JID 2015:211 (15 March) e Poon et al


http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiu560/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiu560/-/DC1

HIV load I <.001
cb4 - <.001
Previous ADI | —— 1T +— | <.001
Acute infection : —( T 1+ <.001
Resistance in | NRTI — T 37— ! <.001
nearest | NNRTI ——{ T 1+ .005
neighbors PI — T .009
Neighbors 13 022

IDU Reference - 92
Same . 014

Neighbors 4:;!— .94

HCV | Reference —I+ .087
Same | —— <.001
Neighbors —O3— <.001
MSM | Reference —{T+— <.001
Same i —] 1 +— <.001
Neighbors | —TI3— ! <.001
Age | Reference —1— ! <.001
Same [ <.001

T I i 1 T |
-2 -1 0 1 2 3

Log odds (patristic distance < 0.02)

Figure 3.

Summary of multivariate logistic regressions on the odds of cluster membership. For each individual, we identified their earliest human im-

munodeficiency virus (HIV) sequence and then located the 5 most closely related sequences from 5 other individuals (so-called nearest neighbors) for a given
phylogenetic tree. We repeated this search across all 100 bootstrap replicate trees. The purpose of this calculation was to derive predictor variables char-
acterizing the subgroup of the population from which a given individual’s infection could have originated. For example, one might expect elevated trans-
mission rates within subgroups in which infected individuals tend to carry higher viral loads than the population average. To evaluate the impact of such
predictors on variation in rates of transmission, we fit a generalized linear model with a logit link function to the odds that an individual appeared in a
phylogenetic cluster (n =4827 because of missing data). A line segment indicates the median effect, and lines are drawn to indicate the empirical 95%
confidence interval. “Reference” indicates variables associated with the reference individual. “Neighbors” indicates model terms calculated from averaging
the variable over nearest neighbor individuals. HIV load, CD4" T-cell count (CD4), previous AIDS-defining illness (ADI), and acute infection also represent
nearest neighbor averages. “Same” indicates an interaction effect between neighbor and reference terms; for example, when both the reference individual
and their nearest neighbors were younger than the mean population age, the reference was significantly more likely to appear in a cluster. HIV load effects
were scaled to logig HIV RNA copies/mL. CD4 effects were scaled to 100 cells/mL. Age effects were scaled to decades. Pvalues are associated with the
bootstrap replicate yielding the median coefficient estimate for the respective model terms. Abbreviations: HCV, hepatitis C virus; IDU, injection drug use;
MSM, men who have sex with men; NNRTI, nonnucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; Pl, protease

inhibitor.

transmit at an early or acute stage of HIV infection. Further-
more, the odds of clustering declined with the prevalence of nu-
cleoside reverse transcriptase inhibitor (NRTI) resistance
mutations in nearest neighbors (OR, 0.17; P < 107°). The ab-
sence of a similar effect of resistance mutations for other drug
classes suggested that the substantial virus fitness cost of specific
mutations, such as M184V, may affect the rate of transmission
through their impact on viral load [25]. Indeed, when we repeat-
ed our analyses after substituting the presence or absence of
M184V for the NRTI model term, we found that the estimated
effect size of this mutation-specific term on the odds of cluster-
ing was even stronger (OR, 0.09; P < 10~ Table 3).

The odds of clustering increased significantly with the preva-
lence of injection drug use among the nearest neighbors; this
effect was exacerbated when the reference individual also used in-
jection drugs (OR, 2.0; P=.014). HCV coinfection had a similar
effect (OR, 2.8; P= 2.0 x 10~*). Conversely, the odds of clustering
declined significantly with the prevalence of MSM among the

nearest neighbors, and this effect was greater when the reference
individual was not a MSM (OR, 3.1; P=1.3 x 107°). Lower ages
at baseline among both nearest neighbors and reference individ-
uals significantly increased the odds of clustering (OR, 1.4 per
decade increase; P < 107°). This may reflect a sample bias, since
older individuals would have been more likely to be at a later
stage of infection.

Rates of Cluster Growth

We characterized the impact of demographic and risk factors on
HIV transmission rates at the level of subpopulations, as defined
by clusters, by comparing the rates that clusters accumulated in-
dividuals over time (Figure 4). Note that the growth curve for
each phylogenetic cluster represents the cumulative number of
individuals in that cluster, regardless of whether they have sur-
vived to the present day. Based on fitting sigmoidal (ie,
S-shaped) functions to each growth curve, we found that clus-
ters comprised predominantly of injection drug users tended to
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Table 3. Summary of Results From Univariate and Multivariate Logistic Regression Analysis of Clustering Predictors in 100 Replicate

Bootstrap Phylogenies

Univariate Multivariate
Predictor Median OR (95% CI?) P Values® Median OR (95% CI?) P Values®
HIV load 2.72 (1.67-4.01) <107® 2.04 (1.47-2.73) <107®
CD4™ T-cell count 1.2 (.99-1.36) <107® 1.13 (.98-1.27) 86x107°
Previous ADI 0.1 (.03-.30) <107® 0.39 (.14-.74) 1.7%x107%
Acute infection 22.9 (6.15-47.2) <107® 12.7 (4.1-27.3) <107®
Resistance
To NRTI 0.08 (.04-.17) <107® 0.17 (.09-.36) <107®
Mutation M184V 0.03 (.004-.1) <107® 0.09 (.03-.22) <107®
To NNRTI 1.16 (.21-2.36) 0.32 1.94 (56-3.48) .005
To P 1.32 (.2-3.0) 0.12 2.16 (.79-4.5) .009
Injection drug user
Neighbors 4.21 (2.54-5.94) <107® 1.66 (.65-4.13) .02
Reference 2.61 (2.42-2.86) <107® 1.01 (.85-1.27) 92
Interaction 2.0 (1.2-3.83) .014
HCV coinfection
Neighbors 4.15 (2.28-5.61) <107® 0.98 (.23-2.15) 94
Reference 2.34 (2.18-2.59) <107® 0.77 (.62-.97) .09
Interaction 2.76 (1.53-4.89) 2.0x 107
MSM
Neighbors 0.28 (.23-.41) <107® 0.47 (29-.72) 15%107°
Reference 0.31 (.3-.34) <107® 0.5 (.28-.81) 9.3x107°
Interaction 3.07 (1.7-7.03) 1.3%x107°
Age
Neighbors 0.48 (.39-.71) <107® 0.19 (.13-.28) <107®
Reference 0.83 (.81-.84) <107® 0.24 (18-.34) <107®
Interaction 1.36 (1.25-1.46) <107®

Abbreviations: ADI, AIDS-defining iliness; Cl, confidence interval; HCV, hepatitis C virus; HIV, human immunodeficiency virus; MSM, men who have sex with men;
NNRTI, nonnucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; OR, odds ratio; PI, protease inhibitor.

@ Estimated directly from the empirical distribution.

b Pvalues associated with the replicate logistic regression models yielding the median estimate for the respective model terms are reported.

have growth curves shifted to earlier dates (Spearman p = —0.79;
P <5.3x 1077 Table 2). Clusters emerging more recently were
either predominantly MSM or, in few cases, a mix of both risk
factors. Fitting sigmoidal functions to these data also enabled us
to predict the maximum size of clusters under the implicit as-
sumption that the respective subpopulations did not change
members over time. The majority of clusters composed pre-
dominantly of injection drug users were already close to their
predicted maxima, except cluster 12 (Table 2). In contrast, 3
of 6 clusters predominated by MSM were well below their re-
spective predicted maximum sizes. For example, cluster 6 was
projected to grow from its current size (68 individuals) to 151
individuals. This difference between risk groups was statistically
significant (W = 63; P =.036, by the Wilcoxon rank sum test).

We were unable to fit a sigmoidal model to cluster 13, which
included 6 individuals who reported being both injection drug
users and MSM. This is likely because the cluster has not yet
transitioned from its initial phase of exponential growth,

making it impossible to estimate the model parameters control-
ling subsequent phases of growth. For instance, it grew from 40
to 46 individuals during the 3 months that this article was being
prepared for submission. This rate corresponds roughly to a
slope of 24 additional HIV infections in the cluster per year,
comparable to the expansion of the largest injection drug user
cluster (ranked 1) in the late 1990s (Table 2). Of the 46 individ-
uals in this cluster, 17 identified as MSM (17 with no response)
and 16 as injection drug users (14 with no response). On aver-
age, individuals in this cluster were significantly younger than
the mean of the study population (33 and 40 years, respectively,
at baseline; W = 10% P =3.1 x 10~°, by the Wilcoxon rank sum
test), and the 6 individuals with both risk factors were even
younger still (mean, 30.2 years at baseline). In addition, the es-
timated dates of HIV seroconversion for individuals reporting
being MSM tended to map to an earlier period of slower growth
of cluster 13, whereas injection drug users tended to map to a
more recent period of rapid growth.
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Figure 4. Growth of the 20 largest phylogenetic clusters with respect to

estimated dates of human immunodeficiency virus (HIV) seroconversion
based predominantly on physician reports. Each trend line represents the
accumulation of persons within the corresponding cluster. Dotted blue
lines indicate clusters predominantly of injection drug users, and solid
red lines indicate clusters predominantly of men who have sex with men
(as in Table 2). These trends were averaged over 100 imputations of miss-
ing date estimates (n = 3668). A dashed line indicates the maximum rate of
growth of the largest cluster, which was estimated to have occurred be-
tween 1996 and 2001.

DISCUSSION

Our phylogenetic analysis of >27 000 anonymized HIV sequence
records from the DTP database at the BC Centre for Excellence in
HIV/AIDS has identified high rates of HIV transmission within
recently emerging, distinct subgroups of the BC population that
are predominated by MSM. This observation is consistent with
surveillance reports in other provinces of Canada [11] and
around the world [26]. However, our use of phylogenetics per-
mitted us to investigate the structure of these emerging epidemics
in greater detail, such as recognizing multiple distinct subpopu-
lations of MSM with different rates of transmission, injection
drug use, and TDR (Table 2). Furthermore, by using modern
phylogenetic methods, including new techniques introduced in
this article, we are able to rapidly extract cluster information
from the viral sequence data collected by routine HIV resistance
genotyping at the BC Centre. New sequence data are uploaded by
the clinical laboratory to the database several times a week. A
phylogeny can be reconstructed from the entire data set in less
than an hour on a conventional computing workstation [22],
and by use of our dynamic algorithm, clusters can be extracted
from large phylogenies in less than a minute. Thus, the combina-
tion of routine genotyping and rapid analysis can potentially be
used for the prospective monitoring of how each cluster is

expanding in localized epidemics in near real time, using the
same methods we have used in our retrospective analysis. How-
ever, the concurrency of such methods with ongoing dynamics in
the epidemic is limited by the inevitable and often substantial
delay between HIV transmission and diagnosis.

Our method of identifying phylogenetic clusters departs
from the majority of previous work in this area. Most studies
have defined clusters at the level of clades, where a clade com-
prises all descendants of a given ancestor in the tree. The con-
ventional approach to phylogenetic clustering is to find all
clades in a phylogeny that meet a number of criteria based on
each clade’s branch length distribution and level of bootstrap
support, which quantifies the robustness of a clade to resam-
pling data [27]. There are a number of problems with a clade-
based approach to defining clusters. First, a short mean branch
length may conceal a small number of long branches in the
clade, such that distantly related infections become subsumed
into a cluster. Second, it cannot differentiate sequences sampled
from the same individual from those sampled from different in-
dividuals. Clade-based studies tend to restrict their data to the
earliest sequence per individual, which can bias the analysis
against transmissions from chronic infections and underesti-
mate the size of clusters. In contrast, Wertheim et al [28] used
a pairwise genetic distance to assemble clusters from pairs of in-
dividuals. We have extended this approach by extracting dis-
tances from a phylogeny, which confers greater robustness to
variation in rates of evolution across the HIV genome [29]. In
addition, our analysis incorporates multiple sequences per indi-
vidual; excluding postbaseline sequences from our data would
omit 280 of 1313 individuals (21%) whose nearest neighbors
were postbaseline sequences from other individuals.

Accurately reconstructing the rates of expansion of phyloge-
netic clusters over time depends on the reliability of estimated
dates of HIV seroconversion, which, in this study, are largely
based on physician reports. Our results were qualitatively un-
changed when the expansion of clusters was mapped instead
to sample collection dates, which are known unambiguously.
Specifically, we recovered both the large established clusters of
predominately injection drug users with slowing growth and the
more recently emerging clusters of predominantly MSM. The
only conspicuous difference was that these trends were bounded
on the left by the establishment of routine HIV resistance gen-
otyping at the BC Centre in 1996. Although these results were
achieved in part because of the extensive coverage of the region-
al epidemic by HIV resistance genotyping data, we note that the
concepts and methods can generalize to settings with less cov-
erage. For example, when we randomly censored 25% and 50%
of our data, the percentage of people appearing in phylogenetic
clusters diminished from 57% to 53% and 50%, respectively.

Phylogenetic analysis of HIV and other rapidly evolving viral
pathogens has the potential to reveal how epidemics have been
shaped by the composition of high-risk groups in the population.
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However, studies using phylogenetic methods must also take
measures to minimize the risk to patient confidentiality. The
same evolutionary principles that are used to identify clusters
of high transmission rates in the population have also been
used to prosecute individuals in legal jurisdictions where the
transmission of HIV, irrespective of the actor’s intent, remains
criminalized, including Canada [30]. Such legislation can poten-
tially hamper HIV prevention efforts because individuals affected
by HIV may be less likely to engage in public health services [31].
Consequently, we took multiple steps to minimize the possibility
that any component of our analysis could be used to reidentify
individuals. Additionally, by directing our analysis on groups in-
stead of individuals, we were able to extract epidemiologically sig-
nificant information from the HIV phylogeny while further
protecting individuals’ confidentiality.

We therefore put forward the phylogenetic cluster, rather
than the individual, as a highly effective (and safe) operational
unit for the translation of phylogenetic analyses of HIV se-
quence data to inform public health initiatives. It should be fur-
ther emphasized, in this context, that it is not possible to use
phylogenetic methods to definitively prove that a specific indi-
vidual was the source of 1 or more HIV transmission events
[32]. However, it is feasible to identify and characterize groups
burdened by a high rate of HIV transmission from a concentra-
tion of short patristic distances in the phylogeny. Clusters iden-
tified in a phylogenetic analysis can be used to define the
demographic, behavioral, and/or geographical characteristics
of target populations for public health interventions, including
harm reduction programs, such as medically supervised injec-
tion sites [33]. Specifically, one should ideally target subgroups
represented by phylogenetic clusters that are presently undergo-
ing the highest rate of expansion and with the largest predicted
remaining size (Table 2).

Our results demonstrate that secondary analysis of HIV se-
quences collected for routine drug resistance genotyping can
be used to characterize the growth of phylogenetically related
clusters. Furthermore, our results show that group-level socio-
demographic characteristics of emerging phylogenetic clusters
provide an important potential resource for targeting public
health initiatives.
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