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The role of mitochondrial DNA mutation on

neurodegenerative diseases

Moon-Yong Cha, Dong Kyu Kim and Inhee Mook-Jung

Many researchers have reported that oxidative damage to mitochondrial DNA (mtDNA) is increased in several age-related
disorders. Damage to mitochondrial constituents and mtDNA can generate additional mitochondrial dysfunction that may result
in greater reactive oxygen species production, triggering a circular chain of events. However, the mechanisms underlying this
vicious cycle have yet to be fully investigated. In this review, we summarize the relationship of oxidative stress-induced
mitochondrial dysfunction with mtDNA mutation in neurodegenerative disorders.
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INTRODUCTION

Numerous lines of evidence indicate that mitochondrial
dysfunction is related to the aging process, and also to
neurodegenerative disorders, such as Alzheimer’s disease
(AD), Parkinson’s disease (PD), Huntington’s disease and
amyotrophic lateral sclerosis.! Abnormal production of
oxidative stress and excessive accumulation of mitochondrial
DNA (mtDNA) mutations result in mitochondrial dysregula-
tion, a direct cause of aging* (Table 1). However, the direct
relationship between mtDNA mutation and the generation of
reactive oxygen species (ROS) is still questionable. Because
mtDNA repair enzymes are limited in number, and mtDNA is
easily affected by ROS generation, it is more vulnerable to
oxidative stress than nuclear DNA.>® Furthermore, the accu-
mulation of mtDNA mutations could decrease the capability of
the electron transport chain, triggering decreased adenosine
triphosphate production and increased ROS production. Con-
versely, increased ROS generation could result in the accumu-
lation of further mtDNA mutations, establishing a feedback
loop of mtDNA mutation and ROS generation that contributes
to cell death.”® In this review, we provide an update on the
relationship between oxidative stress-induced mtDNA muta-
tion and cellular homeostasis.

BASIC MITOCHONDRIAL GENETICS

Mitochondrial ROS and aging

Mitochondria are believed to contribute to aging through the
accumulation of mtDNA mutations and the generation of
reactive oxygen species.” The conventional view is that

mitochondria regulate cellular homeostasis by producing
several redox enzymes, but excessive generation of ROS impairs
mitochondrial quality control systems. ROS are generated in a
number of cellular compartments, but most of the intracellular
ROS can be traced back to the mitochondria.!®!! There are
eight sites within the mitochondrion that are known to possess
the ability to generate ROS, the major source being complex
1.1213 In aging, the mitochondrial free-radical theory suggests
that the progressive alteration of mitochondria that occurs with
the aging process results in the increased production of ROS
that in turn causes further mitochondrial dysfunction and
damage to the entire cell.'* According to this theory, excessive
production of ROS stimulates cytosolic signaling molecules that
mediate the intrinsic mitochondrial apoptotic pathway.'

mtDNA mutation

Mitochondria contain of the order of 1400 different proteins,
but a vast number of these are encoded by the nuclear genome.
Of the mitochondrial respiratory chain complex proteins, 13
that are required for adenosine triphosphate synthesis are
encoded by the mitochondrial genome.!®!” Recently, Kukat
et al.'® reported structural organization of a single mtDNA
molecule bound by the TFAM mitochondrial transcription
factor using stimulated emission depletion microscopy. Mito-
chondrial DNA is known to have a higher mutation rate than
nuclear DNA; this is because of multiple factors, including
absence of protective histone molecules and the proximity of
the mitochondrial genome to the inner mitochondrial
membrane where ROS are routinely generated. However,
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Table 1 Major neurodegenerative disorders related to mtDNA
mutation

Major
effective
Disease molecule  Function References
Alzheimer’s p-Amyloid  Defecting BER Cha et al.*?
disease pathways. Altering ~ Reddy et al.0
calcium Canugovi et al.5!
homeostasis. Krishnan et al.52
Parkinson’s Parkin Resulting in a Winklhofer et al.53
disease defective assembly  Jin et al.%*
of the OXPHOS Sterky et al.>>
complex. Liu et al.%
Tufi et a5’
Amyotrophic SoD1 Binds to VDACL. Murakami et al.0
lateral Increasing oxidative  Israelson et al.61
sclerosis damage to mtDNA.  Dhaliwal et al.52
Warita et al.%3
Kikuchi et al.64
Huntington’s  Huntingtin  Reducing respiratory Ayala et al.65
disease chain complex Oliveira et al.66

Siddiqui et al.8”
Wang et al.?8

function. Generating
ROS.

Abbreviations: BER, base excision repair; mtDNA, mitochondrial DNA; OXPHOS,
oxidative phosphorylation; ROS, reactive oxygen species; VDAC1, voltage-
dependent anion-selective channel protein 1.

mitochondria contain many antioxidant and DNA repair
enzymes to prevent DNA mutation; these include OGG1 and
MUTYH." Furthermore, the mitochondrion has its own
mechanisms for regulating gene expression that are distinct
from those of the nucleus. The mitochondrial genome is
initially transcribed as a whole, before a large body of post-
transcriptional machinery acts to generate individual gene
products and to modulate their expression.’? Mitochondrial
DNA quality control is important for communication with the
nucleus. ROS-mediated gene expression that occurs upon
oxidative phosphorylation dysfunction may result in a mito-
chondrial retrograde signaling pathway that can stimulate an
adaptive nuclear response to mtDNA impairment. Mitochon-
drial genetic alterations induce a complex nuclear response that
affects the expression of >40 nuclear genes;??? analysis
suggested that, following treatment with various respiratory
chain inhibitors or after mtDNA deletion, the disruption of
mammalian mitochondrial function elicited a signaling
response that involved calcineurin-dependent activation of
nuclear factor-kB.2> Conversely, mtDNA dysfunction can be
induced by many signaling molecules that are regulated by
nuclear genes, and by factors related to mitochondrial meta-
bolism. Many studies have shown that peroxisome proliferator-
activated receptor-y coactivator 1 and SIRT1 are involved in
the regulation of mitochondrial function by activating the
expression of nuclear genes such as TFAM?**> (Figure 1).
Recently, Gomes et al. reported that nuclear nicotinamide
adenine dinucleotide regulates mitochondrial transcription via
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Figure 1 Schematic model of the communication between
mitochondria and the nucleus. Signaling between mitochondria and
the nucleus is tightly controlled under cellular homeostasis.
However, excessive reactive oxygen species (ROS) production
induces translocation of the p53 protein to the mitochondria
and suppression of peroxisome proliferator-activated receptor-y
coactivator 1; inhibition of the mitochondrial electron transport
chain (ETC) by oxidative stress results in alteration of the nuclear
genome. mMtDNA, mitochondrial DNA; OXPHOS, oxidative
phosphorylation.

a peroxisome proliferator-activated receptor-y coactivator
la/p-independent  pathway.?®  Furthermore, the tumor
suppressor protein, p53, can regulate nuclear—mitochondrial
communication via the mitochondrial disulfide relay system?’
(Figure 1). Thus, mtDNA mutation is closely associated with
nuclear signaling pathways and influences the process of aging.

RELATIONSHIP BETWEEN ROS AND MTDNA
DYSFUNCTION

Fusion and fission dysfunction

Mitochondria are especially dynamic organelles that are motile
and that divide and fuse. These mitochondrial dynamics are
critical for mitochondrial homeostasis and the maintenance of
mitochondrial function. Whereas mitochondrial fusion allows
mitochondria to combine and interact with each other, the
opposite process, mitochondrial fission, facilitates mitochon-
drial rearrangement, remodeling and proliferation.”® Fusion
and fission allow the incorporation of mtDNA and metabolites,
the redistribution of mitochondria and cellular homeostasis in
order to respond to energy demand (Figure 2). In yeast, fusion-
deficient mutants fail to retain their mitochondrial genome and
show defects in respiration.?>*Y Furthermore, mitochondrial
dynamics are directly correlated with apoptosis. Some studies
have demonstrated that mitochondrial fragmentation via the
dynamin-related protein 1 (DRP1)-dependent pathway results
in apoptosis in many organisms. Furthermore, the observation
that the pro-apoptotic protein, BAX, interacts with DRP1 and
mitofusins provides strong evidence for crosstalk between the
mitochondrial dynamics machinery and apoptosis.®*> Many
studies have demonstrated that excessive production of free
radicals, including ROS and reactive nitrogen species, promotes
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Figure 2 Schematic model of the mitochondrial response to
oxidative stress. Oxidative stress, including reactive oxygen species
(ROS) and reactive nitrogen species, induces mitochondrial DNA
(mtDNA) mutation and cellular dyshomeostasis. Oxidative stress
and mtDNA mutation can lead to: (1) dysfunction of mitochondrial
fusion and/or fission dynamics, (2) recruitment of the NLRP3
inflammasome and (3) mitochondria-associated endoplasmic
reticulum membrane (MAM) alteration.

neuronal cell damage in neurodegenerative disorders. Lipton
and colleagues®® reported that S-nitrosylation of DRP1 at
Cys644 contributed to amyloid-p (Af)-induced mitochondrial
dynamics dysfunction, accelerating neuronal loss. Furthermore,
Barsoum et al.>* reported that mitochondria undergo excessive
fission induced by nitric oxide in cortical primary neurons.
Recently, Byun et al.?® also demonstrated that ROS-mediated
Sp1-Crifl pathway is one of crucial mechanisms underlying
mitochondrial dysfunction in AD. This evidence suggests that
disruption of mitochondrial dynamics is an early event in ROS-
or reactive nitrogen species-induced cell death.

Inflammasomes

Inflammasomes are multiprotein complexes that form upon
exposure to pathogenic microbes and host danger signals in
order to activate caspase-1, leading to the maturation of
interleukin-1f and interleukin-18. Inflammasome assembly
serves as an activation platform for the proinflammatory
caspases, caspase-1 and caspase-11.® Inflammasome com-
plexes contain NLRP1, NLRP3 and NLRC4, which are mem-
bers of the NOD-like receptor family, together with the
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apoptosis-associated speck-like protein containing CARD
(ASC) adaptor protein, all essential components of the
inflammasome. NLRP3 is the crucial component of the
inflammasome complex and it oligomerizes with the ASC
adaptor protein and procaspase-1.37 ROS generation has been
proposed to be one of the general features of NLRP3 activation.
The induction of ROS is thought to lead to the generation of a
possible ligand of NLRP3 or to directly affect NLRP3 or
associated proteins. The assumption that mitochondrial ROS
induces NLRP3 activation is based on the observation that
most NLRP3 activators also cause ROS generation in immune
cells such as macrophages and monocytes.>® Recent reports
suggest a feasible role for mitochondrial recruitment of NLRP3
in inflammasome function, but this remains questionable.
NLRP3 stimuli induced a translocation of NLRP3 from the
mitochondria-associated endoplasmic reticulum (ER) mem-
brane (MAM), where it forms a functional inflammasome with
caspase-1 and ASC.?° Some studies suggest mitochondria as the
cellular source of the ROS and oxidized DNA that are required
for NLRP3 activation (Figure 2). If interaction with mitochon-
dria is important for NLRP3 function, how recruitment from
the cytosol would be mediated is unclear; Subramanian et al*o
demonstrated that the mitochondrial antiviral signaling adaptor
protein, MAVS, is needed, and that it acts to stimulate
recruitment of NLRP3 to the mitochondria. They also suggest
that factors other than MAVS may mediate mitochondrial
recruitment of NLRP3 in response to inflammasome activa-
tors;*® for example, NLRP3 can be activated by a variety of
stimuli, such as cholesterol, amyloid deposits, hydroxyapatite
crystals, silica and fatty acids. The islet amyloid polypeptide
gene product, IAPP, is a potential key activator of the NLRP3
inflammasome, and amyloid particles in general can activate
the NLRP3 inflammasome. In addition, Wen et al*' suggest
that microglia-specific activation of the NLRP3 inflammasome
is involved in AD pathogenesis. They showed that A activates
the NLRP3 inflammasome in microglia. Many studies have
shown that diabetes and neurodegenerative disease share a
pathogenic mechanism, and therefore it is possible that NLRP3
inflammasomes are key mediators of neuroinflammation.

The MAM

ROS are considered as key regulators of mitochondrial and ER
function, and as activators of the unfolded protein response, in
a variety of neurodegenerative diseases. How ROS regulate ER—
mitochondria crosstalk during ROS-mediated cellular dysfunc-
tion has not been fully examined. The MAM establishes close
contacts with the mitochondrion, supports translocation of
lipids from the ER to the mitochondrion and regulates calcium
homeostasis between these two organelles.*>*> Recently,
Hamasaki et al.** demonstrated that autophagosomes form at
the MAM, suggesting that the ER-mitochondria tether is
essential in autophagosome formation and maintains physio-
logical homeostasis. However, thus far, only a minority of
MAM-regulating proteins (PACS2, HSPA9, o1l-receptor and
mitofusin-2) are known. Verfaillie et al*> reported an unex-
pected role for the ER stress sensor, RNA-dependent protein
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kinase R-like ER kinase, as a crucial component of the MAM; it
can serve as a structural contact site at the ER-mitochondrion
interface, coordinating crosstalk between these two organelles
in ROS-induced cell death. Furthermore, Iwasawa et al.4®
demonstrated that the FIS1 protein transfers an apoptotic
signal from mitochondria to the ER by combining with the ER
outer membrane protein, B-cell receptor-associated protein 31
(BAP31), and stimulating its cleavage to generate the
P20BAP31 peptide fragment, the pro-apoptotic form of the
BAPI protein. They showed that the association between FIS1
and BAP31 is capable of triggering the apoptotic pathway
(Figure 2). Continuous ER stress or the excessive generation of
ROS induces the release of calcium from the ER at the MAM,
causing cellular dyshomeostasis. These ROS-dependent MAM
alterations can induce diverse effects in neurodegenerative
disease, including AD. Area-Gomez et al.*’ reported upregu-
lated MAM function at the ER—mitochondrial interface, and
increased crosstalk between these two organelles in ADj; they
proposed that MAM functions and ER-mitochondrial associa-
tion can be upregulated by mutations in presenilin-1,
presenilin-2 and the amyloid precursor protein, implying that
presenilins are negative regulators of these phenomena. Heds-
kog et al*® also reported increased expression of MAM-
regulating proteins in AD models, although one of the
MAM-associated proteins, the cl-receptor, was significantly
decreased in some AD mouse models, indicating diverse roles
of MAM-associated proteins in neurodegenerative disease, and
needing further examination.

Effects of mtDNA mutations on neurodegenerative diseases
Alzheimer’s disease. Mitochondrial accumulation of A is one
of the key mechanisms to cause mitochondrial dysfunction and
lead to pathological process in AD.** Mitochondrial genomic
dysfunction is also reported in AD pathology. Damaged DNA
lesions by oxidative stress are much higher in mtDNA of AD
post-mortem tissues. Furthermore, degraded mtDNA and
related proteins were found in the mitochondria of AD
brains,>® and base excision repair (BER) pathway is defective
in AD post-mortem brain whole tissue lysates.”! Krishnan
et al.>? reported a higher percentage of cytochrome ¢ oxidase-
deficient neurons, which shows a higher level of mtDNA
mutations, in the AD brains compared with age-matched
controls. Swedlow et al. also found the mtDNA-depleted cells
absence functional electron transport chains (ETCs) because
they cannot produce mtDNA-encoded ETC components. In
the AD cybrid cell lines, lowering cytochrome ¢ oxidase activity,
dysregulation of calcium homeostasis, increased ROS genera-
tion, reduction of mitochondrial membrane potentials, eleva-
tion of apoptotic pathways and increased AP42 production
were reported.® Their findings reveal that mtDNA mutation
has crucial role for the AD-related mitochondrial dysfunction.

Parkinson’s disease. Many evidences report that mitochondrial
dysfunction plays a crucial role in the pathogenesis of PD,
relating that rotenone (complex 1 inhibitor) of the ETC
complex can induce parkinsonism.>® Mitochondrial alteration
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because of oxidative damage, mtDNA mutations and mito-
chondrial dynamics dysfunction lead to degeneration of
dopaminergic neurons.’* In addition, ETC deficiency in
dopaminergic neurons leads to excessive mitochondrial frag-
mentation and an impaired supply of fresh mitochondria to
dopaminergic nerve terminals in striatum.> In addition, many
studies suggest that PD-associated mitochondrial dysfunction is
related to PTEN-induced putative kinase 1 (PINK1). Increasing
excessive mitochondrial fission inhibits maintenance of oxida-
tive phosphorylation (OXPHOS) machinery and loss of PINK1
results in a defective assembly of the OXPHOS complexes,
leading to impaired mitochondrial OXPHOS.**>’ In line with
these observations, Kraytsberg et al.>® reported a high level of
mtDNA deletion that is associated with ETC deficiency in
substantia nigra neurons from PD patients. Pickrell et al.>® also
demonstrated striatal dysfunctions in PD-mito-Pstl mouse
that expresses a mitochondrial restriction enzyme to damage
mtDNA. These data suggest that mtDNA mutation can
contribute to progression of PD.

Amyotrophic lateral sclerosis. The link between mitochondrial
alteration and the progression of amyotrophic lateral sclerosis
(ALS) is not fully understood yet, but some evidences imply
that mutant SODI is the cause of mitochondrial dysfunction in
ALS. Mutant SOD1 can inhibit VDACI (voltage-dependent
anion-selective channel protein 1) directly, leading to reduction
of energy production in mitochondria.®>®! In the ALS but not
control brains, levels of mtDNA were an average of more than
30-fold higher in the motor cortex, and elevated oxidative
damage to mtDNA was detected in spinal motorneurons of the
transgenic ALS mice.>%® Kikuchi et al% demonstrated that
oxidative stress affects to the mitochondria and DNA repair
mechanism are altered in ALS. Murakami et al.?® also reported
that mitochondrial BER enzymes, oggl and pol-y, are down-
regulated in mutant SOD1 transgenic mice. These data support
a pathophysiologic role of mtDNA mutations in ALS.

Huntington’s disease. Mitochondrial dysfunction plays an
important role in Huntington’s disease (HD) pathogenesis, as
mitochondrial metabolic deficits and decreased activity of
mitochondrial key enzymes have been found in HD patients.
Furthermore, mutant huntingtin (Htt) or its polyQ-containing
fragments can lead to mitochondrial dysfunction. Many other
studies also suggested that mtDNA is a major target of mutant
Htt-associated oxidative stress and may lead to mitochondrial
alteration and that BER enzyme APEI is one of the crucial
target in the maintenance of mitochondrial activity in HD.%>6
Siddiqui et al.®” demonstrated that mutant Htt-expressing cells
exhibit higher mtDNA damage and reduced respiratory func-
tion than control cells. Furthermore, knockdown of APE1
results in mitochondrial dysfunction in mutant Htt-expressing
cells. Wang et al® also suggested that HD cells, which
have excessive mitochondrial Ca®* levels, show higher level
of mtDNA damage because of ROS generation. These
studies provide the evidence for a link between mtDNA
mutations and HD.



DEFENSE MECHANISMS AND THERAPEUTIC TARGETS
Mitochondrial unfolded protein response and mitophagy
Mitochondrial quality control mechanisms are essential in
order to maintain cellular homeostasis. In aging, nuclear and
mitochondrial genomes are mutated, and damage occurs to
intracellular organelles; mitochondrial quality control mechan-
isms can determine the consequences of this in terms of cell
fate. Several quality control mechanisms remove damaged
proteins or the entire organelle in order to sustain a functional
mitochondrion. One of the major mechanisms for protein
degradation within mitochondria is the ubiquitin—proteasome
system.®® Excessive ROS production induces cellular dysho-
meostasis, and mitochondria are vulnerable to the accumula-
tion of damage. The mitochondrial unfolded protein response
mitigates a large body of unfolded proteins in the mitochondria
by triggering the induction of mitochondrial chaperone pro-
teins, such as the mitochondrial chaperonin heat shock protein
60 (HSP60) and the HSPA9 protein. The triggering factor that
activates the mitochondrial unfolded protein response is still
questionable; it is important to preserve a balance between the
expression levels of multiple proteins in the mitochondria,
including those of the respiratory chain complex.”

Recent studies suggest that crosstalk between the mitochon-
dria and autophagy has links to neurodegenerative disease.
Autophagy has crucial roles in the adaptation to cellular stress,
and as a quality control mechanism. Defects in autophagy are
especially associated with neurodegenerative disorders that are
in turn related to mitochondrial dysfunction.”! Nakahira
et al”? showed that autophagy defects render mitochondria
dysfunctional, with consequent induction of the FGF21 protein
as a mitokine. Recently, mounting evidence has implicated
mitophagy and mitochondria-specific autophagic degradation
as quality control mechanisms.”? Furthermore, Kurihara et al.”*
reported that damaged mitochondria induce abnormal ROS
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generation that is related to mtDNA dysfunction in mitophagy-
deficient cells, demonstrating that mitophagy is directly asso-
ciated with the regulation of mitochondrial function.

Mitochondria-specific antioxidant therapy and gene therapy
Therapeutic approaches targeting mitochondria are attractive,
because effects on a few general pathways can rescue malfunc-
tions in a variety of ROS-mediated mitochondrial disorders.
A possible approach is to target antioxidants to mitochondria
via conjugation of a lipophilic cation, such as triphenylpho-
sphonium. Lipophilic cations are capable of rapidly entering
mitochondria in vivo because of the high mitochondrial
membrane potential.”> Furthermore, this mitochondrial target-
ing approach can be used to enhance the therapeutic potential
of an antioxidant in comparison with unconjugated antiox-
idants that exert effects elsewhere in the cell. In general,
antioxidants have failed in clinical trials, because they do not
have specificity for the mitochondrion, the organelle that is
most vulnerable to the pathogenic effects of ROS.”®
Mitochondria-targeted antioxidants are capable of a 100-fold
accumulation within mitochondria that contributes to more
effective protection against cellular damage; for example,
MitoQ can be selectively targeted to mitochondria, and directly
protects them from ROS.”” Another mitochondria-specific
antioxidant, SS31, which has an innate antioxidant function,
has been demonstrated to be effective in a variety of animal
models, and is now being tested in clinical trials. As reported by
McManus et al.,”® MitoQ mitigated cognitive decline, as well as
oxidative damage, astrogliosis, Ap accumulation and neuronal
loss, in an AD mice model; MitoQ was also able to mitigate
oxidative stress and prevent cell death in other disease models.
MitoQ and SS31, which are taken up by the inner mitochon-
drial membrane, significantly improved neurite outgrowth and
synaptic function in neurons affected by AD.”>80 These
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findings indicate that MitoQ and SS31 reduce AP-mediated
mitochondrial dysfunction (Figure 3).

Recently, several approaches have been applied to mitigate
mutant mtDNA-mediated cellular damage. BER enzymes,
which are all nuclear encoded and imported into the mito-
chondria, are primarily responsible for removing oxidized
DNA bases, including 8-ox0-2’-deoxyguanosine, from mtDNA.
Tonin et al.3! developed specially constructed RNA molecules
containing key structural domains for mitochondrial import
and corresponding to the mutated region of mtDNA, and
demonstrated that these were able to specifically anneal to
mutated mitochondrial genomes; these recombinant RNA
molecules induced a decrease in the proportion of mtDNA
molecules bearing a pathogenic mutation. Gammage et al.3?
designed and engineered mitochondria-specific heterodimeric
zinc-finger nucleases for site-specific elimination of pathogenic
human mtDNA. Kim et al.3% demonstrated that mitochondria-
targeted human OGG]1, a key enzyme in BER, is necessary for
preventing mtDNA dysfunction. Bacman et al.3* engineered
transcription activator-like effector nucleases to selectively
target mitochondria and cleave multiple pathogenic mtDNA
mutations (Figure 3). These various gene therapy approaches,
which can potentially rescue ROS-induced mtDNA dysfunction
in mitochondrial disease, might also be useful in neurodegen-
erative disease.

CONCLUSION

Thus far, mitochondrial genome studies have not investigated
the link between mtDNA alteration and mitochondrial
abnormality, although loss of mitochondrial genomic integrity
has been implicated in many neurodegenerative diseases. As
mitochondria are vulnerable to oxidative damage, it is possible
that a feedback loop, involving oxidative damage and mito-
chondrial dysfunction, contributes to the initiation and/or
amplification of ROS production that is a key player in the
pathogenesis of a variety of diseases. As mitochondria com-
municate with other organelles, such as the nucleus and ER,
mutations in mtDNA that result in stable perturbations of
mammalian mitochondrial function can also elicit a coordi-
nated alteration in nuclear gene expres.sion.85 In addition,
mitochondrial dysfunction, including excessive activation of
the fission and fusion machinery, results in MAM alteration
and recruitment of the NLRP3 inflammasome. Mitochondria
are crucial for the maintenance of cellular homeostasis, and
abnormal oxidative stress impairs mitochondrial defense sys-
tems. In line with this observation, it is important to prevent
mtDNA dysfunction as a possible way to delay the progress of
neurodegenerative disease.
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