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Abstract

Rationale: Using microarray data, we previously identified gene
expression–based subclasses of septic shock with important
phenotypic differences. The subclass-defining genes correspond to
adaptive immunity andglucocorticoid receptor signaling. Identifying
the subclasses in real time has theranostic implications, given
the potential for immune-enhancing therapies and controversies
surrounding adjunctive corticosteroids for septic shock.

Objectives: To develop and validate a real-time subclassification
method for septic shock.

Methods: Gene expression data for the 100 subclass-defining genes
were generated using a multiplex messenger RNA quantification
platform (NanoString nCounter) and visualized using gene
expression mosaics. Study subjects (n = 168) were allocated to the
subclasses using computer-assisted image analysis and microarray-
based reference mosaics. A gene expression score was calculated
to reduce the gene expression patterns to a single metric. The
method was tested prospectively in a separate cohort (n = 132).

Measurements and Main Results: The NanoString-based
data reproduced two septic shock subclasses. As previously,
one subclass had decreased expression of the subclass-
defining genes. The gene expression score identified this
subclass with an area under the curve of 0.98 (95%
confidence interval [CI95] = 0.96–0.99). Prospective testing
of the subclassification method corroborated these
findings. Allocation to this subclass was independently
associated with mortality (odds ratio = 2.7; CI95 = 1.2–6.0;
P = 0.016), and adjunctive corticosteroids prescribed at
physician discretion were independently associated with
mortality in this subclass (odds ratio = 4.1; CI95 = 1.4–12.0;
P = 0.011).

Conclusions:We developed and tested a gene expression–based
classification method for pediatric septic shock that meets the time
constraints of the critical care environment, and can potentially
inform therapeutic decisions.
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Septic shock is a heterogeneous syndrome
with widely ranging physiological and
biological manifestations (1–3). This
heterogeneity represents a major challenge
for the development of new therapies and
for targeting therapies to patients most
likely to benefit. An approach to meet
this challenge is to define subclasses
(i.e., endotypes) of septic shock differentiated
by distinct gene expression patterns
corresponding to relevant biological
processes and clinical phenotypes.

Using genome-wide expression
profiling and unsupervised hierarchical
clustering, we previously reported three
putative gene expression–based subclasses
of pediatric septic shock, and found that
one of the subclasses, subclass A, had
greater organ failure burden and mortality
(4). We subsequently validated the
existence of these subclasses and condensed
the subclass-defining gene expression
signature to the top 100 class-predictor

genes (5, 6). The class-predictor genes
correspond to adaptive immunity and
glucocorticoid receptor signaling, as
determined by objective pathway analysis.
This opens the possibility of a theranostic
approach, because immune-enhancing
therapies are being considered for septic
shock (1, 7), and the role of adjunctive
corticosteroids for septic shock remains
unclear due to heterogeneous patient
responses (8).

All of this previous work was based on
microarray technology. Although this is
a powerful tool for discovery, it does not
meet the time-sensitive demands for
theranostic information in critically ill
patients with septic shock (9). In the current
study, we adapt these complex, time-
consuming, whole-genome methods for
use in the critical care environment. We
measured expression of the 100 subclass-
defining genes using a multiplex messenger
RNA (mRNA) quantification platform
(NanoString nCounter; NanoString
Technologies, Seattle, WA) capable of
generating expression data in about 8–12
hours (10). Using these data, we first
determined if NanoString-based gene
expression mosaics could reproduce the
previously reported gene expression–based
subclasses of pediatric septic shock and
their respective phenotypes. Second, we
determined if the gene expression signature
could be reduced to a simple score that
reliably distinguishes the subclasses. Third,
we prospectively tested the newly developed
classification method in a separate
validation cohort of patients, while
simultaneously considering the effects
of interassay variability. Finally, to
demonstrate proof of theranostic principle,
we determined if associations between
adjunctive corticosteroids and septic shock
outcomes are dependent on subclass
allocation, as would be suggested when
discriminating between patients based on
genes associated with adaptive immune
function and the glucocorticoid receptor
signaling pathway.

Methods

Study Subjects and Data Collection
The study subjects for developing the
subclassification method were previously
reported (4–6), whereas the study
subjects for prospectively testing the
subclassification method have not.

The study protocol and the procedures for
generating microarray data have been
described in detail (4–6, 11, 12), and the
previous microarray data have been
deposited in the National Center for
Biotechnology Information Gene
Expression Omnibus (accession nos.
GSE26440 and GSE26378).

Briefly, children 10 years of age or less
admitted to the pediatric intensive care unit
(PICU) and meeting pediatric-specific
consensus criteria for septic shock were
enrolled after informed consent from
parents or legal guardians. Blood samples
were obtained within 24 hours of initial
presentation to the PICU with septic shock.
Total RNA was isolated from whole blood
using the PaxGene Blood RNA System
(PreAnalytiX, Qiagen/Becton Dickson,
Valencia, CA). Clinical and laboratory data
were collected daily while in the PICU.
Mortality and organ failure were tracked for
28 days after enrollment. Illness severity
was measured using Pediatric Risk of
Mortality (PRISM) scores (13).

Multiplex mRNA Quantification
A customNanoString nCounter codeset was
generated for the 100 subclass-defining
genes. The technology is based on standard
hybridization between the target gene, and
target-specific capture and reporter probes
(14). All NanoString-based measurements
were conducted at the University of
Minnesota Genomics Center Core Facility.
Four housekeeping genes were used to
normalize the NanoString-derived
expression data: b-2-microglobulin,
folylpolyglutamate synthase, 2,4-dienoyl
coenzyme A reductase 1, and peptidylprolyl
isomerase B. These were selected from
our transcriptomic database, because they
showed minimal expression variation
across 180 subjects with septic shock.
Expression values were normalized to the
geometric mean of the housekeeping genes.

Gene Expression Mosaics and
Computer-assisted Image Analysis
Gene expression mosaics representing the
expression patterns of the 100 subclass-
defining genes were generated using the
Gene Expression Dynamics Inspector, as
previously described (5, 6, 15, 16). The gene
expression mosaics from individual patients
were compared with subclass reference
mosaics using a public analysis platform
(ImageJ; National Institutes of Health,
Bethesda, MD), as previously described (5).

At a Glance Commentary

Scientific Knowledge on the
Subject: Using whole-genome
expression profiling, we previously
identified subclasses of pediatric septic
shock differentiated by distinct gene
expression patterns corresponding to
relevant biological processes and
clinical phenotypes. Although very
powerful for discovery, whole-genome
approaches do not meet the time-
sensitive theranostic demands of
critically ill patients with septic shock.

What This Study Adds to the
Field: We have adapted complex,
time-consuming genomic methods for
use in the critical care environment.
Using a multiplex, digital messenger
RNA quantification platform that can
generate gene expression data in about
8–12 hours, we have developed and
validated a method to subclassify
children with septic shock based on
a 100-gene expression signature. The
subclasses have clinically relevant
phenotypes, and the class-defining
genes correspond to adaptive
immunity and glucocorticoid receptor
signaling, thus raising the possibility of
a theranostic approach to pediatric
septic shock.
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The absolute difference in RGB pixel-to-
pixel intensity was calculated for each
individual patient mosaic, relative to the
reference mosaics. Final subclass allocation
was based on the least difference between
the individual patient mosaic and one of
the reference mosaics representing the
septic shock subclasses.

Gene Expression Score
Gene expression data for the 100 class-
defining genes was reduced to a single
metric, the gene expression score (GES). The
GES was defined to quantify the range of
variability in expression of the 100 subclass-
defining genes by calculating the sum
of the squared differences between the
expression levels of each gene and
the geometric mean of all genes using
the equation:

GES ¼ +Genes;i

�
ei 2mg

�2

13 106

where ei is the gene expression level for an
individual gene and mg is the geometric
mean expression value of the 100 subclass-
defining genes for a given patient. The sum
was scaled by a factor of 13 106.

Statistical Analysis
Statistical procedures used SigmaStat
Software (Systat Software, Inc., San Jose,
CA). General clinical and demographic data
are described using medians, interquartile
ranges, frequencies, and percentages.
Comparisons between groups used the
Mann-Whitney U test, chi-square, or
Fisher’s exact tests, as appropriate. The
performance of the GES for distinguishing
subclasses was measured by constructing
receiver operating characteristics (ROCs)
curves and calculating diagnostic test
characteristics. The association between
subclass allocation and outcome was
modeled using multivariable logistic
regression. The primary outcome variable
for the regression procedures was all-cause
28-day mortality. Because persistent,
multiple organ failure is a major antecedent
of death secondary to sepsis, we also
modeled a complicated course, defined as
the persistence of two or more organ
failures at Day 7 of septic shock or 28-day
mortality (17–20). This allows the
exploration of association between gene
expression patterns and a nuance of sepsis
severity beyond the dichotomy of “alive”
versus “dead.”

Results

Identification of Pediatric Septic
Shock Subclasses via Multiplex
mRNA Quantification
Using microarray data, we previously
generated individual gene expression
mosaics for the 100 septic shock
subclass–defining genes in two separate
cohorts (4–6). In the current study, we used
the microarray data from all 180 subjects
in both cohorts to generate composite
mosaics for each of the three subclasses.
The composite mosaics represent the mean
expression values of the 100 subclass-
defining genes within each subclass.
Figure 1 shows the composite mosaics for
the three subclasses. Table E1 in the online
supplement shows the 100 septic shock
subclass–defining genes.

Among the original 180 subjects used
to generate the microarray-based composite
mosaics, there were 168 (93%) with
remaining RNA samples. These samples
were used to generate new NanoString-
based expression data for the 100 subclass-
defining genes and individual patient
gene expression mosaics. Using computer-
assisted image analysis, the new
NanoString-based expression mosaics were
compared with the microarray-based
composite mosaics as a reference, and the
168 subjects were re-allocated into one
of the three septic shock subclasses.

A total of 57 subjects (34%) were
allocated to subclass A, and 111 subjects
were allocated to subclass B. No subjects
were allocated to subclass C. Figure 2A
shows the composite gene expression
mosaics for the subjects in subclasses A and
B based on NanoString-generated data.
Figure 2B shows examples of individual

patient gene expression mosaics. Table 1
shows the clinical and demographic data
for the subjects in subclasses A and B. At
baseline, the subjects in subclass A had
higher median PRISM scores, were
younger, and a lower proportion had
a comorbidity compared with those in
subclass B. Subjects in subclass A had lower
total white blood cell and absolute
neutrophil counts, but higher absolute
lymphocyte counts, compared with those
in subclass B. No other differences were
noted at baseline. With respect to outcomes,
subjects in subclass A had a higher mortality
rate and a higher rate of a complicated
course compared with those in subclass B.

Collectively, these data demonstrate
that a multiplex RNA quantification
platform that is amenable to rapid
turnaround in the acute care setting can
subclassify patients with septic shock based
on gene expression data, and that subjects
in subclass A have worse outcomes.

Development of a GES to Subclassify
Septic Shock
As an alternative to subclassification based
on gene expression mosaics and computer-
assisted image analysis, we constructed
a GES to allocate subjects into subclass A
or B. Based on visual inspection of the
composite gene expression mosaics depicted
in Figure 2A, we reasoned that a score
that quantifies the variability of gene
expression intensity relative to some central
reference value within a given patient
would provide utility in differentiating the
subclasses. Because patients in subclass A
tended to have less variability than those in
subclass B, we expected that the GES value
would be lower in subjects in subclass A
compared with those in subclass B.

Figure 1. Composite gene expression mosaics for the 100 class-defining genes based on previous
microarray data. The composite mosaics represent the mean expression values of the 100 subclass-
defining genes within each subclass. Red intensity correlates with increased gene expression,
and blue intensity correlates with decreased gene expression. The composite mosaics were used
as a reference to classify subjects based on NanoString-generated data for the 100 subclass-defining
genes. Classification was performed using computer-assisted image analysis.
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As shown in Figure 3A, the median
GES for the subjects in subclass A was
significantly lower compared with those in
subclass B. We next generated an ROC
curve to determine the ability of the GES to
discriminate subclass A from subclass B,

using the gene expression mosaic–based
classification method as the gold standard
(NanoString-based data). Figure 3B
shows the ROC curve with an area under
the curve of 0.98 (95% confidence interval
[CI95] = 0.96–0.99). The 90th percentile

GES for the subjects in subclass A was
401. Using a GES of 401 or lower,
we calculated the diagnostic test
characteristics of the GES for identifying
subjects in subclass A, which were:
sensitivity, 91% (CI95 = 80–97);
specificity, 92% (CI95 = 85–96); positive
predictive value, 85% (73 to 93); negative
predictive value, 95% (CI95 = 89–98);
positive likelihood ratio (1LR), 11.3
(CI95 = 6.0–21.2); and 2LR, 0.1 (CI95 =
0.01–0.2).

These data demonstrate that the GES
can distinguish subclass A from subclass
B with a high level of accuracy in the
derivation cohort.

Prospective Subclassification of
Patients with Septic Shock
We next tested this subclassification method
prospectively in a separate cohort of 132
subjects. With the goal of developing
a clinically reproducible method, we took
into account the potential for interassay
variability by generating the prospective
mRNA expression data a priori in eight
separate batches over a 1-year period. We
measured expression of the 100 subclass-
defining genes for each subject in the test
cohort using the NanoString platform,
and generated individual patient gene
expression mosaics. We then compared the

Figure 2. (A) Composite gene expression mosaics for the 100 subclass-defining genes based on NanoString-derived expression data. The
composite mosaics represent the mean expression values of the 100 subclass-defining genes within each subclass. Red intensity correlates with
increased gene expression, and blue intensity correlates with decreased gene expression. (B) Examples of individual patient gene expression mosaics
for subjects in the test cohort based on NanoString-derived expression data. The individual patient gene expression mosaics were compared with
the reference composite mosaics (A) to prospectively allocate the test cohort subjects into subclass A or B. Image comparisons were performed using
computer-assisted image analysis. Examples 1 and 2 were allocated to subclass A, whereas examples 3 and 4 were allocated to subclass B.

Table 1. Clinical and Demographic Data for the Derivation Cohort

Subclass A Subclass B

n 57 111
Median age (IQR), yr 1.4 (0.2–2.9) 3.0 (1.5–7.3)*
Males, n (%) 36 (63) 64 (58)
28-d mortality, n (%) 12 (21) 11 (10)†

Complicated course, n (%) 24 (42) 26 (23)†

Median PRISM score (IQR) 16 (12–23) 13 (9–20)*
Median WBC count 3103/mm3 (IQR) 10.0 (3.8–16.9) 14.6 (7.7–19.9)*
Median neutrophil count 3103/mm3 (IQR) 6.1 (2.4–11.4) 10.9 (4.5–16.8)*
Median lymphocyte count 3103/mm3 (IQR) 1.8 (0.9–3.5) 1.5 (0.7–2.5)*
Median monocyte count 3103/mm3 (IQR) 0.6 (0.1–1.4) 0.6 (0.2–1.3)
No. with gram-negative bacteria (%) 11 (19) 26 (23)
No. with gram-positive bacteria (%) 16 (28) 28 (25)
No. with other pathogen isolated (%) 6 (11) 5 (5)
No. with no pathogen identified (%) 24 (42) 52 (47)
No. with comorbidity (%) 11 (19) 46 (41)†

No. with malignancy (%) 1 (2) 8 (7)
No. with immune suppression (%) 3 (5) 11 (10)
No. with bone marrow transplantation (%) 1 (2) 5 (5)

Definition of abbreviations: IQR = interquartile range; PRISM= Pediatric Risk of Mortality; WBC =white
blood cell.
*P , 0.05 versus subclass A, rank sum test.
†P , 0.05 versus subclass A, chi-square.
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individual patient gene expression mosaics
to the composite mosaics shown in
Figure 2A as a reference, and allocated
each subject into subclass A or B using
computer-assisted image analysis and the
GES.

A total of 63 subjects (48%) were
allocated to subclass A and 69 subjects
were allocated to subclass B by computer-
assisted image analysis in the test
cohort. Table 2 shows the clinical and
demographic data for the subjects in
subclasses A and B in the test cohort. At
baseline, the subjects in subclass A were
younger than those in subclass B, and
the distribution of white blood cells was
similar to that seen in the derivation
cohort. No other baseline differences
were noted. Patients in subclass A had
a higher mortality rate and a higher
rate of a complicated course compared
with those in subclass B.

For determining subclassification based
on the GES, the area under the curve for
the ROC curve was 0.98 (CI95 = 0.96–1.00)
in the test cohort. The diagnostic test
characteristics of the GES for identifying
subjects in subclass A in the test cohort
were: sensitivity, 94% (CI95 = 84–98);
specificity, 93% (CI95 = 83–97); positive
predictive value, 92% (CI95 = 82–97);
negative predictive value, 94% (CI95 =
85–98); 1LR, 12.9 (CI95 = 5.5–30.1); and
2LR, 0.06 (CI95 = 0.02–0.2).

The observation that subjects in
subclass A in both the derivation cohort and
the test cohort had higher mortality rates
and higher rates of a complicated course
could reflect confounding by illness severity,
presence of comorbidity, and age, rather
than class allocation per se. To investigate
this possibility, we used logistic regression

to test the association between class
allocation and outcome adjusted for age,
presence of comorbidity, and illness
severity (PRISM scores). For all subjects
(n = 300), allocation to subclass A was
independently associated with increased
risk of mortality (odds ratio [OR] = 2.7;
CI95 = 1.2–6.0; P = 0.016) and complicated
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Figure 3. (A) Box-and-whisker plots depicting the gene expression score (GES) values for subjects in subclasses A and B. (B) Receiver operating
characteristic curve demonstrating the performance of the GES for distinguishing subclass A from subclass B. Classifications based on the gene
expression mosaics (NanoString-based data) were used as the gold standard classification.

Table 2. Clinical and Demographic Data for the Test Cohort

Subclass A Subclass B

n 63 69
Median age (IQR), yr 1.4 (0.3–3.9) 4.1 (1.3–6.6)*
Males, n (%) 34 (54) 39 (57)
28-d mortality, n (%) 11 (17) 4 (5)†

Complicated course, n (%) 27 (43) 11 (16)†

Median PRISM score (IQR) 11 (6–18) 11 (8–19)
Median WBC count 3103/mm3 (IQR) 8.6 (2.9–14.7) 13.4 (6.2–20.8)*
Median neutrophil count 3103/mm3 (IQR) 4.6 (0.8–8.6) 11.9 (4.8–16.6)*
Median lymphocyte count 3103/mm3 (IQR) 2.3 (1.3–4.3) 1.2 (0.5–2.1)*
Median monocyte count 3103/mm3 (IQR) 0.5 (0.1–0.9) 0.5 (0.3–1.2)
No. with gram negative bacteria (%) 17 (27) 12 (17)
No. with gram positive bacteria (%) 10 (16) 13 (19)
No. with other pathogen isolated (%) 5 (8) 13 (19)
No. with no pathogen identified (%) 31 (49) 31 (45)
No. with comorbidity (%) 16 (25) 26 (38)
No. with malignancy (%) 6 (10) 5 (7)
No. with immune suppression (%) 6 (10) 9 (13)
No. with bone marrow transplantation (%) 0 (0) 3 (4)

Definition of abbreviations: IQR = interquartile range; PRISM= Pediatric Risk of Mortality; WBC =white
blood cell.
*P , 0.05 versus subclass A, rank sum test.
†P , 0.05 versus subclass A, chi-square.
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course (OR = 2.7; CI95 = 1.5–4.8; P ,
0.001). When we restricted the analysis to
subjects with positive microbiological
cultures (n = 162), allocation to subclass
A was independently associated with
increased risk of a complicated course
(OR = 2.2; CI95 = 1.0–4.7; P = 0.043), and
there was a tendency for subjects in
subclass A to have higher mortality (OR =
2.7; CI95 = 1.0–7.3; P = 0.054).

These data demonstrate that
prospective application of the gene
expression–based classification method in
a test cohort identifies two septic shock
classes, and that allocation to subclass A
is independently associated with worse
outcomes. In addition, prospective
application of the GES demonstrated
excellent discrimination between the two
subclasses.

Adjunctive Treatment with
Corticosteroids and Outcomes
The 100-gene expression signature that
defines the two septic shock classes is
enriched for genes corresponding to
glucocorticoid receptor signaling, and these
genes are repressed in the patients in
subclass A relative to those in subclass B
(4–6). This raises the possibility that the
two subclasses could have different
responses to adjunctive treatment with
corticosteroids.

We combined all subjects and tested
the association between adjunctive
corticosteroids and outcomes within the two
septic shock subclasses. Prescription of
adjunctive corticosteroids was at the
discretion of the physicians caring for
the study subjects. Among the 120
subjects in subclass A, 52 (43%) received
adjunctive corticosteroids, and, among
the 180 subjects in subclass B, 104 (58%)
received adjunctive corticosteroids.
We used logistic regression to test
the association between adjunctive
corticosteroids and outcomes within each
subclass. Table E2 shows the results.
After adjusting for illness severity
(PRISM score), presence of comorbidity,
and age, adjunctive corticosteroids were
independently associated with an
increased risk of mortality in the subjects
in subclass A (OR = 4.1; CI95 = 1.4–12.0;
P = 0.011), but not the subjects in
subclass B. When testing the interaction
between subclass and adjunctive
corticosteroids, the effect of corticosteroids
on the OR for mortality was nearly

four times higher in the patients in
subclass A than in those in subclass B
(OR = 3.9; CI95 = 0.8–18.3; P = 0.089).
Adjunctive corticosteroids were not
independently associated with an increased
risk of a complicated course in either
subclass.

Discussion

Using a multiplex mRNA quantification
platform and gene expression mosaics,
we confirmed the presence of gene
expression–based subclasses of pediatric
septic shock (4–6). The original,
microarray-based subclassification
identified three subclasses (A, B, and C),
whereas the current NanoString-based
subclassification identified two subclasses
(A and B). This discrepancy is not
problematic from a clinical standpoint,
because subjects in subclasses B and C did
not differ with respect to clinical phenotype
(4–6). In contrast, subjects in subclass A
had worse clinical outcomes in our original,
microarray-based studies, and this was
corroborated using the NanoString-based
subclassification method. As an alternative
to gene expression mosaics and computer-
assisted image analyses for subclass
identification, we also derived a metric,
the GES, which reliably distinguishes
subclasses A and B.

We prospectively tested this
subclassification method in a different
cohort, and simultaneously accounted for
interassay variability by analyzing the test
cohort over a 1-year period consisting
of eight different batches of samples. This
prospective test of the subclassification
method corroborated the key finding, that
subjects in subclass A have worse clinical
outcomes, and validated the diagnostic test
characteristics of the GES. Taking into
account the potential confounders of age,
comorbidity, and illness severity, we
show that allocation to subclass A is
independently associated with poor
outcomes.

Taken together, these data demonstrate
the feasibility of using complex gene
expression data within the time-sensitive
constraints of the critical care environment
and at a direct assay cost of about $100 per
patient. This contention is supported
by a recent study that used similar
approaches to predict poor outcomes in
critically ill adults suffering from major

trauma (10, 21). The development of
microfluidics-based technologies to
rapidly isolate RNA from blood samples
further supports the idea that the this
subclassification method can be
translated into the time-sensitive critical
care environment (22, 23).

The subclass-defining genes
correspond to the adaptive immune system
and glucocorticoid receptor signaling (4–6),
and these genes are repressed in the
subjects in subclass A relative to the those
in subclass B. Repression of adaptive
immunity–related genes does not appear to
be an artifact of lymphopenia, because the
absolute lymphocyte counts were higher
in the subjects in subclass A compared with
those in subclass B. Accordingly, our
subclassification method has the potential
to promote personalized medicine in
that allocation to subclass A or B could
potentially direct therapy. For example, the
use of adjunctive corticosteroids for septic
shock continues to be controversial in
the field of critical care medicine (8).
Clinical trials based on cortisol levels and
adrenocorticotropic hormone stimulation
tests have yielded conflicting results (24,
25). This reflects, in part, the challenge of
identifying which patients with septic
shock will benefit from adjunctive
corticosteroids and which will not (26).
Our subclassification method identifies
a group of patients (subclass A) who may
not respond favorably to adjunctive
corticosteroids. Although adjunctive
corticosteroids are independently
associated with increased mortality in
the subjects in subclass A, it is not clear
whether this association is because subjects
in subclass A fail to respond to
corticosteroids, or if corticosteroids
directly worsen outcome in subjects in
subclass A. Both scenarios are biologically
plausible and require further exploration.
In a similar vein, leading investigators
in the field are proposing immune-
enhancing therapies to improve sepsis
outcomes (1, 7, 27). Our subclassification
method indicates that subjects in
subclass A might benefit the most from
such an approach.

We note the limitations of our study.
As an observational study, clinical care
was not under protocol. Accordingly,
outcomes can reflect variability in the care
processes, independent of the gene
expression–based classifications. We did
not directly measure adaptive immune
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function or glucocorticoid receptor
function. Dysfunction of these systems is
inferred based on gene expression patterns,
which may not necessarily correlate with
changes in function. In addition, we do
not have complete data regarding baseline
cortisol levels or results of adrenocorticotropic
hormone stimulation tests. Finally, the
use of adjunctive corticosteroids was not
under protocol. Therefore, the associations
between adjunctive corticosteroids and

poor outcome should be interpreted with
caution.

In conclusion, we have developed
and successfully tested a gene
expression–based subclassification
method for pediatric septic shock. The
method has the potential to meet the time
constraints inherent to clinical decision
making in critically ill patients, and to
inform therapy-related clinical decision
making. n
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