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Abstract

Purpose—The performance of three frequently used level set-based segmentation methods is 

examined for the purpose of defining features and boundary conditions for image-based Eulerian 

fluid and solid mechanics models. The focus of the evaluation is to identify an approach that 

produces the best geometric representation from a computational fluid/solid modeling point of 

view. In particular, extraction of geometries from a wide variety of imaging modalities and noise 

intensities, to supply to an immersed boundary approach, is targeted.

Design/methodology/approach—Two- and three-dimensional images, acquired from optical, 

X-ray CT, and ultrasound imaging modalities, are segmented with active contours, k-means, and 

adaptive clustering methods. Segmentation contours are converted to level sets and smoothed as 

necessary for use in fluid/solid simulations. Results produced by the three approaches are 

compared visually and with contrast ratio, signal-to-noise ratio, and contrast-to-noise ratio 

measures.

Findings—While the active contours method possesses built-in smoothing and regularization 

and produces continuous contours, the clustering methods (k-means and adaptive clustering) 

produce discrete (pixelated) contours that require smoothing using speckle-reducing anisotropic 

diffusion (SRAD). Thus, for images with high contrast and low to moderate noise, active contours 

are generally preferable. However, adaptive clustering is found to be far superior to the other two 

methods for images possessing high levels of noise and global intensity variations, due to its more 

sophisticated use of local pixel/voxel intensity statistics.
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Originality/value—It is often difficult to know a priori which segmentation will perform best for 

a given image type, particularly when geometric modeling is the ultimate goal. This work offers 

insight to the algorithm selection process, as well as outlining a practical framework for generating 

useful geometric surfaces in an Eulerian setting.
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Segmentation; De-noising; Eulerian fluid and solid computation; Image-based modeling; Level 
sets

1. Introduction

Computational modeling of flows in the presence of solid geometries relies on 

representations of these geometries in various forms. The emerging trend in many 

applications, such as in biomedical systems (Dubini et al., 2011; Steinman et al., 2003; 

Antiga et al., 2008), micro-flows in porous media (Lin et al., 2010; Al-Omari and Masad, 

2004; Yue et al., 2003) or in materials modeling (Baer, 2002; Ghosh, 2004) is to reconstruct 

the geometries to be modeled from image data (acquired from in vivo patient data or in situ 

geological sampling, etc.). Imaging modalities can be varied, spanning optical imaging 

(Tytell and Lauder, 2004), ultrasound (Boukerroui et al., 2003; Hovda et al., 2008; Kao et 

al., 1997), MRI (van Pelt et al., 2012; Makowski et al., 2002), and X-ray CT (Cnudde et al., 

2006; Vignoles, 2001). Figures 1 and 2 illustrate several examples of image/video data that 

can be employed to compute fluid/solid dynamics. When 3D or 4D (3D + time) images are 

drawn from these varied sources, a robust pre-processing capability is required to cast the 

geometries in a form that can be used in computational modeling. In particular, images are 

typically polluted with noise of different levels and types (Zhou and Bovik, 2002; Wang et 

al., 2004) depending on the imaging modality. To render these images suitable for 

computations of flows, solid mechanics, or thermal transport, they need to be pre-processed 

before interfacing with a computational mechanics code that is based on finite difference/

finite element or other framework. While the field of processing images to derive geometries 

is extensive (Chan and Shen, 2005), this paper examines available approaches from a 

particular viewpoint, i.e., to choose an approach that delivers the best result that can be 

utilized by an Eulerian fluid/solid mechanics code. As will be shown later, a suitable choice 

depends on a number of factors, including image quality (noise intensity, contrast, 

complexity of the background), desired smoothness of the derived geometry and whether the 

image is stationary or moving.

In broad terms, there are two approaches to computation of flows in or around the presented 

geometries. In the first type the computational mesh conforms to the surfaces defined by the 

modeled geometries; in such body-fitted mesh approaches (Zhang, 2006; Tai et al., 2005) 

volumetric mesh generation is required to fit to the surfaces of geometries (such as fluid 

flow domains, solid objects, etc.). In the second approach, the computational mesh is 

independent of the geometries through or around which flows ensue; this latter case 

corresponds to immersed or embedded boundary approaches (Mittal and Iaccarino, 2005). 

The present paper builds from previous work in which techniques for solving transport 

phenomena in complex domains (with stationary or moving boundaries) were developed in a 
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fixed Eulerian grid framework (Vigmostad et al., 2010; Udaykumar et al., 2009; Marella et 

al., 2005b). The primary advantage of this framework is that the grid on which PDEs are 

solved to calculate transport phenomena is decoupled from the embedded geometries, saving 

the user the rather tedious and onerous task of volumetric mesh generation. The challenge of 

developing techniques for treating the embedded boundaries as sharp entities has been 

addressed in several previous works (Liu et al., 2005; Marella et al., 2005b; Sambasivan and 

Udaykumar, 2011; Udaykumar et al., 2009). In the Eulerian framework it is advantageous to 

represent the embedded geometries in Eulerian fashion as well. This is achieved by means of 

a level set field (Osher and Fedkiw, 2001; Osher and Sethian, 1988; Sethian, 2001), which is 

a signed-normal-distance field that resides on the grid. The zero-contour of this field is the 

embedded boundary. This blend of level set geometry representation and fixed grid transport 

solvers can be advantageously exploited when geometries are delivered from acquired 

images (or video), thus opening up the possibility of circumventing grid generation to 

conform to complex geometries.

Image-based modeling is based on segmentation, which is the process of partitioning an 

image into different regions (Brice and Fennema, 1970; Pal and Pal, 1993). This paper 

examines the application of image segmentation techniques to obtain geometries that can be 

employed in simulations of flows interacting with complex geometries in mechanics, 

materials modeling, and biomedical engineering. The ability to accurately describe material 

properties at the micro- and meso-scales and model the response of the materials to imposed 

loads is desirable in many engineering and scientific disciplines (Yue et al., 2003; Rollett et 

al., 2007). While it is often sufficient to assume homogeneity in materials or assign average 

multiphase properties (as in the mixture formulation approaches) based upon empirical 

observations, the mechanical response of a material to an applied force can depend strongly 

on microstructural details that are missed when such simplifications are made. Examples 

include the initiation of failure at heterogeneities through crack propagation in metals and 

other materials (Zhang and Feng, 2011; Liu et al., 2010; Chen et al., 2006; Duarte et al., 

2001) and the initiation of detonation via localized heat release due to void collapse (Tran 

and Udaykumar, 2006a, b). In these cases, while the micro- and meso-structures are critical 

to the appearance of macro-scale phenomena, the geometric complexity of microstructures 

makes describing them (not to mention computationally modeling their response) difficult, 

particularly in three dimensions. However, emerging image analysis techniques such as X-

ray CT (Ketcham and Carlson, 2001; Al-Omari and Masad, 2004) have opened a path to 3D 

material modeling that requires no a priori assumptions about the shapes and orientations of 

small compositional structures. In biomedical sciences, modeling flows in patient-specific 

geometries (Steinman et al., 2003; Antiga et al., 2008) has emerged as an important effort, 

partly in recognition of the critical role played by biological variability in the response of 

systems. The wide variety of modalities for imaging in vivo geometries makes it challenging 

to deliver these geometries to a computational code for fluid dynamic or structural dynamic 

computations. However, it would be attractive (and useful) to develop a technique to 

seamlessly bridge images to computational geometry, under the unifying framework of level 

set segmentation, and an Eulerian solver for computational modeling of the mechanics of 

fluid and solid materials.
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With this in mind, we seek to develop a framework that achieves image segmentation with 

level set geometric representation (Osher and Sethian, 1988), allowing for complex 

geometries to be modeled in a simple manner as implicit surfaces within a regular Cartesian 

domain. A significant hurdle to cross in establishing this facility is that images from 

different modalities contain different levels (and types) of noise. Figures 1, 2, 3 and 4 

illustrate the types of images that will be processed using the techniques developed in the 

work, showing the variety of noise levels and patterns. Arguably, the “cleanest” images are 

obtained with visible light sources; such images (including video) are typically polluted with 

additive white noise, which can be removed in a fairly straightforward way. On the other 

end of the spectrum, images obtained from ultrasound are imbued with large amplitude 

multiplicative (speckle) noise (Yu and Acton, 2002; Sun et al., 2004; Kremkau and Taylor, 

1986), and X-ray CT images may contain significant scattering, streaking, or ring artifacts 

(Barrett and Keat, 2004). Obtaining satisfactory segmentations of features in the presence of 

various types of noise and processing images to extract geometries that can be used in 

computational modeling thus requires an evaluation of techniques from the arsenal of tools 

developed for image processing. Often, these techniques are specialized to one specific 

modality, or they may stop short of delivering the type and quality of information that is 

useful to modelers. For example, in biomedical applications it may be sufficient to delineate 

a lesion (Karmonik et al., 2009; Kakar and Olsen, 2009; Pollo et al., 2005) or tumor (Venel 

et al., 2008) with limited accuracy measures, such as comparison with “ground truth” 

(Crevier, 2008); typically this latter is a visual segmentation by an expert. For computational 

modeling, however, the geometries reconstructed from the image must possess smooth, 

regular surfaces, and a clear separation of noise from features. This work, therefore, assesses 

state-of-the-art techniques for feature extraction from noisy images provided by various 

modalities, and evaluates these techniques for their ability to deliver geometries suitable for 

computational modeling in an Eulerian framework. Although Lagrangian or body-fitted 

approaches are not considered in this paper, deriving surface descriptions using tessellations 

or NURBS descriptions of surfaces may be considered as extensions of the present work 

(Lorensen and Cline, 1987).

2. Image segmentation

Segmentation is the practice of delineating an imaged scene into distinct groups of objects, 

and is one of the essences of image-based modeling (Oh et al., 2001; Antiga et al., 2008). 

Pixels (or voxels, in 3D) in a digital image are grouped together based on properties like 

brightness intensity or texture, and are partitioned by different labels or by contours 

computed on the image. Many algorithms have been developed to accomplish this, including 

statistical methods (Besag, 1986; Pieczynski, 1992), edge detection (Canny, 1986; Ma and 

Manjunath, 1997; Bellon and Silva, 2002), and region growing (Mumford and Shah, 1989; 

Adams and Bischof, 1994; Chan and Vese, 2001) methods. Here we consider three 

frequently used approaches: active contour evolution (Vese and Chan, 2002), k-means 

clustering (Kanungo et al., 2002; Gibou and Fedkiw, 2005), and adaptive clustering (Pappas, 

1992; Ashton and Parker, 1995). These three approaches are well suited to delivering 

geometries in the form of level set information drawn from image intensity values and have 

been employed in the image processing community to segment images obtained from 
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various modalities. Their relative merits and the quality of geometries delivered needs 

examination, however, to assess which approach works best under what circumstances; in 

this work we examine all three approaches for images acquired from visible light video, X-

ray CT imaging of meso-scale features in different solid materials, and 2D (still images) and 

3D ultrasound images. By critically examining these three approaches, specific 

recommendations are presented on the suitability of the methods for devising a route from 

image to computation.

2.1 Active contour segmentation

Active contours are based on early applications of elastic deformation theory to computer 

vision (Terzopoulos et al., 1987). In this approach modeled surfaces are assumed to 

naturally tend toward shapes that minimize the energy of mismatch between the surface 

contour and an underlying topology. Mumford and Shah (1989) applied this notion to the 

segmentation problem by treating images as approximate representations of physical objects. 

They proposed an energy functional that decomposes an image domain O into piecewise 

smooth regions delineated by a segmentation curve C:

(1)

In Equation (1), which is commonly referred to as the Mumford-Shah (M-S) functional, 

L(C) is segmentation curve length, and λ>0 and μ≥0 are adjustable weighting parameters. 

The first (curve length, or regularization) term ensures that segmentation curves follow 

object boundaries smoothly even in the presence of noise. The second term forces the 

representative function I to approximate the original image intensity Io, and the third term 

constrains the spatial variation of I to be smooth in each segment. This way, an image can be 

decomposed into segments that are discontinuous across their boundaries while maintaining 

smoothness within each region.

Chan and Vese (2001) later incorporated the M-S functional into a framework that segments 

an image into two piecewise constant regions of average intensity rather than piecewise 

smooth regions of slowly varying intensity, eliminating the smoothness constraint in 

Equation (1). They also recast the energy minimization problem in terms of level sets, so 

that segmentation curves could be represented implicitly as zero-level isocontours of a 

signed distance-level set field ϕ embedded in a Cartesian mesh. The level set formulation 

also made possible the addition of a second regularization term restricting the area of a 

segment, along with the original curve length restriction, giving the Chan-Vese (C-V) 

energy functional:

(2)

In Equation (2), μ, v, and λi are weighting parameters and (ϕ) is the Heaviside function of 

level set field ϕ, which C-V approximate in regularized form on a Cartesian mesh with grid 

spacing Δ as:
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(3)

The constants ci in the C-V functional represent the average brightness intensity in each of 

the two segmentation regions i, and are defined as:

(4)

Euler-Lagrange minimization of Equation (2) gives the level set evolution equation:

(5)

with regularized delta function:

(6)

The presence of the delta function restricts level set evolution to the zero-level segmentation 

curve, where ϕ = 0, though Chan and Vese mention that extension to all level sets of ϕ can 

be achieved by replacing δ ∈ (ϕ) with |∇ϕ|. Evolution of Equation (5) proceeds from some 

initial zero level, usually defined as a closed contour with an interior region possessing level 

set values ϕ ≥ 0 and exterior region having ϕ > 0.

2.2 k-Means clustering followed by image smoothing

Gibou and Fedkiw (2005) observed that active contour methods could be made significantly 

simpler and more computationally efficient by pre-processing images with a diffusion 

operation prior to segmentation so that regularization terms could be dropped from the 

segmentation algorithm; furthermore, setting δ ∈ (ϕ) = 1 applies the evolution equation to all 

level sets of ϕ. Extension of the evolution equation to all level sets is attractive because it 

helps to prevent the evolving front from becoming trapped in a local minimum solution, and 

thus reduces sensitivity to initial placement of the segmentation contour. This leads to the 

ODE:

(7)

Gibou and Fedkiw also noted that the evolution of ϕ is itself not of much interest in the case 

of image segmentation; rather, the final segmented (steady-state) result is what is of primary 

importance. It is thus desirable to segment the image in as few steps as possible so that the 

final result can be quickly obtained. To this end they cast Equation (7) within a k-means 

clustering framework (Lloyd, 1982; MacQueen, 1967; Kanungo et al., 2002) by suggesting 

a labeling scheme in which the segmentation field is iteratively updated as:
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(8)

By setting ϕ = ±1 in this way, Equation (7) is equivalent to k-Means, which minimizes the 

sum-of-squares error in each of the segmentation clusters k:

(9)

Labeling the pixels/voxels ϕ = ±1 also allows for rapid computation of the constants ci as:

(10)

While the method proposed by Gibou and Fedkiw was outlined for the specific case of two 

segmented regions, the labeling scheme could be easily modified to allow for extension to 

multiple clusters.

The greatest advantages of the k-Means level set approach are its simplicity and its speed of 

execution. Evolving the C-V formulation given in Equation (5) is restricted by stability 

criteria, so that small time steps on the order of Δt = Δx/ (dϕ / dt)max must be taken in 

updating the evolving contour. k-Means suffers no such restrictions, and we have found that 

in practice the update Equation (8) generally converges within two or three iterations, which 

is consistent with Gibou and Fedkiw's observations.

The main disadvantages are that, due to the absence of built-in regularization, the method 

can produce noisy segments when faced with even a slightly noisy image, and pixel/voxel 

labeling results in pixelated (i.e. “stair-stepped”) regions in place of the smooth segments 

that are produced by active contours. Thus, the image must first be smoothed before the 

algorithm can proceed, and then the segmentation contours must be smoothed once again in 

a post-processing step to eliminate pixelation. This second step is not necessary if the intent 

is to simply process an image for visualization, but if the segmented geometries are intended 

for computation of flows the surfaces must be smooth (at least smooth enough to be resolved 

by the flow mesh). Thus, when k-Means clustering is used for deriving level sets, denoising 

becomes an essential complement to segmentation in order to deliver geometries for 

computation.

In a comparison of various denoising algorithms, including edge-preserving diffusion (Yu 

and Acton, 2002; Sun et al., 2004; Perona and Malik, 1990) and wavelet-based methods 

(Zhong and Sun, 2008), the speckle-reducing anisotropic diffusion (SRAD) method of Yu 

and Acton (2002), and later Sun et al. (2004), was found to produce the best results on the 

present class of images of interest to flow computations. Generally, diffusion-based image 

denoising methods are of the form:

(11)
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with a diffusion coefficient c that can either be constant (isotropic or Gaussian smoothing) 

or a function of some image property such as intensity gradient (anisotropic diffusion). In 

SRAD, c is a function of both the image intensity gradient and the Laplacian of intensity, so 

that regions of large gradient are preserved – unless they are also regions of high curvature, 

in which case they are strongly diffused. The SRAD diffusion coefficient is written in three 

dimensions as:

(12)

with instantaneous coefficient of variation:

(13)

qo (t) is known as the speckle scale function, and is computed as the weighted average 

instantaneous coefficient of variation over the image domain:

(14)

In our implementation of SRAD, discretization and updating following Sun et al. (2004), 

along with their use of symmetric boundary conditions. Even though SRAD was originally 

developed specifically for ultrasound images, which tend to be corrupted by large amounts 

of multiplicative (speckle) noise, we have found it to be quite effective at smoothing while 

preserving important details in images captured using optical and X-ray modalities. It can 

also be applied as a way to smooth pixelated contours generated by the clustering methods, 

which will be demonstrated in Section 3 when we segment various test images. For each 

case in which SRAD was used, diffusion was applied for 100-time steps, which was 

sufficient to approach near steady-state behavior (RMS change in image intensity below 

10 −4) for all of the images tested.

2.3 Adaptive clustering

Pappas (1992) made significant improvements to clustering-based segmentation by 

proposing a multi-level adaptive clustering framework, which we have extended to 3D for 

this study. The method applies Bayes’ theorem to an image signal I composed of x 

segments, so that:

(15)

The a priori probability p(x) indicates the likelihood of a pixel/voxel s belonging to the same 

segmentation region as its neighbors, and the conditional density p(I|x) compares local pixel/

voxel characteristics with those of the different segmentation regions distributed in the 

observed image. By employing a Gibbs Random Field model, Pappas’ algorithm estimates 

the a priori probability as:
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(16)

where Z acts as a normalizing constant. VC (xq) are known as clique potentials, which are 

defined by:

(17)

and summed over the nine-point (2D) or 27-point (3D) neighborhood  of each pixel/voxel 

s. Taken together, these clique potentials are simply a measure of the number of pixels/

voxels in a local neighborhood belonging to the same cluster x, weighted by a parameter β.

The conditional probability density p (I|x) is calculated in a manner similar to k-Means, with 

local values compared to regional characteristics by way of a sum-of-squares error:

(18)

Here the variance of brightness intensity σ2 weights the error between local brightness Is and 

the mean of region xs. Unlike k-Means, however, the mean intensity of each segment xs is 

considered to be a smoothly varying mean field μs, calculated using an interpolation window 

approach outlined in (Pappas, 1992). This smoothly varying field allows for pixels/voxels to 

be compared to the statistics of local regions, making the method more robust to global 

intensity variations. The combined distribution is then:

(19)

Pappas’ algorithm was later modified by Ashton and Parker (1995) to improve the reliability 

of segmentation results on images that are heavily polluted by speckle noise, such as those 

acquired via ultrasound, by allowing for the intensity variance σ2 to be calculated adaptively 

in each region xs, for each window at all levels of resolution:

(20)

Maximizing this probability function is equivalent to maximizing its natural logarithm, so 

that it can be viewed alternatively in terms of an energy minimization function:

(21)
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E(x|I) is minimized using the iterated conditional modes (ICM) approach put forth by Besag 

(1986) and within the adaptive framework presented by Pappas (1992). The complete 

algorithm consists of two iterative loops; an outer loop, which computes σxs and  given 

the current configuration of regions xs in the image, and an inner loop, which executes a 

raster scan update of the pixels/voxels in the image, whereby the regional xs label assigned 

to each pixel/voxel is the one which minimizes the energy function (21). The inner raster 

scan loop is considered converged when the number of updates is less than some inner 

threshold (Tinner = W/2nlev–1 is suggested in (Pappas, 1992)), with adaptive clustering 

window width W and image coarsening level nlev (nlev = 1 is the original image). The outer 

iterative loop is converged when the number of raster scan updates in the inner loop 

becomes smaller than an outer threshold (e.g. Touter = W/10). In (Pappas, 1992) parameter β 

is set to the same value for all levels, but we usually found results to be improved when 

adapting β to increase by some increment Δβ for each level of image refinement as 

suggested by Ashton and Parker (1995). We also examined texture-based and weighted 

adaptive clustering approaches(e.g. Boukerroui et al., 1998, 2003), but found them to be 

computationally expensive without significantly improving performance on the image data 

sets evaluated here.

3. Application of the methods to real image data

The methods described in Section 2 have been applied to images acquired using optical 

cameras, X-ray CT, and 2D and 3D ultrasound. It is difficult to know a priori which 

segmentation method will work best for a given data set given that different modalities will 

produce images with different clarity, contrast, and noise characteristics; thus, the primary 

objective of this work concerns comparing the performance of the different segmentation 

algorithms on the image data we wish to use for modeling.

3.1 2D and 3D imaging data sets

3.1.1 Two-dimensional optical imaging—Optical images, such as those captured by 

CCD- or CMOS-based cameras are used extensively for scientific imaging in applications 

such as particle image velocimetry (PIV) and video imagery of organisms for elucidation of 

the mechanics of their complex motions (Tytell and Lauder, 2004). Visible light images are 

advantageous in that they are intuitive to create and interpret, and the equipment can be 

quite inexpensive compared with that of other imaging modalities. They are also relatively 

easy to control in a manner that yields desirable results from a modeling standpoint. While 

at present most visible light images are limited to two spatial dimensions, emerging 

technologies may produce 3D optical imaging capabilities (Lynch et al., 2012; Belden et al., 

2010; Zhang, 2010).

To test the methods on visible light images, we segmented image frames from video files 

captured during two different experiments shown in Figure 1. The first video sequence was 

of an American eel (Anguilla rostrata) swimming in a water flume (courtesy of Dr Eric 

Tytell) (Tytell and Lauder, 2004), and the second was of a flexible panel plunging in a low-

turbulence uniform flow. The eel video was a reduced-resolution AVI file (260 × 54 pixels), 

with high contrast between the eel and background, but containing significant noise. The 
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panel was cast from polydimethylsiloxane with embedded spanwise ribs to ensure two-

dimensional deformation, and the edge was impregnated with fluorescent paint. Illumination 

with ultraviolet light provided a high-contrast image of the edge of the panel to provide 

boundary conditions for a computational fluid dynamics simulation. The panel video, 

acquired by a consumer video camera in 1080p, was output as a compressed AVI file (360 × 

240 pixels) for segmentation. (The image was cropped to 300 × 120 pixels in Figure 1 to 

highlight the region of interest.)

3.1.2 X-ray CT imaging—The clear advantage X-ray CT holds over visible light imagery 

is its ability to produce true 3D data sets that render otherwise optically inaccessible internal 

structures. In addition to its widespread use in health care, CT scanning has also proved 

useful for geostructural analysis, non-destructive inspection, and other materials-related 

applications (Cnudde et al., 2006). In this work, we consider CT images of three different 

materials composed of microstructural details that would be useful to model in an Eulerian 

approach to examine the effects of shock loading on heterogeneous materials (Baer, 2002): 

an aluminum foam material, concrete, and packed sugar crystals that resemble the material 

matrix found in, e.g., solid combustible propellants and heterogeneous explosives. While the 

three images tested share a common acquisition method, they are not equally amenable to 

segmentation. For instance, the aluminum foam image slices are highly contrasted – it is 

easy to separate material regions from voids via image intensity differences, which is 

evident by visual inspection – but the geometry is also complex and filled with narrow 

filaments that can potentially make segmentation difficult. The concrete images, on the other 

hand, feature rocky structures that are well defined and generally well separated from each 

other, but that are also poorly contrasted from the surrounding material. Finally, the sugar 

crystal images have good contrast and are visually straightforward to interpret, but they are 

noisy and contain crystalline structures that are closely packed together; in fact, the variation 

in pixel intensity due to noise is on the same order as the average intensity difference 

between the crystals and their surroundings, and the noisy patches share the same spatial 

scale with the narrow gaps between crystal structures. As such, the level of difficulty in 

segmenting these images increases in the order in which they are presented, as will become 

clear from the following.

3.1.3 2D and 3D ultrasound images—Portable, relatively inexpensive equipment and 

the facility to acquire 4D (3D + time) data make ultrasound a promising modality for image-

based modeling – particularly in the context of moving boundary problems. Unfortunately, 

ultrasound images also suffer large amounts of speckle noise and other artifacts (e.g. 

attenuation, reverberation) (Kremkau and Taylor, 1986), and thus present their own unique 

challenges to segmentation efforts. In this section we compare the performance of the active 

contour, k-Means, and adaptive clustering methods on two sets of ultrasound images: The 

first is a 2D image of a liver, from the Philips ultrasound image library (Figure 3), and the 

second is a 3D transesophageal echocardiographic (TEE) data set featuring a mitral 

(bicuspid) valve of the heart acquired by one of the authors (HK), provided in 18 slices 

arranged in cylindrical polar coordinates (Figure 4).
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For the mitral valve data set, each slice (samples of which are shown in Figure 4) represents 

a cross-section of the geometry in cylindrical polar coordinates, and 18 slices separated by 

10° increments in the azimuthal (θ) direction comprise the entire image volume. Each slice 

was obtained from 3D TEE data of a patient. (The Committee for the Protection of Human 

Subjects at The University of Texas Health Science Center at Houston has approved this 

study.) The 3D mitral valve geometry (anterior/posterior leaflets and annulus) was obtained 

using a 3D TEE transducer installed on a Philips iE33 ultrasound unit (Philips Medical 

Systems, Bothell, WA). The standard 3D TEE echo protocol was performed to acquire the 

mitral valve geometry.

3.2 Application of image segmentation methods

To save computational time and facilitate analysis, 3D image sets were reduced to 64 × 64 × 

64 voxels prior to treatment by selecting 64 adjacent slices and cropping them identically so 

that a 64 × 64 pixel region remained in the center of each slice. 2D images were either left in 

their original form, or cropped as indicated to isolate regions of interest. All computations 

were performed on a Linux desktop workstation with a single Intel Core i5-2500 3.3 GHz 

CPU and 8 GB RAM. Run times are given in CPU seconds (wall clock time).

Each of the image data sets was segmented using the three methods outlined in Section 2, 

with SRAD smoothing applied to images prior to segmentation as needed. Level set 

contours were initialized as spheres (3D) or circles (2D) centered in the image domain, each 

with a diameter of half the image width:

(22)

In Equation (22), xc denotes the coordinates of the pixel/voxel nearest to the center of the 

image domain, xi is the coordinate of the pixel/voxel for which ϕi is being calculated, and r 

is the radius of the initialization surface or contour. When testing the active contour 

approach, the C-V evolution Equation (5) was evolved from the initialization given by 

Equation (22) on each of the image data sets, with central differencing used to compute 

derivatives. Time steps were incremented as Δt = Δx/ (dϕ / dt)max. Equation (5) was evolved 

to convergence, which was defined the RMS change in ϕ over the image domain falling 

below the tolerance limit ∈ = 10 −5.

k-Means testing followed the straightforward implementation presented in (Gibou and 

Fedkiw, 2005) with updating given by the labeling scheme (8) and convergence defined the 

same way it was using active contours, with tolerance set to ∈ = 10 −5.

Adaptive clustering was tested following the method proposed by Pappas (1992), coupled 

with the automatic variance calculation suggested by Ashton and Parker (1995) when 

segmenting noisy CT and ultrasound images. (This afforded more accurate localized results 

while eliminating the need to assume an intensity variance for the images a priori.) The 

algorithm otherwise proceeded along the lines outlined in (Pappas, 1992): Each image was 

coarsened three levels (decimated by powers of 2) and a minimum overlapping window size 

of W = 8 pixels or voxels in each direction was used. k-Means clustering was performed on 
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the coarsest image level to initialize the segmentation field as the first step. Then the domain 

was divided into overlapping windows of width:  (or 

 in 3D), with ni representing the image dimensions at each level, and 

the variance and mean were computed for each segmentation region xi in each window. The 

mean was then interpolated onto the image pixel/voxel domain to produce a slowly varying 

field. The image size was next refined one level and the process repeated, starting with the 

final result obtained at the coarser-level interpolated onto the refined grid. The minimum 

window size of W = 8 from any coarse level corresponds to W = 16 at the next refined level, 

so that the iterative update procedure takes place on the same number of windows at each 

level once the initial k-Means solution is obtained. Iteration followed the ICM procedure 

proposed by Besag (1986).

Successful segmentation can be sensitive to the choice of parameters for each of the 

methods evaluated. It also depends upon the parameters chosen for SRAD smoothing when 

it is applied to the image intensity or to the segmentation contour as a secondary step. As 

such, varying parameters to achieve desirable results was a large part of the work performed 

for this study.

Active contour evolution is driven by the relative weights of four different parameters; λ1 

and λ2, which bias the contour toward the average brightness value of the inside or outside 

segmentation region, respectively; μ, which weights the curve length penalty applied to the 

boundary; and v, which weights the area occupied by the segmented region. Of these 

parameters, the λi have the greatest influence on the final segmentation result, and have 

values of (1). Small changes in λi were sometimes found to have a large effect on the final 

segment, pushing the contour several pixels/voxels toward the inside or outside of an 

imaged boundary depending on their relative values. The curve length minimizer μ has 

significantly less influence, usually taking values of (10)-(100) before noticeably affecting 

the result. Nonetheless, when given a large enough weight, μ has the effect of minimizing 

curvature in the segmentation contour. This acts to remove tortuosity from the segment, and 

generally further biases closed contours toward the outside of regions they are segmenting in 

an effort to decrease curvature. The second regularization term, which simply adds a 

constant value of v to the evolution formula (and thus speeds up convergence in some 

cases), was found to have little or no effect on the final result and was therefore neglected.

Parameter selection for the k-Means clustering method was straightforward, as there were 

only the two λi brightness weights to choose from. k-Means is essentially a simple threshold 

method, and the brightness coefficients together determine which two average image 

intensity values that threshold will lie between. Like the active contours brightness weights, 

λi were of (1) and small variations sometimes led to significant differences in the final 

segmentation result.

The adaptive clustering approach also required selection of two parameters: the clique 

potential weight β and the incremental change of that weight, Δβ, at each grid resolution 

level. However, unlike parameters in the other two approaches, optimal adaptive clustering 

parameters varied considerably from one image to the next; values for β ranged from (0.01) 
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to (1). Furthermore, the method was sometimes found to be highly sensitive to the value 

selected, with small deviations giving much different results.

Pre-smoothing images with SRAD and smoothing segmentation contours as a secondary 

step further required selection of the variational coefficient weight α in Equation (14), which 

determined how strongly image features would be diffused. In all of the cases outlined in 

this paper, the segmentation results given are those that best matched visual expectations 

after balancing the parameters in several different combinations for each segmentation 

method. The parameters selected for each case are provided in Table I.

After segmentation, a set of points was constructed containing the cell-center locations of 

pixels/voxels adjacent to each segmented interface. In the case of pixelated segments (the 

clustering methods) cell centers were simply assigned distance values of ±Δ/2. For the 

smooth, continuous segments generated by active contours, cell center locations were found 

by triangulation (2D) or marching cubes (3D) (Lorensen and Cline, 1987). The fast 

marching method (Sethian, 1999) was used to construct a narrow-band level set 

representation of each segmentation contour by solving the Eikonal equation:

(23)

with speed function F = 1 and “marching” the solution outward from the initial set of 

interface points. For the clustering approaches, SRAD was applied to the ϕ field in a post-

processing step to eliminate pixelation. In addition to smoothing, this also had the useful 

effect of removing small isolated zero-level contours resulting from noise that was not fully 

eliminated during the initial image denoising step.

A flowchart of the entire image denoising and segmentation process is provided in Figure 5. 

With these implementations in place the three approaches were subjected to tests as detailed 

below.

3.2.1 Analysis of the optical image data—. Each video sequence was segmented 

frame-by-frame with the parameter selections provided in Table I. For the heaving panel 

frames, active contour and k-Means results were found to be relatively insensitive to 

parameter variation due to image smoothness and sharp transition between the panel and the 

background. For the eel video frames, however, the brightness weights were set to bias the 

segmentation contour toward the background's average brightness value. This had the effect 

of pushing the contour outward toward the edge of the gradient region defining the eel's 

boundary, where the pixel values were found to vary more smoothly compared with those 

that lay near the center of the boundary gradient. For active contour evolution, the 

smoothness weight was given a sufficiently large value to mitigate the effect of pixelated 

blocks of image intensity along the eel's boundary, while taking care to not make it so large 

that it would remove desired high-curvature features from the segment (such as the end of 

the eel's tail).

Adaptive clustering segmentation of the optical images needed to be handled differently 

than in other cases, following the original formulation proposed by Pappas (Equation (19)) 

rather than the modified formulation of Ashton and Parker (Equation (21)). This is because 
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the adaptive variance calculation suggested in Ashton and Parker was designed specifically 

for noisy images, which have non-zero local variance values by virtue of the noise they 

contain. However, each of these video examples features a single distinct object and a nearly 

homogeneous background, so variances in many local regions of the image turned out to be 

very small. In fact, the variance is zero in the background of the flexible panel, which leads 

to the first two terms in Equation (21) taking on undefined or very large-magnitude values 

there. Thus for the American eel and flexible panel image frames, an a priori variance had to 

be assigned in order to produce a reasonable segment.

For the active contours and k-Means cases, the eel frames were smoothed with SRAD prior 

to segmenting, and the segmentation contours produced by the cluster-based methods were 

treated again in a secondary smoothing step with SRAD.

3.2.2 Analysis of the X-ray CT data—For this study, 64 slices were chosen from each 

X-ray CT image data set and cropped to 64 × 64 pixels centered within each slice as 

illustrated in Figure 2, then segmented with active contours, k-Means, and adaptive 

clustering. Segmentation results for each of the three image volumes are presented in two 

different ways: Figure 3 shows where segmentation contours intersect an x-y plane near the 

center of the data set making up each image (corresponding to slice 32), and Figure 7 gives 

segmentation results on the faces of each data set volume. These results were obtained using 

the three approaches, namely, active contours (Figures 6(a) and 7(a)); k-Means clustering 

(Figures 6(b) and 7(b)); and adaptive clustering (Figures 6(c) and 7(c)).

3.2.3 Analysis of the 2D and 3D ultrasound data—Testing on the 2D liver 

ultrasound image was performed within a square-cropped 128 × 128 pixel view of a large 

vascular feature (Figure 3), in order to facilitate comparison between the segmentation 

methods and to eliminate contributions to the final segment from the black background 

surrounding the ultrasound viewing area. (This isolation from the background could have 

also been accomplished by restricting segmentation calculations to pixels within the desired 

viewing area.) SRAD was applied to the image before segmenting with active contours and 

k-Means, effectively removing most of the speckle noise. Applying SRAD prior to 

segmenting with adaptive clustering led to problems similar to those encountered with the 

optical images in the previous section, where homogeneity over large portions of the image 

necessitated an a priori variance estimate. Results obtained by applying SRAD and assuming 

a variance value were actually worse than those obtained by segmenting the original image 

using Ashton and Parker's method, thus the latter was chosen. SRAD was, however, applied 

to the segmentation level set contour to eliminate pixelation in both clustering cases.

In order to prepare the mitral valve data set for smoothing and segmentation, the slices were 

first cropped to 64 × 64 pixel windows that were centered horizontally about a registration 

reference line (the green vertical line visible in each slice in Figure 4), so that 32 columns of 

pixels lay to each side of the centerline of the mitral valve geometry. These slices were then 

stored in an array with the z-coordinate representing the vertical component of each image 

slice and the r-coordinate representing the horizontal distance of each pixel's center from the 

mitral valve's centerline. The result was a set of 36 slices separated by θ = 10°, with a height 

of 64 pixels and a radius of 32 pixels (Figure 8(a)). This cylindrical polar intensity 
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information was then mapped onto a regular Cartesian mesh of size 64 × 64 × 64 voxels 

using fourth-order Lagrange interpolation in the r and θ directions, and with linear 

extrapolation in the r-direction used to fill in the necessary information beyond the radial 

range of the cylinder in Cartesian space (Figure 8(b)).

After mapping the image into regular Cartesian coordinates, it was processed in the same 

manner as the other 3D data sets in Section 3.2.2. The image was denoised using 3D SRAD, 

removing much of the speckle noise (as illustrated by isocontours of average gray-level 

intensity before and after applying SRAD in Figure 9). Finally, the image was segmented 

using each of the three methods being evaluated presently. Like in previous cases, 

segmentation contours produced by the clustering methods were smoothed in a secondary 

step using SRAD. However, unlike in previous cases, secondary smoothing was also applied 

to the active contours result. This was done to give a better direct comparison between the 

three methods; capturing undesirable noise was unavoidable with both active contours and 

k-Means (Figure 10(a) and (b)). Only adaptive clustering was able to filter excess noise 

during the segmentation process itself (Figure 10(c)), with SRAD only necessary to smooth 

out the pixelated segmentation contour.

4. Results

Results produced by the three different segmentation methods for each of the test images 

were generally quite different from each other. On one hand this is to be expected, as the 

images all have different levels of contrast and noise, as well as varying degrees of 

complexity within the imaged scene, and the methods all handle these circumstances 

differently. On the other hand, some images that visually appeared as though they should be 

simple segmentation problems for any of the methods turned out not to be straightforward 

for one or more of them, while other, much noisier images gave usable results.

In an effort to understand the types of image properties that may lead to one segmentation 

method or the other producing favorable results, we have characterized the images in terms 

of several different measures relating to their brightness patterns and level of noise 

pollution. Each of the images has been separated into two regions – a brighter region x1 with 

mean brightness intensity μ1, and a darker region x2 with mean brightness intensity μ2. In 

each case, the two regions are delineated by the segmentation contour visually judged to 

have given the best results. The quality of each image was then measured in terms of three 

ratios:

1. the contrast ratio μ1/μ2;

2. a signal-to-noise ratio defined by μi/σi in each region xi; and

3. an overall contrast-to-noise ratio defined by |μ1 μ2|/σ.

These measures are summarized in Table II.

4.1 Images captured in visible light

Both of the optical video sequences feature simple shapes that are well contrasted from their 

backgrounds and free of large amounts of noise, so segmentation was fairly straightforward 
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regardless of the method chosen in that the segments described their intended shape without 

capturing any noise. This was particularly true for the panel frame (Figure 1(e)), which had 

the highest contrast ratio of any of the images evaluated. Both the eel and panel images also 

possessed high contrast-to-noise ratios (Table II). Segmentation results are given in Figure 1 

for both geometries.

In both the eel and flexible panel cases the active contour approach gave a segment that 

closely matches visual expectations without any further manipulation, due to its built-in 

smoothing and regularization. However, because the videos were compressed AVI files 

containing a large amount of pixelation, both the k-Means and the adaptive clustering 

method yielded a coarse representation of boundaries that could not easily be smoothed 

without over-diffusing the edges and eliminating legitimate regions of high curvature from 

the segments, e.g. the end of the eel's tail (Figure 1(c) and (d)). At the other extreme, the 

slight curvature in the flexible panel was resolved well with active contours, but the 

clustering methods represented it as a series of “steps” (Figure 1(g) and (h), highlighted by 

arrows) from which it would be impossible to accurately recover the underlying imaged 

geometry. Thus for both of these video image frames, active contours provided the most 

usable results.

Run times for the three segmentation methods were comparable for the eel video, taking ~2s 

per frame to complete. Run times were somewhat longer for the panel video, taking ~5s per 

frame for k-Means and ~10s per frame for the other methods.

4.2 X-ray CT data

4.2.1 Aluminum foam—The aluminum foam image was also relatively straightforward to 

segment, likely due to its high contrast ratio. The active contour approach segmented the 

aluminum foam volume (Figures 6(a) and 7(a), top row) well from a qualitative perspective, 

giving surface segments that appear similar to the original intensity and segmentation 

contours that closely trace the edges of bright regions on the interior slice. There are a few 

material regions where bright patches that should have been separated were grouped 

together, and a few regions that were missed altogether (indicated by the arrows in Figure 

6), but the overall characteristics of the material were captured. Applying the rapid k-Means 

approach (Figures 6(b) and 7(b), top row) gave segmentation results similar to those 

obtained by active contours, also likely due to the excellent contrast exhibited by the 

aluminum foam image. While some of the contours do not match the object boundaries as 

closely as active contours, k-Means did manage to keep separated some of the bright patches 

that had coalesced under active contour evolution. The results of the adaptive clustering 

approach applied to the aluminum foam are given in Figures 6(c) and 7(c), top row. The 

results are similar to those found with the active contour model, though it was difficult to 

match the smoothness of the active contour boundaries without removing some features in 

the secondary level set smoothing step. Nonetheless, the segments closely match the original 

data set and appear to be the most useful for constructing a representative material model.

Run times for active contours and adaptive clustering were ~20 s, while k-Means took ~15 s 

to segment.
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4.2.2 Concrete—The relatively poor contrast of the concrete volume proved to be more 

problematic (Figures 6(a) and 7(a), middle row) for the active contour approach than in the 

case of the aluminum foam. In fact, the concrete CT has the lowest contrast ratio of any of 

the images evaluated. While some regions were segmented with accuracy, regions near the 

slice edges in particular were not reliably outlined. This is likely due to the fact that the 

overall contrast degrades gradually in the radial direction from the z-axis, which can be seen 

in the original image slice shown in Figure 2(b). This degradation in contrast leads to a 

global intensity variation, which affects the location of the threshold between the average 

intensities of the two segmentation regions. The problem is compounded by the fact that 

small changes in the brightness threshold lead to large changes in the segmentation contour's 

position in regions where the level of local contrast is not sufficient to clearly distinguish 

between objects. Nonetheless, the active contour model may be a good choice if the contrast 

could be enhanced without introducing too much noise. The k-Means method exhibited 

considerable difficulty when applied to the concrete image (Figures 6(b) and 7(b), middle 

row). In the absence of any regularization terms, the combination of noise and lack of 

contrast produced several visible segmentation errors, particularly near x-z and y-z faces as 

indicated by the arrows in Figure 7. The poor contrast appears to have had a particular 

impact in this case, causing segmentation contours to follow the threshold between constant 

region averages ci even where there are no object boundaries visible. On the other hand, 

segments produced by adaptively clustering the concrete image (Figures 6(c) and 7(c), 

middle row) are markedly better than those produced by the other two methods (This is most 

apparent in Figure 7). While a few features were not resolved as well as in the high-contrast 

aluminum foam case, the spatially adaptive nature of the algorithm made it much more 

robust to local degradation of contrast in the already low-contrast image. This is especially 

evident on the x-z and y-z faces of the image volume, where the other methods were 

corrupted by noise and unable to distinguish many of the features. This is also apparent 

when comparing 3D surface isocontours in the interior of the concrete image in Figure 11; 

the adaptive clustering model (Figure 5(c)) is composed entirely of individual rock 

structures in that region, without the noise or coalescence of structures seen with the other 

two methods (Figure 11(a) and (b)). Adaptive clustering was clearly superior to the other 

segmentation methods in this case.

Run times for this case were nearly identical to those encountered previously with the 

aluminum foam data set.

4.2.3 Sugar crystals—The sugar crystal data set was the most difficult of the three to 

segment adequately using any of the approaches. The image volume is corrupted by large 

amounts of noise (note the low overall contrast-to-noise ratio combined with relatively low 

signal-to-noise ratios in each region of the image, Table II), and the gaps between crystalline 

structures share the same spatial scale as the noise variation. It was thus found to be 

impossible to segment individual crystal structures in parts of the image without some of 

them being grouped together in the same segment. Active contours showed the most 

difficulty in this setting (Figures 6(a) and 7(a), bottom row), isolating many small regions 

bounded by the tenuous average intensity threshold. k-Means clustering with SRAD applied 

to the level set field performed better (Figures 6(b) and 7(b), bottom row), mainly because 
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the secondary smoothing served to remove much of the noise that remained after 

segmentation was complete. Otherwise, the results would have looked much like a pixelated 

version of the active contour result. Most notable here was again the adaptive clustering 

segmentation result, which presented a marked improvement over the other methods for the 

sugar crystal image (Figures 6(c) and 7(c), bottom row). Some details have been lost on the 

surface of the image volume, corresponding to slice edges, but interior segments very 

closely match boundaries in the intensity data. This is especially evident in the overlay of 

the segmentation contour onto the image slice at the center of the volume in Figure 6; the 

noisy segments and poorly matched regions have been eliminated altogether. However, the 

grouping of very closely spaced crystal structures still unfortunately proved to be 

unavoidable.

It should be noted here that an effort was made to improve the active contour and k-Means 

results by first applying SRAD to eliminate noise in the CT images prior to segmentation. 

While it did in fact serve to remove much of the noise effectively, particularly that seen in 

the sugar crystals results shown in the bottom row of Figure 6(a) and (b), it also led to more 

individual sugar crystals coalescing in the final result. Overall, the adaptive clustering 

algorithm provided the most useful results out of the three methods applied to the 3D CT 

images, whether directly or after pre-processing with SRAD.

Run times for the three methods were again ~20 s for active contours and adaptive 

clustering, and ~15 s for k-Means.

4.3 2D and 3D ultrasound

4.3.1 2D ultrasound of the liver—Figure 12 shows the results achieved by each of the 

three methods overlaid on the original unprocessed image of the liver. Like the visible light 

images captured in the video sequences in Section 3.2.1, the 2D liver ultrasound image 

features fairly simple geometries that are highly contrasted from their surroundings 

(especially after applying SRAD). The contrast ratio is second only to that of the panel video 

frame, and SRAD smoothing gave the image a favorable signal-to-noise ratio in the lighter 

speckled region as it was designed to. Also like the visible light images, the liver image gave 

the best segmentation results when active contours were used. Active contours (Figure 

12(a)) successfully segmented each of the four primary features of interest – the large 

branching vessel and the three smaller vascular cross-sections – much better than the cluster-

based approaches, with smooth contours that visually appear to follow object boundaries 

closely. By comparison, k-Means clustering missed (Figure 12(b)) two of the three small 

vascular features (indicated by arrows in the figure), and adaptive clustering missed one of 

them. In addition, both k-Means and adaptive clustering segmented regions that are most 

likely attributable to noise as opposed to being desirable features to segment, and adaptive 

clustering segmented one region that should not have been included at all. (This is likely due 

to the homogeneity produced by SRAD smoothing in that region giving small variance 

magnitudes. However, assigning an assumed global variance as in Section 3.2.1 made the 

results worse in this case.) On the other hand, local adaptive clustering statistics (Figure 

12(c)) did help to eliminate some of the tortuosity that was produced by active contours in 

the presence of noise along the boundary of the large branching vessel. Even so, active 
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contours settled on a shape that matches visual expectations more closely than the other 

methods overall. In particular, active contours picked out small features missed by the other 

methods, and it did not segment anything unexpected. Run times for all three methods were 

~1s.

Based on previous and forthcoming 3D results it is possible that the results would be 

different if the liver image were a 2D slice of a three-dimensional set, as the extra brightness 

data provided by adjacent image slices helps to statistically isolate regions of interest and 

diminish segmentation errors through the addition of available information. This is 

particularly true when taking the adaptive clustering approach, since it effectively triples the 

number of data points available to calculate the clique potentials used in the solution 

process. Thus if brightness patterns correlate strongly between two or more image slices, 

they are likely to be interpreted as coherent objects; otherwise they are more likely to be 

interpreted as noise, as will be seen next.

4.3.2 3D ultrasound of the mitral valve—Figure 10 illustrates the segmentation 

contours produced by each method applied to the 3D TEE image of the mitral valve, prior to 

the application of any secondary smoothing operation. It is clear that in this case the 

adaptive clustering method produced the cleanest segmentation due to its built-in ability to 

distinguish coherent structures in the ultrasound image and remove noise using local multi-

level statistical considerations. The three-dimensionality of the image certainly helped this, 

as it provided a 27-point neighborhood for calculating clique potentials in place of a nine-

point neighborhood, and thus gave a good indication of which set a particular voxel 

belonged to.

Predictably, the other two methods produced segmentation results that closely followed the 

isocontours of average intensity shown in Figure 9(b) – just as they are designed to do. In 

the case of the present ultrasound images, with their large levels of noise and poor contrast, 

the active contour and k-Means approaches fail quite dramatically when compared to the 

adaptive clustering approach.

As in previous cases, SRAD was applied to the level set field after it was constructed from 

segmentation contours produced by the clustering-based approaches. In addition, we also 

applied the same secondary smoothing to the active contour result this time, to give a more 

direct comparison. The results for each are illustrated in Figure 13. For both the k-Means 

and active contour results, secondary smoothing removed the noisy patches and provided 

continuous surface descriptions that could be useful from a modeling standpoint. However, 

the independence adaptive clustering gains by considering local statistical averages and 

clique potentials likely makes it more trustworthy in this situation, where the boundary of 

the object of interest is heavily obscured by large-scale speckle noise. Run times for all three 

methods was ~25s.

Figure 14 provides a comparison between the mitral valve segmentation given by adaptive 

clustering and a hand-segmentation of the same cylindrical polar image set. (Note that the 

coordinate directions differ between the adaptive clustering segmentation in Figure 14(a) 

and (b), and the hand segmentation in Figure 14(c) and (d); the z-axis is inverted and the x-y 
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plane is rotated 90°. Coordinates were therefore adjusted in the figures to maintain similarity 

between the two cases.)

Segmentation by hand was performed by fitting smooth lines through regions visually 

identified as being part of the valve leaflet structure, resulting in the zero-thickness 

membrane shown in Figure 14(c) and (d). As such, one of the biggest differences between 

the hand-segmentation and the adaptive clustering results is the presence of structural 

volume in the geometry given by adaptive clustering, which is more accurately 

representative of the physiological valve geometry. It is therefore hoped that mechanical 

simulations based upon realistic geometries of this type will help lend insight into complex 

phenomena that may otherwise be difficult to capture using current techniques.

5. Discussion and conclusions

In this paper we have compared specific implementations of three frequently used 

segmentation methods in the interest of incorporating information from image data into a 

level set framework for generating 3D geometries that can be employed in level set-based 

Eulerian fluid and solid mechanics solvers (Udaykumar et al., 2001, 2002; Marella et al., 

2005a). The different methods evaluated clearly possess their own individual strengths and 

weaknesses – some intrinsic and some dependent upon the properties of the image being 

segmented – and conducting this study has helped lend some insight into their usefulness 

when faced with the task of accurately reconstructing surfaces for the purpose of solid and 

fluid mechanics modeling.

The set of test images used in this study contained varying levels of image contrast, noise, 

length scales of the salient features, and global intensity variation. A high level of apparent 

contrast does not automatically imply greater amenability to segmentation. For example, the 

sugar crystals CT image seems at first glance as though it should be straightforward to 

segment: the crystals in each slice appear bright, and the background appears comparatively 

dark. However, this turned out to be one of the most difficult images to segment out of any 

we tested. Close inspection reveals that the noise level is rather extreme – many of the 

voxels corrupted by noise in each of the regions possess intensity values that are very near to 

the average intensity value of the opposing region to which they do not belong. (This is 

reflected by the signal-to-noise and contrast-to-noise measures in Table II, which are lower 

than in other images evaluated.) As a result, the voxels fall on the “wrong side” of the 

average intensity threshold and are therefore likely to be segmented incorrectly. Unlike true 

speckle noise, which is multiplicative and thus scales with the overall brightness in a given 

region, the noise in this image suffers large fluctuations regardless of the local intensity 

values, making it less responsive to smoothing with SRAD.

5.1 Active contours

Of the three methods investigated here, active contour evolution performs best when given 

an image that exhibits a good contrast ratio and/or contrast-to-noise ratio. Its primary 

strength in comparison to the other two methods is that, since the resulting segmentations 

are continuous in nature, it provides surfaces that are smooth and accurate without further 

manipulation that can lead to errors when the length scale of the image noise is comparable 
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to imaged physical features. Active contours can also handle moderate amounts of noise by 

making use of curve length penalties. This makes it particularly suitable for images captured 

with optical methods where high-quality images can be acquired by refined imaging 

hardware and the illumination can generally be well controlled.

However, piecewise constant methods (active contours and k-Means) work best when it is 

desirable for the segmentation contours to follow closely along the isocontour of average 

intensity in an image; the piecewise constant assumption (which in the end amounts to a 

simple threshold) that underlies active contour evolution is thus limited when faced with less 

ideal test images. For instance, when image contrast is poor (e.g. in the concrete data set), 

the similarity in brightness intensity between an object of interest and its background makes 

the ease with which the two can be distinguished highly sensitive to any noise that might be 

present. Small variations in the signal are therefore often likely to be assigned to the wrong 

segmentation grouping, leading to a result that is at odds with what is visually expected. 

Global intensity variations present in the domain that are independent of the brightness of 

objects being imaged will similarly tend to bias segmentation contours away from their 

expected place, which was also illustrated by the concrete CT results.

5.2 k-Means

For highly contrasted images free of noise, k-Means was attractive because of its speed; 

segments were generally achieved within a couple of iterations. However, it suffered similar 

limitations to active contours, brought about by the piecewise constant approximation, and 

its usefulness was even further limited by the fact that it produced a pixelated result that 

needed to be smoothed in a secondary diffusion operation. In addition it was found to be 

highly sensitive to noise and to contrast variations, and while it sometimes produced 

reasonable results when given a pre-smoothed image to segment, we found that it was often 

difficult to achieve a noise-free result without over-diffusing important details and altering 

the underlying geometry so that it no longer matched the physical characteristics being 

imaged. Thus for modeling purposes k-Means did not generally produce adequate segments 

given the test images contained herein.

5.3 Adaptive clustering

Adaptive clustering performed the best of all the methods when faced with a noisy 3D 

environment. Its consideration of local statistics makes it robust to noise, and global contrast 

variation is handled by a slowly varying mean field in place of an assumption of constancy 

within each segmentation region. The performance of adaptive clustering was particularly 

distinguished when applied to the sugar crystals images and the 3D ultrasound data. Large 

brightness variations due to noise were effectively ignored, giving smooth boundaries that 

closely followed visual expectations. Unfortunately, the sugar crystals were too closely 

spaced in the image to segment correctly with any of the methods; they are in fact difficult 

to distinguish even by visual inspection in some places.

One of the limitations of adaptive clustering is that, like k-Means, it gives pixelated edges 

that must be smoothed prior to use with computational physics algorithms. Adaptive 

clustering also required on the order of ten inner raster scan passes for each of about ten 
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outer iterations to reach convergence on every window at each level, and the updated 

variance and smooth mean field had to be calculated for each of those iterations. All of this 

makes the process relatively expensive. It is also the most sensitive to the choice of user-

input parameters out of the three methods, sometimes leading to a somewhat lengthy trial-

and-error process. Nevertheless, since adaptive clustering was still able to provide useful 

geometries from noisy images that could not be reliably segmented with active contours, the 

extra trouble was a necessary compromise in those cases.

It should also be pointed out that one major advantage of the clustering methods in general 

over active contours is the ease with which they can be extended to include more than two 

segmentation regions. For example, in Figure 2(b) it can be seen that the concrete material is 

composed of three different regions: the rock structures, which are light gray in color; the 

cement matrix, which is dark gray; and voids, which are black. In this work we have only 

considered segmenting into two regions, but clustering affords the ability to segment into an 

arbitrary number of regions by selecting an appropriate labeling scheme. This would be 

especially useful for modeling from images like the concrete, where multiple properties need 

to be assigned to fully capture the physical characteristics of the material.

Ongoing work is focussed on extending the methodology to include more than two material 

types, and then embedding the 3D microstructure level sets into a high-resolution Cartesian 

computational domain and performing simulations of shock loading of these microstructures 

to determine the material response at high strain rates. Work is also underway to simulate 

incompressible fluid flows in 2D around image-based level set geometries derived from 

video. Optical flow (Brox et al., 2004) calculations are used to set boundary conditions, so 

that CFD simulations can proceed directly from segmented video frames without the need 

for any tedious surface mesh generation procedures. In this way we hope to accurately 

depict the kinematics of organisms such as the swimming American eel to better understand 

their performance characteristics, as well as directly replicate the motion of experimental 

devices such as the plunging flexible panel. In the case of the flexible panel, PIV 

measurements can be taken concurrently with video, offering a basis for direct comparison 

between numerical simulations and experimental results. Finally, we ultimately aim to 

simulate flows through a moving mitral valve, by applying the modeling methods outlined 

here to 4D echocardiograph data. Optical flow will again supply velocity boundary 

conditions, giving rise to a completely Eulerian framework that can simulate flows through 

complex image-derived moving geometries on a regular Cartesian mesh.
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Figure 1. 
Top two rows: a single frame of the American eel video. Bottom two rows: a single frame of 

the flexible plunging panel video

Notes: (a) Active contours segmentation; (b) k-means; (c) adaptive clustering; (d) arrows 

indicate portions of the tail that were not properly segmented due to low contrast and 

resolution. Note that adaptive clustering resulted in a narrower segmentation due to the lack 

of biasing toward one side of the body's outline or the other. Bottom two rows: A single 

frame of the flexible plunging panel video; (e) active contours segmentation; (f) k-means; 

(g) and adaptive clustering; and (h) arrows indicate “stair-stepping,” where the clustering 

methods were unable to smoothly follow the slight curvature of the panel
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Figure 2. 
Representative original image slices and cropped volumes from the 3D microstructure data 

sets provided

Notes: (a) Aluminum foam; (b) concrete; and (c) sugar crystals
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Figure 3. 
The liver ultrasound image was cropped to a 128 × 128 pixel region prior to segmentation
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Figure 4. 
A sampling of ultrasound image slices in cylindrical polar coordinates

Note: 18 slices in 10° increments make up the entire set
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Figure 5. 
Flowchart illustrating the image denoising and segmentation process
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Figure 6. 
Segmentation results for aluminum foam (top row), concrete (middle row), and sugar 

crystals (bottom row)

Notes: (a) Active contours: aluminum foam (μ=0.1, v=0.0, λ1=1.0, λ2=1.1), concrete (μ=1.0, 

v=0.0, λ1=1.0, λ2=1.1), and sugar crystals (μ=5.0, v=0.0, λ1=1.0, λ2=1.25); (b) k-means 

clustering: aluminum foam (λ1=1.0, λ2=1.2, post-smoothing SRAD α=0.15), concrete 

(λ1=1.0, λ2=1.2, post-smoothing SRAD α=0.1), and sugar crystals (λ1=1.0, λ2=1.1, post-

smoothing SRAD α=0.2); (c) adaptive clustering: aluminum foam (α=0.05, Δβ=0.01, post-

smoothing SRAD α=0.1), concrete (β=0.001, Δβ=0.001, post-smoothing SRAD α=0.2), and 

sugar crystals (β=0.1, Δβ=0.001, post-smoothing SRAD α=0.3). Arrows and circles 

highlight errors present in each segmentation result
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Figure 7. 
Segmentation results illustrated on the faces of the 3D microstructure image volumes

Notes: Aluminum foam (top row), concrete (middle row), and sugar crystals (bottom row). 

Each was segmented by (a) active contours; (b) k-means; and (c) adaptive clustering. 

Arrows and circles highlight segmentation errors
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Figure 8. 
Cropped image slices in cylindrical polar coordinates

Notes: (a) Are interpolated onto a regular Cartesian mesh; (b) for segmentation
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Figure 9. 
Noise in the original ultrasound image, illustrated with the average image intensity 

isocontour

Notes: (a) Was reduced using SRAD; (b) prior to segmentation
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Figure 10. 
3D ultrasound mitral valve segmentation results prior to secondary smoothing with SRAD

Notes: (a) Active contours; (b) k-means; and (c) adaptive clustering
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Figure 11. 
Close-up views of the interior region of the concrete data set

Notes: (a) Active contours; (b) k-means; and (c) adaptive clustering
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Figure 12. 
2D liver ultrasound segmentation results

Notes: (a) Active contours; (b) k-means; (c) adaptive clustering. Arrows highlight 

segmentation errors
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Figure 13. 
3D ultrasound mitral valve segmentation results after secondary smoothing with SRAD

Notes: (a) Active contours; (b) k-means; and (c) adaptive clustering
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Figure 14. 
Two views of the mitral valve segmented with adaptive clustering (a, b), compared with a 

finite element surface constructed by hand-segmentation (c, d)
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Table II

Characterization of image quality

Without SRAD With SRAD

μ/σ μ/σ

Image μ 1 μ 2 μ1/μ2 x 1 x 2 ∣ μ1 − μ2 ∣

σ

x 1 x 2 ∣ μ1 − μ2 ∣

σ

Optical

Eel 220.17 124.27 1.77 31.62 5.02 6.88 38.36 5.08 7.11

Panel 71.96 4.23 17.01 3.40 4.97 5.13 – – –

X-ray CT

Al foam 223.17 27.60 8.09 5.45 0.60 1.90 – – –

Concrete 89.11 59.40 1.50 8.88 5.34 1.68 – – –

Sugar crystals 163.03 69.31 2.35 5.17 2.32 1.71 – – –

Ultrasound

Liver 106.04 9.71 10.92 4.74 0.60 2.27 8.47 0.63 2.46

Mitral valve 197.28 90.78 2.17 4.64 2.71 1.96 5.31 3.65 1.99

Notes: Each image is separated into two regions – a brighter region x1 with mean brightness intensity μ1, and a darker region x2 with mean 

brightness intensity μ2. The two regions are delineated by the segmentation contour judged to give the best results in each case: active contours 

with SRAD pre-smoothing for the optical images and 2D liver ultrasound image, and adaptive clustering for the others. (SRAD pre-smoothing was 
also used for the 3D mitral valve ultrasound image.) Image quality is measured in terms of contrast ratio μ1/μ2, the signal-to-noise ratio μ/σ in each 

region, and the overall contrast-to-noise ratio |μ1 – μ2|/σ

Eng Comput (Swansea). Author manuscript; available in PMC 2015 March 06.


