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Abstract

The prevalence of diabetes mellitus and obesity continues to increase globally. Diabetic vascular 

complications are the main chronic diabetic complications and associated with mortality and 

disability. Angiogenesis is a key pathological characteristic of diabetic microvascular 

complications. However, there are two tissue-specific paradoxical changes in the angiogenesis in 

diabetic microvascular complications: an excessive uncontrolled formation of premature blood 

vessels in some tissues, such as the retina, and a deficiency in the formation of small blood vessels 

in peripheral tissues, such as the skin. This review will discuss the paradoxical phenomena of 

angiogenesis and its underlying mechanism in obesity, diabetes and diabetic complications.

1. Introduction

Diabetes mellitus (DM) is a metabolic disease and is characterized by high serum glucose 

levels with the symptoms of polyuria, polydipsia and polyphagia. Type 1 diabetes mellitus 

(T1DM) and type 2 diabetes mellitus (T2DM) are the main types of diabetes mellitus. 

T1DM is caused by the loss of pancreatic beta cells, which leads to insulin deficiency. 

T2DM is characterized by insulin resistance or accompanied by relative insufficient insulin 

[1]. With the changes of lifestyle and increased obesity, DM case numbers worldwide rose 

from 153 (127–182) million in 1980, to 347 (314–382) million in 2008, and 90% of the 

cases were T2DM [2]. It is conservatively predicted that, as the result of overweight, obesity 

and increasing life span, approximately 429–552 million people globally will have diabetes 

by 2030 [3, 4]. When the body mass index exceeds 30 kg/m2, people are considered having 

obesity [5]. The epidemiology study showed that people with obesity have significantly 

increased risk of diabetes [6]. Therefore, T2DM has been termed as the complication of 

obesity [7].

DM can result in disorders of different organs, which are defined as diabetic complications. 

Diabetic ketoacidosis and coma are lethal acute complications [1]. Diabetic vascular 

complications due to chronical exposure to hyperglycemia are the main chronic diabetic 

complications and associated with mortality and disability. Macrovascular abnormalities and 

microvascular abnormalities are two main groups of diabetic vascular complications. 
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Macrovascular abnormalities, including myocardial infarction and cerebrovascular disease 

are associated with the damage in arteries. Microvascular abnormalities affects small blood 

vessels, and include diabetic retinopathy (DR), nephropathy and neuropathy [8].

Formation of new blood vessels includes angiogenesis [9], which refers to the formation of 

new capillaries from proliferation of existing endothelial cells, and vasculogenesis [10], 

which refers to de novo blood vessel formation from endothelial progenitor cells. 

Physiological angiogenesis is only triggered in reproduction of endometrium, wound healing 

and the placenta morphogenesis during pregnancy in adult. Persistent, uncontrolled 

angiogenesis is a key pathological characteristic of cancer and microvascular complications 

of diabetes. It is known that angiogenesis is regulated by a counter balance between 

endogenous angiogenic stimulators and angiogenic inhibitors [9] (Fig. 1). When the 

angiogenic stimulators predominate, such as vascular endothelial growth factors (VEGFs) 

[11, 12] and erythropoietin (EPO) [13, 14], endothelial cells proliferate and migrate, leading 

to angiogenesis. When angiogenic inhibitors are dominant, such as pigment epithelium-

derived factor (PEDF) [15, 16], kallistatin [17] and thrombospondin-1 (TSP-1) [18], 

angiogenesis is suppressed and eventually arrested. The angiogenic balance is a regulator of 

angiogenesis by directly targeting vascular endothelial cells and is modulated by multiple 

factors, such as hyperglycemia-induced oxidative stress, cytokines and inflammatory 

factors. There are detailed reviews regarding the mechanisms for angiogenesis in diabetic 

complications [19, 20] and the interaction between adipose tissues and angiogenesis [21, 

22]. However, in diabetes, there are two tissue-specific paradoxical changes in small blood 

vessels in diabetes; one is excessive, uncontrolled formation of premature blood vessels in 

some tissues such as the retina, which is an important pathological feature in proliferative 

diabetic retinopathy (PDR). The other is the deficiency in the formation of small blood 

vessels in peripheral tissues such as the skin, which contributes to the impaired wound 

healing in the skin. Here we review the paradoxical phenomena of angiogenesis and its 

underlying mechanism in diabetes, diabetic complications and obesity.

2. Paradoxical angiogenesis in patients with diabetes

DR is a most common microvascular complication of diabetes. DR has two stages, 

dependent on the absence or presence of retinal neovascularization. One is non-proliferative 

diabetic retinopathy (NPDR) which lacks abnormal retinal angiogenesis. Microaneurysms 

and intraretinal hemorrhages are the major pathological changes in patients with NPDR. 

Based on the severity of microaneurysms and intraretinal hemorrhages, NPDR is classified 

into mild NPDR, moderate NPDR and severe NPDR [23]. Severe NPDR increases the risk 

of PDR from 5% in mild NPDR to 52% within 1 year, and to 60% of high risk PDR in 5 

years [24]. PDR is characterized by pathological retinal angiogenesis accompanied by 

vitreous hemorrhage or subhyaloid hemorrhage. PDR is the major cause of retinal 

detachment and vision loss in patients with diabetes. Although laser photocoagulation has 

side-effects, it remains a standard major treatment of PDR [23]. However, according to the 

mechanism underlying retinal angiogenesis in PDR, anti-VEGF therapy obtained achieved 

encouraging effects recently and may become a major therapy of PDR [25–30].
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Impaired wound healing is also referred to as chronic wound including slow healing of 

wound and non-healing wound. Diabetes is one of the major reasons of impaired wound 

healing [31, 32]. The prevalence of foot ulcers due to impaired wound healing is predicted to 

be 25% in diabetic patients [33, 34]. Twelve percent of patients with foot ulcer may 

eventually need amputation. However, the ulcer recurrence rate is 50% in the contralateral 

limb within 5 years and the 5-year survival rate is only 50% after the lower extremity 

amputation [34]. Hyperglycemia-induced reactive oxygen species generation is crucial for 

impaired wound healing [35, 36]. Re-epithelialization and angiogenesis are two essential 

steps in wound healing. Angiogenesis starts at the 3rd day after wounding [37–39]. Wound 

healing is delayed in the presence of high levels angiogenic inhibitors [40, 41], and 

promoted by local administration of VEGF [42, 43]. Multiple growth factors and cytokines, 

such as VEGF, Fibroblast growth factor (FGF-2) and Platelet-derived growth factor 

(PDGF), released by keratinocytes, fibroblasts, endothelial cells, macrophages and platelets 

are involved in wound healing and reduced in diabetic wound [44]. Nitric oxide (NO) is 

essential for wound healing, which can trigger the mobilization of bone marrow endothelial 

progenitor cells [44, 45] and mediating the induction of VEGF by growth factors or 

cytokines in keratinocytes and in wound repair [46]. However, the detailed mechanism of 

reduced growth factors and cytokines in diabetic wound remains unclear. Enhanced 

depositions of basement membrane-like materials and pericyte detachment are observed in 

the buttock skin of the patients with long standing juvenile diabetes [47], suggesting that 

abnormal structure of the skin and blood vessel may be associated with the impaired wound 

healing in DM.

3. The mechanism underlying abnormal angiogenesis in diabetes

VEGF is a well-studied key angiogenic stimulator, which promotes proliferation and 

migration of endothelial cells, and increases permeability of blood vessels via binding with 

the VEGF receptors, and then activating extracellular signal-regulated kinases 1 and 2 

(ERK1/2), Src and phosphatidylinositoI-3-kinase/protein kinase B (Pl3K/Akt) pathways 

[48]. VEGF also promotes wound healing in diabetic animal models through mobilizing and 

recruiting bone marrow-derived cells [42]. Anti-VEGF therapies have shown impressive 

beneficial effects on PDR, which suggests a central role of VEGF in DR [23, 26–30]. 

Vitreous levels of VEGF are dramatically increased in patients with DR [49–61], which is 

generated and secreted mainly by retinal Müller cells [62–64]. Changes of the circulating 

VEGF levels in DM are controversial. Some groups reported that serum VEGF levels are 

significantly increased in both T1DM and T2DM patients, compared with the control group, 

and positively correlated with the severity of diabetic complications [49, 65]. The data 

showed that, in patients with severe diabetic complications, serum VEGF levels are higher 

than in diabetic patients without complications. Furthermore, serum VEGF levels are 

significantly decreased with an intense control of the blood glucose. However, it was 

reported that there was no significant change in serum VEGF levels between diabetic group 

and control group [66]. Future well-designed studies with large case numbers are required to 

confirm the changes of serum VEGF levels in DM. In diabetic mice, VEGF mRNA levels in 

non-wounded skin are elevated compared to non-diabetic mice, which are significantly 

decreased to an undetectable level at the 5th day after wounding following a transient 
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increase. However, the 5th day after wounding is the peak of VEGF levels in wound healing 

in non-diabetic control animals [67]. Diminished protein levels of VEGF and other growth 

factors were also observed in the wound healing of streptozotocin-induced T1DM mice [68]. 

Topical VEGF administration promotes the wound healing in diabetic animals [42, 43], 

indicating that the decreased VEGF levels contribute to the impaired wound healing in 

diabetes. The mechanism responsible for the decreased VEGF expression in the skin 

diabetic models is not known.

PEDF is a secreted glycoprotein and a member of the serine proteinase inhibitor (serpin) 

superfamily, which was originally isolated from culture medium of retinal pigment epithelial 

cells [69]. PEDF has multiple functions including induction of neuronal differentiation [70], 

neurotrophy [71], anti-cancer [72], enhancing renewal of stem cells [73, 74], anti-

inflammation [75, 76], and anti-angiogenesis [16]. PEDF is also identified to regulate lipid 

metabolism and insulin resistance through increasing serum levels of free fatty acid [77]. 

PEDF is a potent angiogenesis inhibitor which directly targets endothelial cells by inducing 

apoptosis of endothelial cells and regulating the angiogenic balance by down-regulating 

VEGF and blocking the binding of VEGF with the VEGF receptors. As an important 

component of the angiogenic balance, vitreous levels of PEDF in patients with PDR are 

significantly decreased compared with those of NPDR group or non-diabetic control group 

[61, 78, 79]. In an ischemia-induced retinal angiogenesis model, the retina develops more 

sever retinal angiogenesis in PEDF knockout mice, and ameliorated angiogenesis in PEDF 

transgenic mice over-expressing PEDF [80], indicating the potential therapeutic effect of 

PEDF in PDR. Interestingly, circulating levels of PEDF demonstrate opposite changes. 

Several groups including us have reported that serum PEDF levels are significantly 

increased in patients with T1DM [81, 82] and T2DM [83, 84]. The elevated PEDF levels are 

positively associated with body mass index, lipid levels and vascular dysfunction [83]. The 

elevated serum levels of PEDF are also found in patients with obesity [85] and metabolic 

syndrome [86] and in T2DM animal models [40, 87]. We have demonstrated that blocking 

PEDF activity by a neutralizing antibody or knockout of PEDF significantly improved the 

skin wound healing in T2DM animal models through promoting angiogenesis in the wound 

[40]. PEDF was shown to down-regulate VEGF expression through inhibiting the nuclear 

translocation of HIF-1α and mitogen activated protein kinase phosphorylation [88]. 

Therefore, the elevated serum PEDF levels in DM may contribute to the down-regulation of 

VEGF in the skin, leading to delayed wound healing. However, the mechanism responsible 

for the decreased PEDF levels in the retina and elevated PEDF levels in the circulation is 

presently unknown.

Kallistatin is another secreted member of the serpin superfamily and is expressed in most 

tissues in humans [89, 90]. It has displayed potent anti-angiogenic activities [17, 91–93]. 

Ischemia-induced retinal neovascularization is significantly ameliorated in mice over-

expressing kallistatin compared with that in wild-type mice [91]. Over-expression of 

kallistatin significantly ameliorates retinal vascular leakage, leukostasis, and over-

expression of VEGF in a T1DM model [91], which demonstrates anti-angiogenic and anti-

inflammatory effects of kallistatin in DR. Our previous studies have reported that kallistatin 

levels are decreased in the retina of a T1DM model and in the vitreous from patients with 

PDR [94]. However, serum kallistatin levels were recently found to be increased in diabetic 
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patients with complications [95]. There is no difference in the serum kallistatin levels 

between non-diabetic controls and diabetic patients without complications, indicating that 

elevated systemic levels of kallistatin are associated with diabetic complications [95]. To 

establish the role of elevated circulating kallistatin levels in peripheral angiogenesis 

deficiency, murine skin wound healing assay was used. As expected, kallistatin over-

expression alone delays wound closure and reduces angiogenesis in the wound area, 

compared with wild-type mice. Consistently, the expression and secretion of VEGF are 

significantly inhibited in kallistatin transgenic mice [41]. Meanwhile, over-expression of 

kallistatin leads to changes in skin structure and histology, characterized by thinner 

panniculus adiposus layer, lower microvascular density and decreased density of hair 

follicles, similar to the skin changes in diabetic patients [41]. It is likely that the skin wound 

healing delay and skin histology changes in mice over-expressing kallistatin may be through 

inhibition of the Wnt signaling pathway [41].

Hyperglycemia-upregulated expression of VEGF is mediated by a number of signaling 

pathways or proteins. VEGF levels are regulated at three levels: the transcriptional level, 

translational level [96] and posttranslational level [97, 98]. Here, we mainly discuss the 

regulation of VEGF transcription. The 5′-flanking region of the VEGF gene contains a 

number of transcription factor-binding sites for specific protein-1/3 (Sp1/3), signal 

transducer and activator of transcription-3 (Stat3), hypoxia-inducible factor-1 (HIF-1), 

activator protein-1 (AP-l), activator protein-2 (AP-2), early growth response protein 1 

(Egr-1), T-cell factor (TCF) and others [99–103] (Fig. 2). Although, only the mouse VEGF 

promoter contains a consensus NF-κB-binding site [104], NF-κB is essential for up-

regulating the expression and secretion of VEGF in human cells especially in cytokines-

induced VEGF generation, possibly by binding to consensus NF-κB-binding sites or 

regulating activities of AP-1 or p53 [105–109]. NF-κB is a crucial intracellular 

inflammatory regulator and plays key roles in both impaired wound healing and retinopathy 

in diabetes [110–112]. HIF-1 is a well-studied transcription factor in driving VEGF 

expression under hypoxia. The role of HIF-1 in angiogenesis regulation is well reviewed 

recently and will not be discussed here [48, 113]. Another signaling pathway regulating 

VEGF under hyperglycemia is the canonical Wnt pathway which contributes to the 

development of retinal neovascularization. Wnts are secreted glycoproteins rich of cysteine. 

Wnts regulate gene expression and participate in regulating metabolism, development, 

carcinogenesis and inflammation by binding to a receptor complex comprised of frizzled 

(Fz) receptors and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6) [114]. 

Wnt binding with Fz-LRP5/6 leads to the stabilization of β-catenin, a down-stream effector 

of the canonical Wnt pathway. β-catenin is translocated into the nucleus and regulates the 

transcription of target genes such as VEGF [115, 116]. The canonic Wnt pathway is 

aberrantly activated in DR as shown by increased protein levels in both total and nuclear 

levels of β-catenin and phosphorylated LRP5/6, compared with those in non-diabetic group 

[117, 118]. Inhibition of the Wnt pathway by a specific inhibitor or a neutralization antibody 

against LRP6 dramatically ameliorates retinal neovascularization in DR animal models, 

suggesting that the over-activation of the canonic Wnt pathway plays a crucial role in DR 

[118, 119]. The canonic Wnt pathway is essential for maintaining the morphogenesis of hair 

follicles, and regulating wound healing through inducing the differentiation of epithelial 
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cells and promoting the skin stem cell migration [120–122]. Our recent study has shown that 

suppressed Wnt signaling in wounded skin is responsible, at least in part, for the deficient 

wound healing in a diabetes model. Several endogenous anti-angiogenic factors such as 

endostatin [123], PEDF [80] and kallistatin [91] have been shown to function as inhibitors of 

Wnt signaling. Over-expression of kallistatin alone is sufficient to inhibit Wnt signaling and 

wound healing. The wound healing delay can be reversed by topical administration of 

lithium chloride, a down-stream activator of Wnt signaling [41]. Similarly, PEDF deficiency 

results in more prominent activation of the canonic Wnt pathway in ischemic retina [80]. 

These observations suggest that Wnt signaling plays a key regulatory role in angiogenesis in 

diabetes. Modulation of Wnt signaling likely represents a unifying mechanism for the anti-

angiogenic activities of some endogenous angiogenic inhibitors.

4. Angiogenesis in adipose tissue of obesity

Adipose tissue is composed of adipocytes, preadipocytes, vascular cells, fibroblasts and 

immune cells. In healthy adults, white adipose tissue (WAT) constitutes 20% (in man) or 

25% (in woman) of body weight. Angiogenesis promotes adipogenesis through multiple 

mechanisms, such as transporting the nutrients, cytokines, and stem cells to adipose tissues 

and removing waste generated by the adipocytes (for the detailed mechanisms, please refer 

to another review [124]). Angiogenic inhibitors, such as angiostatin, endostatin, TNP-470 

and thalidomide were identified to reduce body weight of ob/ob mice, a genetic model of 

obesity, without adverse effects, and specifically target capillary endothelial cells but not 

preadipocytes [125]. Meanwhile, TNP-470, a blocking antibody against VEGFR2, and 

MMP inhibitors significantly reduced body weight in the mice with diet-induced obesity or 

ob/ob mice [126–130]. The molecular mechanisms are unknown. These preclinical studies 

indicated that angiogenesis could be a therapeutic target of obesity. The safety of inhibition 

of angiogenesis in obesity therapy has been well discussed [131]. However, adipose tissue is 

classified into brown adipose tissue (BAT) and WAT. Different from WAT which functions 

as a storage of lipid and energy, BAT is essential for regulating temperature of important 

tissues or organs and non-shivering thermogenesis [132]. Higher capillary density is found 

in BAT, compared with WAT [124, 133]. Angiogenesis promotes the energy expenditure in 

BAT, which results in the fat loss [131]. The function or activity of BAT is reduced in 

obesity [134–136]. Scientists expected to treat obesity through activating BAT, transplanting 

BAT or stimulating stem cells to differentiate into brown adipocytes [137]. Although BAT-

related studies in obesity are in the early stage, the effect of anti-angiogenic agents on BAT 

activity cannot be ignored in the treatment of obesity. Further studies are needed to solve the 

paradox between BAT and WAT in the anti-angiogenic therapy of obesity.

Many studies have identified that WAT is not only a tissue in energy storage, bu also an 

important endocrine organ to produce and secret hormones (such as leptin and estrogen), 

cytokines (such as TNFα) and growth factors (such as VEGF and PDGF) [138]. The 

inflammation in WAT characterized by macrophage filtration contributes to the chronic 

inflammatory state of obesity [139]. Further study has identified that the hypoxia of adipose 

tissue (ATH) results in adipose inflammation [140]. The mechanisms of ATH are related to 

the reduction of capillary density and blood flow. Reduced capillary density could be a 

reason for the decreased blood flow in obese adipose tissues. Moreover, there are several 
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mechanisms underlying the reduced blood flow of adipose tissues (please refer to reviews 

[141, 142]). Here we mainly discuss the reduced capillary density in WAT in obesity.

Reduced capillary density was reported in adipose tissues of obese humans and obese animal 

models, compared with lean subjects or animals [143–149]. In obese subjects, capillary 

density is decreased in both visceral and subcutaneous adipose tissues, and there is no 

difference between those depots [143, 144]. Accompanied with the reduced capillary 

density, numbers of larger vessels (with α-smooth muscle actin expression) and levels of 

collagen V expression are significantly increased in adipose tissues, indicating that 

extracellular matrix might be involved in the angiogenesis defect of adipose tissues [149]. A 

decreased mRNA level of VEGF was reported in subcutaneous adipose tissues in 

overweight/obese subjects versus lean subjects, which is strongly correlated with capillary 

density [146]. Adipose-specific ablation of VEGF contributed to lower adipose vascular 

density, increased adipose hypoxia and inflammation. Mice with adipose-specific 

overexpression of VEGF showed increased adipose vascular intensity, ameliorated adipose 

hypoxia and inflammation, suggesting that reduced angiogenic stimulators contributes to the 

deficiency of angiogenesis in obesity and adipose inflammation [150]. However, most 

results of the in vitro studies are not consistent with the in vivo study. VEGF is upregulated 

in cultured adipocytes or cultured adipose tissues from obese subjects in 1% oxygen [143, 

151–153]. One possibility is that the hypoxia in adipose tissues corresponds to 3.8% oxygen, 

which is not as low as 1% oxygen, and might not be enough to drive the responses to 

hypoxia [146]. Adipose tissues also generate endogenous angiogenic inhibitors [77, 154]. 

PEDF, angiostatin, endostatin, and TSP-1 are increased in overweight/obese subjects or 

animal models of obesity [40, 84–87, 155]. There is no difference in adipose tissue 

development between TSP-1 deficient mice and control wild-type mice after high-calorie 

diet feed [156]. It is presently unclear whether TSP-1 contributes to the reduced capillary 

density and the hypoxia of adipose tissue in obesity. As a potent angiogenic inhibitor with 

multiple functions, elevated PEDF contributes to the obesity and insulin resistance. 

Adipocyte-specific PEDF transgenic mice (PEDF-aP2 mice) showed an increased adipocyte 

lipolysis compared with wild-type mice, confirming the effect of PEDF in regulating lipid 

metabolism. However, WAT-derived PEDF overexpression has no effect on the adipose 

vascularization, hypoxia and adipose inflammation in normal condition or after high-calorie 

diet [157]. There is no difference in glucose and insulin tolerance between PEDF-aP2 mice 

and control mice [157]. Overexpression of PEDF in adipocytes cannot increase serum levels 

of PEDF [157], indicating that adipocytes-derived PEDF is unlikely the source of the 

increased serum PEDF in obesity. This study raised questions to be addressed: 1) WHERE: 

which tissue is the source of the increased serum PEDF in obesity? 2) HOW: what is the 

molecular mechanism for the increased levels of PEDF in obese adipose tissues? 3) WHEN: 

when is the elevated serum PEDF generated and secreted, and do the PEDF increases in 

adipose tissues contribute to the angiogenic defect in obesity or the development of obesity 

complications, such as impaired wound healing in T2DM? The role of angiogenic inhibitors 

in angiogenic defect of obesity warrants further investigation.
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5. Conclusion

Diabetic patients with PDR have a disturbed balance between angiogenic stimulators and 

angiogenic inhibitors. These patients display excess and uncontrolled angiogenesis in the 

retina correlating with the increased pro-angiogenic factors:anti-angiogenic factors ratios in 

the retina and vitreous. However, these patients have deficient angiogenesis in the peripheral 

tissues including the skin, which is ascribed, at least in part, to the elevated levels of 

angiogenic inhibitors in the circulation and in the skin. The mechanism responsible for the 

differential changes of angiogenic inhibitor levels remains to be studied. Understanding of 

this regulation may contribute to the development of new treatment strategies for diabetic 

complications. Circulation levels of angiogenic inhibitors may also become biomarkers to 

predict DR or its progression. Appropriate angiogenesis is essential for homeostasis of 

adipose tissues. Angiogenic defect contributes to hypoxia of adipose tissues, which results in 

adipose inflammation in obesity. Angiogenic stimulators could promote angiogenesis and 

ameliorate tissue hypoxia and inflammation in obese adipose tissue. Angiogenesis is 

required for the growth or expansion of WAT in obesity, and thus, might be a therapeutic 

target for obesity.
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Fig. 1. 
The disturbed angiogenic balance in impaired wound healing in diabetes and diabetic 

retinopathy. Diabetic retinopathy is the result of over-production of angiogenic stimulators 

and reduced angiogenic inhibitors in the retina; impaired wound healing in diabetes is the 

consequence of elevated systemic levels of angiogenic inhibitor and reduced angiogenic 

stimulator levels. VEGF vascular endothelial growth factors; EPO erythropoietin; WNT the 

wingless-type MMTV integration site; PEDF pigment epitheliumderived factor; TSP-1 

thrombospondin-1.
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Fig. 2. 
Signaling pathways in the regulation of VEGF transcription. Signaling pathways, related 

transcription factors of VEGF and the corresponding response elements in the VEGF 

promoter are summarized. Sp1 specific protein-1; Stat3 signal transducer and activator of 

transcription-3; HIF-1 hypoxia-inducible factor-1; AP-1 activator protein-1; AP-2 activator 

protein-2; NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells; TGF-β 

transforming growth factor beta; MAPK Mitogenactivated protein kinases; NO Nitric oxide; 

EGF Epidermal growth factor; PDGF Platelet-derived growth factor; IL-6 Interleukin 6; 

WNT the wingless-type MMTV integration site; TCF T-cell factor.
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