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Abstract

Interleukin-2 (IL2) and IL15, members of the 4α-helix bundle family of cytokines, play pivotal 

roles in the control of the life and death of lymphocytes. Although their heterotrimeric receptors 

have two receptor subunits in common these two cytokines have contrasting roles in adaptive 

immune responses. The unique role of IL2 through maintenance of fitness of regulatory T cells 

(Treg) and activation-induced cell death (AICD) is the elimination of self-reactive T cells to 

prevent autoimmunity. In contrast to IL2, IL15 is dedicated to the prolonged maintenance of 

memory T-cell responses to invading pathogens. Blockade of IL2 and IL15 using monoclonal 

antibodies has been reported to be of value in the treatment of patients with leukemia, autoimmune 

disorders and in the prevention of allograft rejection. IL2 has been approved by the FDA for the 

treatment of patients with malignant renal cell cancer and metastatic malignant melanoma. 

Clinical trials involving recombinant human IL15 given by bolus infusions have been completed, 

and by subcutaneous and continuous intravenous infusions are underway in patients with 

metastatic malignancy. Furthermore, clinical trials are being initiated that employ the combination 

of IL15 with IL15Rα+/− IgFc.

Introduction

The immune system is dedicated to a series of goals including the generation of a rapid 

innate and adaptive immune response to invading pathogens, the elimination of autoreactive 

T cells to generate tolerance to self, and the maintenance of specific memory responses to 

pathogens. Such immune responses are normally regulated by cytokines. The cytokines that 

share the common gamma-chain (γc) among their receptor subunits including interleukin-2 

(IL2), IL4, IL7, IL9, IL15 and IL21, play dominant roles in the regulation of immune 

responses (1, 2). Interleukin-2 and interleukin-15 have particularly pivotal roles in the 

control of the life and death of lymphocytes (3). In addition to the common γc, the 

heterotrimeric receptors for IL2 and IL15 share another subunit referred to as IL2/IL15Rβ 
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(also known as IL2Rβ, CD122) (4, 5). Furthermore, the high-affinity forms of IL2R and 

IL15R contain a third cytokine-specific receptor α subunit IL2Rα (CD25) or IL15Rα 

(CD215), respectively (6, 7) (Figure 1). Additional structural data showed that the signaling 

complexes they form are topologically nearly identical (8). In light of the common receptor 

components and the fact that IL2 and IL15 signaling pathways also share JAK1 (Janus 

Kinase 1), JAK3 and STAT3/5 (signal transducer and activator of transcription 3 and 5) 

molecules, it was assumed that IL2 and IL15 would have similar functions. Indeed both 

cytokines stimulate the proliferation of T cells, induce the generation of cytotoxic T 

lymphocytes (CTL) and facilitate the maintenance of natural killer (NK) cells (3, 9-13). 

However in many adaptive immune responses IL2 and IL15 have distinct roles (Table 1). 

IL2 through its role in activation-induced cell death (AICD) and in the maintenance of 

fitness of regulatory T cells (Treg) is involved in the elimination of self-reactive T cells and 

thereby the prevention of autoimmune diseases (14). In contrast IL15 is critical for the 

maintenance of long-lasting, high-avidity T-cell responses to invading pathogens, a function 

that it achieves by supporting the survival of CD8 memory T cells (15, 16). This Masters of 

Immunology primer focuses on the distinct contributions of these cytokines to the regulation 

of the immune response. It also emphasizes efforts to translate insights concerning the 

biology of these cytokines into novel IL2- and IL15-mediated approaches to the treatment of 

cancer as well as to the opposite goal that employs antibodies to the cytokine receptors to 

treat cytokine-dependent malignancies and autoimmune diseases.

Genomic organization of IL2 and IL15 and control of gene expression

The genes encoding IL2 and IL15 are located on chromosomes 4q26-27 and 4q31, 

respectively (7). The cytokines are short-chain α-helical bundle type 1 cytokines with that of 

IL2 involving four exons and IL15 eight exons. IL2 synthesis is controlled by several 

mechanisms including silencing of the IL2 gene by B lymphocyte-induced maturation 

protein 1 (Blimp1) (13). Following T-cell interaction with mitogen or antigen-MHC 

complexes and dendritic cells IL2 synthesis is regulated at the level of transcription 

predominantly by CD4 cells and to a lesser extent by CD8 cells, NK cells and dendritic cells 

(DC) (13). IL15 transcription, translation and secretion are regulated through multiple 

complex mechanisms (17, 18). IL15 and IL15Rα proteins are co-expressed simultaneously 

predominantly by activated monocytes and DCs (3, 13). The transcription of the heterodimer 

IL15/IL15Rα occurs following the interaction of monocytes/DCs with type 1 or type 2 

interferons (IFN), CD40 ligation or agents that act through Toll-like receptors (TLR) that 

activate NF-kB. Moreover IL15/IL15Rα protein expression is predominantly controlled at 

the levels of translation and secretion (17, 18). Three checkpoints have been identified that 

impede IL15 expression including multiple start codons (AUG) in the 5’ untranslated region 

(UTR), an unusually long signal peptide (48 amino acids) and a negative regulator near the 

C terminus of the precursor proteins (17, 18). The systemic elimination of these three 

checkpoints, including the removal of upstream AUGs, the replacement of the endogenous 

human IL15 leader with that of IL2, and the fusion of the C-terminus of the IL15 mature 

protein with a FLAG-epitope tag augmented the synthesis and secretion of IL15 250-fold.
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IL2 and IL15 receptor complexes and signaling

Three different IL2R complexes exist (7, 10, 12, 13, 19). The isolated IL2Rα subunit that is 

transiently expressed following T-cell receptor (TCR) activation or by contact of IL2 with 

the other subunits binds IL2 with low affinity (dissociation constant Kd10−8 M) without 

transducing a signal. The heterodimeric IL2Rβγc bind IL2 with intermediate affinity 

(Kd10−9 M), while the heterotrimeric IL2Rαβγc bind IL2 with high affinity (Kd 10−11 M). 

Both the heterodimeric and heterotrimeric receptors signal. In contrast to IL2Rα, the 

isolated IL15Rα has a high affinity for IL15 (Kd 10−11 M) (6, 19). With the Kit 225 

leukemic T-cell line it was demonstrated that the common γc, IL2/IL15Rβ, IL2Rα, IL15Rα 

as well as Class I and II MHC are associated elements in supramolecular receptor clusters in 

lipid rafts prior to the cytokine addition and that IL2 and IL15 compete for the use of γc 

(20). On addition IL2 initially binds to IL2Rα resulting in a structural change in the element 

of IL2 that binds to the β chain followed by joining with IL2/IL15Rβ and γc that increases 

the proximity of its receptor subunits (20). The binding of IL2 or IL15 to the IL2/IL15Rβ 

and γc heterodimer induces JAK1 activation via the β chain and JAK3 via the γ chain that 

together phosphorylate tyrosine on the cytokine receptors and induce the tyrosine 

phosphorylation of STAT3, STAT5A and STAT5B that via SH2 domain interactions 

homodimerize, translocate to the nucleus and bind to regulatory regions of target genes (3, 

10, 20-24). Additional IL2 and IL15 signaling mechanisms include the adaptor protein Shc 

that binds to a phosphotyrosine residue on IL2/IL15Rβ resulting in the activation of Grb2 

and Akt via the Shc, Grb2, Gab2, PI3K, PIP3, Akt, mTOR, p70, S6 signaling pathway 

(20-23). In a third signaling pathway IL2/IL15 signaling is associated with activation of 

SOS and Grb2 to form a Grb2/SOS complex that in turn activates the Ras, Raf, MEK, 

MAPK ERK pathway involved in cellular proliferation. Collectively these signaling 

pathways induce the expression and activation of c-myc, c-fos, c-jun, Bcl-2, Bcl-xL and NF-

kB as well as decrease expression of proapoptotic Bim and PUMA (25). In addition to the 

positive signals, lymphocytes have evolved sophisticated mechanisms to prevent excessive 

responses to IL2 and IL15, including the induction of the expression of suppressors of 

cytokine signaling (SOCS) including SOCS1, SOCS3 and CIS as well as PIAS (26). SOCS 

proteins inhibit components of the cytokine signaling cascade via direct binding or by 

preventing access to the signaling complex. The SOCS proteins also target signal 

transducers for proteasomal destruction.

Distinct functions of IL2 and IL15

IL2 and IL15 have several similar functions as a consequence of their sharing of receptor 

components IL2/IL15Rβ and γc and their use of common JAK and STAT signaling 

molecules. These functions include stimulating the proliferation of activated CD4−CD8− 

(double negative), CD4+CD8+ (double positive), CD4+ and CD8+ (single positive) T cells 

and their differentiation into defined effector T-cell subsets following antigen-mediated 

activation (3, 7, 10, 19). Furthermore, the two cytokines facilitate the production of 

cytotoxic T lymphocytes (CTL) and immunoglobulin synthesis by B cells that have been 

stimulated with IgM-specific antibodies or by CD40 ligation. IL2 and IL15 also stimulate 

the generation and proliferation of NK cells (27). In addition to these similarities, there are 

distinctions between the functions of IL2 and IL15 that are crucial in the homeostasis of 

adaptive immune responses. IL2 has paradoxical functions in T-cell homeostasis: IL2 acts as 
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a T-cell growth factor during the initiation of an immune response but it has a crucial role in 

the termination of T-cell responses for the maintenance of self-tolerance. Although IL2 

signals are not essential for Treg development in the thymus, they are critical for the 

maintenance of Tregs in the periphery (14, 28-31). IL2 and all three IL2 receptor chains (α, 

β and γ) are required for high-affinity IL2 binding for Foxp3 (forkhead box P3) expression 

(28). The transcription factor AML1 (acute myeloid leukemia with AE-1)/Runx1 (Runt- 

related transcription factor 1) activates IL2 and IFNγ gene expressions in conventional 

CD4+ T cells through binding to their respective promoters (31). In natural Tregs Foxp3 

interacts physically with AML1 (31). Several lines of evidence support a model in which 

this interaction suppresses IL2 and IFNγ production, upregulates Treg cell-associated 

molecules and exerts suppressive activity (28).

In contrast to IL2, IL15 has no major net effect on the maintenance of the fitness of Foxp3-

expressing Tregs. IL2 and IL15 also have distinct roles in AICD (11, 32). IL2 is a critical 

determinant in the choice between proliferation and death. Both CD4 and CD8 T cells 

previously exposed to antigen and high-level of IL2 undergo apoptosis after persistent TCR 

stimulation in a process involving induction of the death receptor FAS (CD95) and FAS 

ligand (CD95 L32). In contrast, IL15 is an anti-apoptotic factor in several systems. In 

particular, in IL15-transgenic mice, IL2-induced AICD is inhibited (11). Furthermore, IL15 

promotes the maintenance of CD8+CD44hi memory T cells (15, 16).

These observations from ex vivo functional studies were supported by analysis of mice with 

disrupted cytokine or cytokine-receptor genes (33, 34). IL2-, IL2Rα- and IL2/IL15Rβ-

deficient mice developed a marked enlargement of peripheral lymphoid organs that was 

associated with polyclonal expansions of T- and B-cell populations, a dysregulated 

proliferation that reflects the impairment of Treg cell-fitness and AICD (33). IL2Rα-

deficient mice develop autoimmune diseases such as hemolytic anemia and inflammatory 

bowel disease. In contrast mice that are deficient in IL15 or its private receptor IL15Rα do 

not develop lymphoid enlargement, increased serum immunoglobulin concentrations or 

autoimmune disease (34). Rather such mice have a marked reduction in the number of 

thymic and peripheral NK cells, natural killer T (NKT) cells, γδ T cells and intestinal 

intraepithelial lymphocytes (IEL). Furthermore, IL15Rα-deficient mice show a marked 

reduction in CD8+ CD44hi memory T cells.

How do IL2 and IL15 with two receptor subunits and the JAK/STAT signaling pathway in 
common manifest distinct functions?

One factor underlying the distinct functions of IL2 and IL15 is that the unique receptor 

components, i.e. the two α chains, are differentially distributed. IL2Rα is mainly expressed 

by activated T and B cells, whereas IL15Rα is predominantly expressed by activated 

monocytes and DCs (3, 19, 35). In addition to the signaling pathways they have in common, 

there are receptor-signaling pathways that distinguish the two cytokines (35, 36). In 

particular, IL15 mainly induces T-cell proliferation through FKBP12 (FK506-binding 

protein 1A, 12kDA also known as FKBP1A)-mediated activation of p70S6 kinase (p70S6K). 

By contrast FKBP12 is not required for proliferation induced by IL2. Furthermore, 

FKBP12-deficiency strongly affects the phosphorylation of extracellular signal-regulated 
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kinase (ERK) and p70S6 kinase (p70S6K) in response to IL15 but not to IL2 (36). Another 

protein FKBP12.6 has been found to be involved in the T-cell response to IL2 but not to 

IL15.

A most critical factor in the functional differences between IL2 and IL15 involves the fact 

that IL2 is a predominantly secreted molecule that in its soluble form or linked to 

extracellular matrix binds to preformed high-affinity heterotrimeric receptors at the surface 

of activated cells (37) (Figure 1). In contrast to IL2, IL15 is only secreted along with 

IL15Rα in small quantities and is mainly membrane-bound. IL15 induces signaling in the 

context of cell-cell contact at an immunological synapse. Stimulation of monocytes or DCs 

with type I or type II IFN together with activation of nuclear factor-kB (NF-kB) through 

ligation of CD40 or TLR4 with lipopolysaccharide induces the coordinate simultaneous 

expression of IL15 and IL15Rα. The IL15 and IL15Rα expressed by these monocytes and 

DCs then become associated on the cell surface and recycle through endosomal vesicles for 

many days resulting in persistence of membrane-bound IL15Rα and associated IL15 (37). 

As part of an immunological synapse IL15Rα presents IL15 in trans to cells that express 

IL2/IL15Rβ and γc but not IL15Rα (37-41). Such targets of IL15/IL15Rα trans-presentation 

include NK cells and CD8 memory T cells. In addition to the signals provided by IL15, co-

stimulatory signals are transmitted between the two cells during the synapse cell-cell trans-

presentation process. In parallel to IL15 early in the immune response CD25 on DCs can 

present IL2 in trans to antigen-specific T cells (42).

Furthermore in addition to its dominant trans-presentation, IL15 can also signal in cis to 

cells that express IL15Rα in addition to IL2/IL15Rβ and the common γc (43-45). In 

particular, Zanoni and coworkers demonstrated that IL15 cis presentation is required for 

optimal NK-cell activation in lipopolysaccharide-mediated inflammatory conditions (45). In 

addition to the classical heterotrimeric IL15 receptor, JAK1, JAK3, STAT3/5 pathway there 

are novel receptor-signaling transduction pathways for IL15 in mast cells (46). IL15 

signaling in mast cells does not involve IL2/IL15Rβ or the common γc, rather it involves 

distinct receptors. Furthermore, mast cell IL15 receptors recruit JAK2 and STAT5 instead of 

JAK1/3 and STAT3/5 that are activated in T cells. Finally a number of groups have reported 

that in the absence of the common γc and independently of IL2/IL15Rβ and JAK/STAT 

signaling that IL15 can signal through IL15Rα, JNK and NF-kB to drive RANTES 

production by myeloid cells (47-49).

Disorders of the IL15/IL2/IL15 cytokine, receptor system

The gene encoding γc is mutated in individuals with X-linked severe combined 

immunodeficiency (SCID) who lack T cells and NK cells; B cells are present but 

nonfunctional (7, 50). Mutations of JAK3 downstream of γc are present in autosomal 

recessive SCID (51, 52). IL2, IL2α and IL2/IL15Rβ deficiencies are associated with 

polyclonal expansions of T- and B-cell populations and autoimmune diseases. In the absence 

of IL2 signals the number of Tregs declines markedly whereas the number of Th17 cells 

increases (7, 53). IL2/IL15Rβ-deficiency is also associated with the absence of NK cells 

secondary to defective IL15 signaling.
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Excessive dysregulated IL15 expression has been reported in patients with a range of 

autoimmune inflammatory diseases including rheumatoid arthritis, multiple sclerosis, 

ulcerative colitis, type 1 diabetes, psoriasis, and refractory celiac disease (3, 9). IL15, a 

proinflammatory cytokine, may precede the expression of TNFα and downstream cytokines 

IL1, IL6 and GMCSF (3). The retrovirus HTLV-1-encoded tax protein expressed in adult T-

cell leukemia (ATL) and the neurologic disease HAM/TSP activates two autocrine and one 

paracrine system involving IL2/IL2Rα, IL15/IL15Rα and IL9 (54, 55). As a consequence of 

these stimulatory autocrine/paracrine loops, the ATL cells among ex vivo PBMCs proliferate 

spontaneously.

IL2R- and IL15R-directed immunotherapy

The specific IL2R subunit IL2Rα has been an exceptionally valuable target for 

immunotherapy (56-64). The scientific basis for this is that IL2Rα is not expressed by 

resting cells other than Tregs and CD56hiCD16lo NK cells but is constitutively expressed by 

an array of malignant cells of various T- and B-cell leukemias as well as T cells involved in 

select autoimmune disorders and those that participate in organ allograft rejection (56, 59). 

One form of IL2 receptor-directed therapy involves the use of unarmed antibodies specific 

for IL2Rα including basiliximab (Simulect: Novartis AG) and daclizumab (also known as 

anti-Tac, Zenapax), the first humanized antibody that was approved by the FDA (56, 58, 60, 

61). The administration of these antibodies blocks the interaction of IL2 with IL2R leading 

to cytokine deprivation and death of IL2-dependent cells. Treatment with daclizumab has 

provided effective therapy for patients with non-infectious uveitis (60). Furthermore 

treatment with daclizumab has resulted in an over 70% reduction in new-contrast enhancing 

lesions in patients with multiple sclerosis who had failed to respond to treatment with IFNβ 

(61). In addition, daclizumab was shown to provide effective therapy for select patients with 

human T-cell lymphotropic virus 1-associated (HTLV-1) ATL—a leukemia that has been 

viewed as the leukemic counterpart of Tregs (56, 64). In additional clinical trials daclizumab 

armed with toxins or β-emitting radionuclides that results in selective delivery of toxins or 

radionuclides to cells expressing IL2Rα has provided effective therapy for select patients 

with ATL and Hodgkin's lymphoma (62, 63).

An antibody directed toward IL2/IL15Rβ (Hu-Mik-Beta-1) has been shown to block the 

trans-presentation of IL15 but not the action of IL15 on cis expressed heterotrimeric IL15 

receptors (44). Hu-Mik-Beta-1 is being evaluated in patients with T-cell large granular 

lymphocytic leukemia, the HTLV-1-associated neurologic disease HAM/TSP and in patients 

with refractory celiac disease (44). In patients with HTLV-1-associated disorders the protein 

encoded Tax activates two autocrine (IL2/IL2R, IL15/IL15R) and one paracrine (IL9) 

pathway that signals through the γc and the JAK1/3, STAT3/5 pathway (54, 55). In light of 

this multi- cytokine activation in lieu of a monoclonal antibody inhibition, utilizing a JAK 

inhibitor (e.g. ruxolitinib/tofacitinib) or more appropriately a JAK1-specific inhibitor could 

be of value (55).

IL2 in the therapy of cancer

Rosenberg and coworkers first utilized ultra-high doses of IL2 to treat patients with 

metastatic renal cell carcinoma (65). Such high-dose IL2 therapy resulted in a significant 
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clinical response (around 15%); however it also resulted in very significant toxicity. The IL2 

doses used amounted to ~50 million units per injection every 8 hours that resulted in plasma 

IL2 concentrations more than sufficient to saturate the high-affinity as well as the 

intermediate-affinity IL2 receptors. The end result was stimulation of a massive secondary 

release of proinflammatory cytokines IFNγ, IL6, TNFα and GM-CSF in concert with direct 

binding of IL2 to CD25+ expressing endothelial cells which induced the vascular capillary-

leak syndrome. IL2 (aldesleukin, Proleukin) was approved for the treatment of metastatic 

renal cell cancer and malignant melanoma. Despite its accepted role, IL2 has additional 

negative characteristics. IL2 has a short in vivo half-life. Furthermore IL2 has a dual role as 

an immunomodulator that stimulates proliferation of effector cells that kill cancer cells but, 

as noted above, also stimulates checkpoint cells that suppress the immune response by the 

maintenance of inhibitory CD25+ Foxp3+ Treg cells that are involved in AICD.

IL2 has also been used in ultra-low dose therapy based on the known affinity of IL2 

heterotrimeric receptor components (19, 66). These trials were performed in patients with 

cancer or following bone marrow transplantation and resulted in selective expansion of 

CD56+ CD3− CD16− NK cells based on the rationale that such resting cells have a 

constitutive expression of the high-affinity heterotrimeric IL2Rα, β, γc cells. The ability of 

low-dose IL2 to expand such NK cells with little or no toxicity has been confirmed in 

additional patients with cancer and/or immunodeficiency. However, low-dose IL2 therapy 

for cancer has been disappointing presumably due in part to the expansion of Tregs.

In addition to natural IL2, a conformational switch has been exploited to engineer an 

interleukin-2 ’superkine’ that allows tight binding to γc in the absence of IL2Rα. The super-

IL2 had improved antitumor activity in mice bearing three types of human tumors (67). 

Furthermore, Boyman, Surh, Sprent and coworkers demonstrated that some IL2/anti-IL2 

monoclonal body immune complexes caused massive (> 100-fold) expansion of CD8+ T 

cells and activation of NK cells in vivo due to the markedly augmented activity of IL2 (68). 

Thus IL2 antibody complexes have been used to selectively boost the immune response and 

reduce tumor metastases (68-71). Furthermore, an antibody-interleukin-2 fusion protein has 

been shown to overcome tumor heterogeneity by induction of a cellular immune response 

(70). In parallel IL15/antibody-fusion proteins for cancer immunotherapy mimicking IL15 

trans-presentation at the tumor site have been generated (72).

IL15 in the treatment of cancer

A number of studies in murine models in particular CT26 and MC38 colon adenocarcinoma, 

P1A+, B-16 melanoma, and TRAMP-C2 prostatic cancer suggested that IL15 may prove to 

be of value in the therapy of neoplasia (3, 13, 19, 22, 73-82). Intravenous administration of 

murine IL15 enhanced survival of such tumor-bearing mice (74). Furthermore, Klebanoff 

and coworkers demonstrated that IL15 enhanced the in vivo activity of tumor-reactive CD8+ 

T cells in the TCR transgenic mouse (pmel-1) whose CD8+ T cells recognized an epitope 

derived from the melanoma antigen GP-100 (73). In addition, Bessard and coworkers 

demonstrated high antitumor activity of RLI, an IL15-IL15Rα fusion protein, in metastatic 

melanoma and colorectal cancer models (83). On the basis of the animal preclinical trials 

with IL15 great interest was generated among leading immunotherapeutic experts 
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participating in the NCI Immunotherapy Agent Workshop that ranked IL15 as the most 

promising unavailable immunotherapeutic agent to be brought to human therapeutic trials 

(84).

The safety of IL15 was evaluated in rhesus macaques by Munger, Mueller, Berger, Lugli, 

Waldmann and Sneller (76, 85-89). A 12-day bolus of intravenous administration of 20 

mcg/kg/day of IL15 to rhesus macaques was associated with a 4-fold to 8-fold increase in 

the number of circulating NK, stem, central and effector memory CD8 T cells (86). 

Subsequently alternative routes of administration were evaluated in rhesus macaques 

including continuous intravenous infusion (CIV) and subcutaneous (SC) administration of 

IL15. The administration of IL15 by CIV at 20 mg/day for 10 days led to a 10-fold increase 

in the number of circulating NK cells, a 15-fold increase in the number of circulating 

monocytes, and a massive 80-fold to 100-fold increase in the number of circulating effector 

memory CD8 T cells (88). Subcutaneous infusions at 20 mcg/kg/day for 10 days led to a 

more modest 10-fold expansion in the number of circulating effector memory CD8 T cells.

Clinical trials using IL15 in the treatment of cancer

Five clinical trials have been initiated using Escherichia coli rhIL15 in the treatment of 

cancer (90-93). The primary goal of the completed trial: a phase I study of recombinant 

human IL15 in adults with refractory metastatic malignant melanoma and metastatic renal 

cancer was to determine the safety, adverse event profile, dose-limiting toxicity and 

maximum tolerated dose of rhIL15 administered as a daily intravenous bolus infusion for 12 

days to subjects with metastatic malignant melanoma or metastatic renal cell cancer (94). 

The study was initially planned as a phase I dose-escalation trial starting with an initial dose 

of 3 mcg/kg/day for 12 days. However after the initial patient developed grade 3 

hypotension and another patient developed grade 3 thrombocytopenia the protocol was 

amended to add two lower doses 1.0 and 0.3 mcg/kg/day (94). Two of four patients given 

the 1.0 mcg/kg/day dose had persistent grade 3 ALT and AST elevations that were dose-

limiting. All 9 patients with IL15 administered at 0.3 mcg/kg/day received all 12 doses 

without DLT. The maximum tolerated dose of rhIL15 was determined to be 0.3 mcg/kg/day.

There was a consistent temporal pattern of post-treatment adverse events in patients given 

the 3 mcg/kg/day dose of IL15 with fever and rigors beginning 2 ½ to 4 hours after the start 

of IL15 infusions, with a blood pressure drop to a nadir of approximately 20 mm/Hg below 

pretreatment levels 5 to 9 hours after the infusion. These changes were concurrent with a 

maximum of 50-fold elevations of circulating IL6 and IFNγ concentrations. Flow cytometry 

of peripheral blood lymphocytes revealed an efflux of NK and memory T cells from the 

circulating blood within minutes upon IL15 administration followed by influx and 

hyperproliferation leading to 10-fold expansions of NK and γδ T cells that ultimately 

returned to baseline. Furthermore, there were significant increases in the number of CD8 

memory phenotype T cells. In this first-in-human phase I trial there were no responses with 

stable disease as the best response. However 5 patients manifested a decrease of between 

10% and 30% of their marker lesions and 2 patients had clearing of lung lesions. 

Subsequently alternative dosing strategies including continuous intravenous infusions and 

subcutaneous infusions of IL15 in trials have been initiated (91, 92).
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IL15/IL15Rα

Although IL15 may show efficacy in the treatment of metastatic malignancy in human trials 

it has not been optimal when used as a single agent for cancer therapy. A particular 

challenge is that there is only a low level expression of IL15Rα on resting DCs (95). Indeed, 

the true IL15 cytokine may not be an IL15 monomer but rather may be considered as an 

IL15Rα/IL15 heterodimeric cytokine. Physiologically IL15 is produced as a heterodimer in 

association with IL15Rα. Furthermore in mice it is the heterodimer alone that is stably 

produced and transported to the surface of the cell (38, 39). On cleavage from the cell 

surface IL15Rα/IL15 elements are associated in the serum as the sole form of circulating 

IL15 (95). To address the issue of deficient IL15Rα, IL15/IL15Rα and IL15Rα IgFc have 

been produced and entered into clinical trials evaluating patients with metastatic malignancy 

(96-100).

As an alternative strategy, agents are available that induce IL15Rα expression on DCs that 

could be given in conjunction with IL15 to circumvent the problem discussed above with 

IL15 when used in monotherapy. The combination of IL15 with the agonistic anti-CD40 

antibody FGK4.5 showed additivity/synergy in the MC38 murine model of colon cancer and 

the TRAMP-C2 model of prostatic cancer (74, 80). The administration of the anti-CD40 

antibody was associated with an increased expression of IL15Rα on CD11+ DCs. 

Furthermore, in the murine synergic tumor model treatment with IL15 with the agonistic 

anti-CD40 antibody alone significantly prolonged the survival of the TRAMP-C2 tumor-

bearing mice. Moreover it was demonstrated that the combination of IL15 with anti-CD40 

produced markedly additive effects when compared to either agent administered alone. The 

combination appeared to circumvent the problem of “helpless” CD8 T cells wherein the 

CD8 T cells produced are not tumor antigen-specific (74). The administration of either IL15 

or anti-CD40 alone did not augment the number of tumor-specific tetramer-positive CD8 T 

cells in the TRAMP-C2 model system. However the administration of the combination of 

IL15 plus the agonistic anti-CD40 antibody was associated with a meaningful increase in the 

number of TRAMP-C2 tumor-specific SPAS-1/SNC9-H8 tetramer-positive CD8 T cells 

(74).

Agents to relieve checkpoints on the immune system to optimize IL15 action

As is true with other cytokines, IL15 is associated with the expression of immunologic 

checkpoints including the inhibitory cytokine IL10 and the expression of PD-1 on CD8 T 

cells. In addition, IL15 was shown to be critical in the maintenance of CD122+CD8+ 

negative regulatory T cells (101-102). To address the issue of induced checkpoints, IL15 

was administered in combination with agents to remove these checkpoints with antibodies to 

cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed death- ligand 1 (PD-L1) (81, 

103). In the CT26 or MC38 colon carcinoma or the TRAMP-C2 prostatic cancer syngeneic 

tumor models IL15 alone provided modest antitumor activity. The addition of either anti-

CTLA-4 or anti-PD-L1 alone in association with IL15 did not increase the action of IL15. 

However tumor-bearing mice receiving IL15 in combination with both anti-checkpoint 

antibodies together manifested a marked prolongation of survival (81, 103).
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Combination therapy with IL2 and IL15 with anticancer monoclonal antibodies to augment 
antibody-dependent cell-mediated cytotoxicity

The predominant approaches involving IL2 and IL15 are based on the hypothesis that the 

host is making an immune response, albeit inadequate, to their tumor and that this can be 

augmented by the administration of an IL2- or IL15-containing agent. However these 

cytokines could also be used in drug combinations where an additional co-administered drug 

provides the specificity directed toward the tumor. In particular, IL2 or IL15 could be used 

with anticancer vaccines, cellular therapy or with tumor-directed monoclonal antibodies 

(mAb) (83, 104-111). Given the capacity of IL2 and IL15 to increase the number of 

activated NK cells, monocytes and granulocytes, a very attractive antitumor strategy would 

be to use the optimal IL2 or IL15 agent and dosing strategy in conjunction with antitumor 

mAbs to augment their ADCC action (105-110). For example, when low-dose IL2 therapy 

with intermediate-dose boluses was combined with administration of R24, a murine mAb 

that recognizes a malignant melanoma antigen, three of the 18 evaluable patients generated 

clinical responses (108). In addition, IL2 has been given in combination with rituximab for 

the treatment of B-cell malignancies with varying success (110). An alternative strategy is 

the direct coupling of a tumor-specific mAb and a cytokine as a fusion protein. Such an 

agent has been generated that couples IL2 to tumor-specific mAbs (111-112). In parallel 

with an IL15 conjugate Vincent and coworkers reported highly potent anti-CD20-RLI 

immunocytokine targeting established human B-cell lymphoma in SCID mice (113). It is 

hoped that with the diverse approaches discussed IL15 and IL2 will take central places in the 

combination treatment of cancer.
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Figure 1. Mode of interaction of IL2 and IL15 with their receptors
IL2 and IL15 share the common γc and IL2/IL15Rβ chains. Furthermore, the high-affinity 

forms of IL2R and IL15R contain a third cytokine-specific receptor α subunit, IL2Rα or 

IL15Rα. IL2 is predominantly a secreted cytokine that binds to preformed high-affinity 

heterotrimeric receptors. By contrast, IL15 is a membrane-associated molecule that signals 

at an immunological synapse between antigen-presenting cells and CD8 T cells or NK cells. 

IL15Rα on the surface of activated monocytes or dendritic cells presents IL15 in trans to 

cells that express IL2/IL15Rβ and γc, thereby allowing signaling through these complexes.
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