Skip to main content
. 2015 Mar 6;10(3):e0117688. doi: 10.1371/journal.pone.0117688

Table 9. Runtimes for registering a point-cloud target shape. (Experiment 4).

Exp. Alg. Average Runtimes (sec.) by Test Case
1 2 3 4 5 6 7 8 9
4A ICP 0.009 0.009 0.010 0.009 0.010 0.009 0.009 0.009 0.009
IMLP-CP 0.015 0.016 0.019 0.016 0.020 0.019 0.015 0.017 0.015
IMLP-MD 0.068 0.078 0.093 0.079 0.097 0.093 0.067 0.079 0.069
GICP - - - - - - - - -
CPD (2 cores) 3.465 4.346 4.336 3.864 4.340 4.374 4.238 4.650 4.484
IMLP 0.068 0.082 0.102 0.078 0.103 0.099 0.067 0.084 0.073
4B ICP 0.013 0.013 0.013 0.013 0.013 0.013 0.012 0.012 0.013
IMLP-CP 0.023 0.025 0.028 0.025 0.028 0.028 0.024 0.025 0.024
IMLP-MD 0.100 0.109 0.126 0.112 0.127 0.129 0.100 0.109 0.099
GICP - - - - - - - - -
CPD (2 cores) 3.584 4.408 4.490 4.279 4.327 4.545 4.378 4.731 4.874
IMLP 0.101 0.111 0.134 0.115 0.136 0.133 0.103 0.118 0.106

Average runtimes of successful registrations from Experiment 4 are reported, where 300 randomized trials were conducted for each test case. Each test case represents a different generative noise model (Table 4) applied to points of the source shape. Results are also reported for initial shape misalignments of [15, 30] mm / degrees (Experiment 4A) and [30, 60] mm / degrees (Experiment 4B). The algorithms compared include single-threaded implementations of ICP [1], GICP [11], IMLP, and the two IMLP variants IMLP-CP and IMLP-MD. A multi-threaded implementation of CPD [20] is also reported, which made full utilization of 2 cores.