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Abstract
Formaldehyde (FA) is a common environmental contaminant that has toxic effects on the

central nervous system (CNS). Our previous data demonstrated that hydrogen sulfide

(H2S), the third endogenous gaseous mediator, has protective effects against FA-induced

neurotoxicity. As is known to all, Brain-derived neurotropic factor (BDNF), a member of the

neurotrophin gene family, mediates its neuroprotective properties via various intracellular

signaling pathways triggered by activating the tyrosine kinase receptor B (TrkB). Intriguing-

ly, our previous data have illustrated the upregulatory role of H2S on BDNF protein expres-

sion in the hippocampus of rats. Therefore, in this study, we hypothesized that H2S

provides neuroprotection against FA toxicity by regulating BDNF-TrkB pathway. In the pres-

ent study, we found that NaHS, a donor of H2S, upregulated the level of BDNF protein in

PC12 cells, and significantly rescued FA-induced downregulation of BDNF levels. Further-

more, we found that pretreatment of PC12 cells with K252a, an inhibitor of the BDNF recep-

tor TrkB, markedly reversed the inhibition of NaHS on FA-induced cytotoxicity and ablated

the protective effects of NaHS on FA-induced oxidative stress, including the accumulation

of intracellular reactive oxygen species (ROS), 4-hydroxy-2-trans-nonenal (4-HNE), and

malondialdehyde (MDA). We also showed that K252a abolished the inhibition of NaHS on

FA-induced apoptosis, as well as the activation of caspase-3 in PC12 cells. In addition,

K252a reversed the protection of H2S against FA-induced downregulation of Bcl-2 protein

expression and upregulation of Bax protein expression in PC12 cells. These data indicate

that the BDNF-TrkB pathway mediates the neuroprotection of H2S against FA-induced cyto-

toxicity, oxidative stress and apoptosis in PC12 cells. These findings provide a novel mech-

anism underlying the protection of H2S against FA-induced neurotoxicity.
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Introduction
Formaldehyde (FA), a common environmental contaminant, is widely found in domestic air,
tobacco smoke, garments, paint, and industrial and medical products [1,2]. Increasing evidence
indicated that FA is toxic to mammals [3–6], especially inducing impairment in learning and
memory as well as neurotoxicity in the central nervous system (CNS) [7–10]. Epidemiological
data showed that long-term exposure to FA causes neurocognitive and neurobehavioral im-
pairment in histology technicians and workers [11]. In several experimental models, it has
been shown that FA exposure induces the apoptosis and neurotoxicity in the cultured cortical
neurons and PC12 cells [12,13], and elicits behavioral and learning and memory disorders in
rats and mice[8,9]. Although a lot of literature describes the neurotoxicity of FA, there is no ef-
fective way to defend FA-induced neurotoxicity. Thus, it is important to explore novel thera-
peutic targets for the neurotoxicity of FA.

Hydrogen sulfide (H2S) is recognized as the third ‘gasotransmitter’ alongside nitric oxide
(NO) and carbon monoxide (CO) [14,15]. Expanding evidence documented that H2S, at physi-
ological concentrations (50–160 mmol/L) in brain, is a novel neuroprotective agents [16–19].
Many studies have confirmed that H2S can protect neurons against oxidative stress, apoptosis,
and endocytoplasmic reticulum (ER) stress impairment induced by multiple reagents [20–23].
Interestingly, our previous data demonstrated that FA exposures downregulates the production
of endogenous H2S in PC12 cell and in the hippocampus of rats [24,25]. Thus, it is worth
thinking whether increasing the levels of H2S can inhibit FA-induced neurotoxicity. Our recent
data showed that NaHS, an H2S donor, protects PC12 cells against FA-induced endoplasmic
reticulum stress, mitochondrial dysfunction and apoptosis [26,27]. These data demonstrate the
protection of H2S against the neurotoxicity of FA and suggest a promising future of H2S-based
preventions for FA-induced neurotoxicity. However, the potential mechanisms underlying the
protection of H2S against FA-induced neurotoxicity are largely unknown.

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, exerts its
roles via its high affinity receptor tyrosine protein kinase B (TrkB) [28]. BDNF has been shown
to rescue neuronal cells from neurodegeneration owing to injuries in the CNS [29–33] and pre-
vent oxidative damage in many cultivated neurons [34–36]. Boyadjieva NI and his colleague
demonstrated that BDNF downregulates the ethanol-induced cellular oxidative stress and apo-
ptosis in developing hypothalamic neuronal cells [37]. Furthermore, our previous study proved
that BDNF-TrkB pathway contributes to the protection of H2S against homocysteine-induced
ER stress and neuronal apoptosis in hippocampus of rat [38]. Therefore, this work was de-
signed to investigate whether the BDNF-TrkB pathway also mediates the protection of H2S
against FA-induced cytotoxicity, oxidative stress, and apoptosis in PC12 cells.

The present studies examine the role of BDNF-TrkB pathway in the neuroprotective prop-
erties of H2S against FA-induced toxicity in PC12 cells. We demonstrated that NaHS, a donor
of H2S, significantly rescues FA-induced the downregulation of BDNF expression in PC12 cells
and that K252a, a BDNF-TrkB pathway inhibitor, abolished the protective effects of H2S
against FA-induced cytotoxicity, oxidative stress, and apoptosis. Our data indicate that BDNF-
TrkB pathway mediates the protective role of H2S against FA-induced neurotoxicity.

Materials and Methods

Reagent
Formaldehyde (FA), Sodium hydrosulfide (NaHS, a donor of H2S), K252a (a selective pharma-
cological pan-Trk inhibitor) and nitro blue tetrazolium (NBT) were supplied by Sigma Chemi-
cal CO (St. Louis, MO, USA). Cell counting kit-8 (CCK-8) was purchased from Dojindo
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Molecular Technologies, Inc. (Rockvile, MD, USA). Specific monoclonal antibody to BDNF
was obtained from Epitomic Inc (Burlingame, UK). Specific monoclonal antibody to Bax was
purchased from Abcam Technology (Cambridge, CB, UK) and Specific monoclonal antibody
to Bcl-2 was purchased from Cell Signaling Technology, Inc (Beverly, MA, USA). Beta-actin
antibody, Goat anti-mouse antibody, Goat anti-rabbit antibody, and Goat anti-Rat antibody
were purchased from Proteintech (Danvers, MA, USA). Caspase-3, 4-hydroxy-2-trans-nonenal
(4-HNE), and malondialdehyde (MDA) enzyme-linked immunosorbent assay (ELISA) Kits
were bought from USCN Life Science Inc (Wuhan, Hubei, China). Bicinchoninic Acid (BCA)
Protein Assay Kit was obtained from Beyotime Institute of Biotechnology (Shanghai, China)

Cell culture
The PC12 cell line was derived from rat pheochromocytoma, a tumor arising of the adrenal
medulla [39] and represents a valuable model to study cell fate such as neuronal differentiation,
cell proliferation, or cell survival [40,41]. PC12 cells were (ATCC, CRL-1721) generously pro-
vided by the Sun Yat-sen University Experimental Animal Center (Guangzhou, China) and
cultured in Dulbecco’s modified Eagle’s Medium (DMEM) containing 10% heat-inactivated
fetal bovine serum (FBS) and 1% penicillin-streptomycin (PS) at 37°C under a humidified in-
cubator with an atmosphere 5% CO2 and 95% air. Medium was replaced every 2 days.

Determination of Cell Viability
The viability of PC12 cells was determined by CCK-8 assay according to the manufacturer's in-
structions [42]. PC12 cells were cultured in 96-well plates at 37°C under an atmosphere 5%
CO2 and 95% air.. At the end of treatment, CCK-8 reagent (5 μl) was added to each well of the
plates and then the plates were incubated at 37°C for 3–4 h in the incubator. Absorbance at a
wavelength of 450 nm was measured with a microplate reader (Molecular Devices, Sunnyvale,
CA, USA). Means of 3–5 wells optical density (OD) in the indicated groups were used to calcu-
late the cell viability that was expressed as a percentage of the cell survival rate compared with
the control. All experiments were done in triplicate and repeated three independent times.

Flow Cytometry Analysis of Cell Apoptosis
The apoptosis of PC12 cells was detected by propidium iodide (PI) staining. PC12 cells in loga-
rithmic phase growth were seeded in 6-well plate with 106 cells in each well. When the cells
were about 70% confluent, PC12 cells were administered with indicated conditioned-mediums
for 24 h. After exposure terminated, the medium was removed and the cells were rinsed with
PBS. Each group of cells was harvested and centrifuged at 250 g for 10 min. Cells were washed
twice with PBS and fixed with 70% pre-refrigerated ethanol for 24 h at −20°C. After washing
the cells with PBS twice, 1 mg/mL RNase (Sigma Chemical Co., St. Louis, MO) was added and
incubated for 30 min at 37°C. Then, the cells were stained with PI (at a final concentration of
50 mg/L) in the dark at 4°C for 30 min before flow cytometric (FCM, Beckman-Coulter,
Miami, FL, USA) analysis. In the DNA histogram, the amplitude of the sub-G1 DNA peak rep-
resents the amount of apoptotic cells. Experiments were repeated three times independently.

Measurement of Intracellular reactive oxygen species (ROS) Generation
Intracellular ROS were measured by the nitroblue tetrazolium (NBT) test which is converted to
purple formazan by superoxide anion [43]. Briefly, the PC12 cells (1 x 105 cells per well) were
plated in 96-well tissue culture plates overnight. Conditioned-mediums were administered as
indicated for 24 h. After removal of the supernatant, the cells were washed with PBS and then
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100 μL NBT (1.0 mg/mL in DMEM) was added to each well. After incubation at 37°C for 2 h,
the cells were washed with PBS and 100 μL KOH (2 mol/l) and 100 μL dimethyl sulfoxide
(DMSO) were added to dissolve the cells. The absorbance at 570 nm was determined using a
microplate reader. Experiments were repeated three times independently.

ELISA for caspase-3 activity
The activity of caspase-3 was determined by caspase-3 activity kit according to manufacturer in-
structions. In brief, at the end of treatment, cells were harvested and split by Ultrasonic Cell Dis-
ruption System (5s, 15 times, 4°C). The homogenized samples were then centrifuged at 5000 g
for 20 min and the supernatant protein concentration was quantified by BCA protein assay kit.
100 μl of diluted samples were mixed in a white-walled 96-well which was coated with an anti-
body specific for caspase-3 and incubated at 37°C for 2 h. Removing the liquid of each well, 100
μl of reaction buffer A and B were added to the microplate respectively. Subsequently, 90 μl ali-
quot of caspase-3 reagent was added to each well and fluorescence was measured at 450 nm
with a microplate reader. Experiments were repeated three times independently.

ELISAS for MDA and 4-HNE
At the end of treatment, cells were collected with ice-cold PBS and homogenized with Ultrasonic
Cell Disruption System. The homogenate of cells was centrifuged at 5000 g for 20 min and the
supernatant was collected. The protein concentration was determined with BCA Protein Assay
Kit. The formation of lipid peroxidation in cells was measured using MDA and 4-HNE ELISA
Kits. Briefly, protein sample (10 μg/ ml, 50 μl) was added to the 96-well protein binding plate
and incubated at 37°C for 2 h, and then washed two times with PBS. 100 μl of diluent per well
was added and incubated for 2 h at room temperature on an orbital shaker, and then washed
three times with wash buffer with thorough aspiration between each wash. The diluted anti-
MDA (50 μl) or anti-4-HNE antibody (50 μl) was added to all wells and incubate for 1 h at room
temperature on an orbital shaker, and then washed three times with wash buffer. Subsequently,
the diluted secondary antibody- HRP conjugate (50 μl) was added to all wells and incubate for 1
h at room temperature on an orbital shaker. Substrate solution (50 μl) was then added to each
well and incubated for 2–30 min at room temperature on an orbital shaker. If color changes rap-
idly, the reaction was stopped by adding 50 μl of stop solution. The absorbance of each well was
read on a microplate reader at 450 nm. Experiments were repeated three times independently.

Western blot analysis for the levels of BDNF, Bcl-2, and Bax protein
expression
Cell lysates were used to examine the expressions of BDNF, Bcl-2 and Bax protein. Logarithmic
phase PC12 cells were seeded at a concentration of 106 cells per well on 6-well plates. At the
end of treatment, cells were washed with 4°C PBS and then lysed in an ice-cold lysis buffer
[20 mM Tris–HCl, pH 7.5, 150 mMNaCl, 1% Triton X-100, 1 mM phenylmethylsulphonyl fluo-
ride (PMSF), 1 mMNa3VO4, leupeptin, and EDTA] for 30 min. Soluble fractions were collected
following centrifugation for 10 min at 12,000 rpm and were stored at −80°C until used. The pro-
tein concentration was determined by BCA Protein Assay Kit. An equal amount of 30–50 μg of
proteins was separated by 8–12% sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) and
transferred to polyvinylidene fluoride (PVDF) membranes by electroblotting. Non-specific pro-
tein binding was blocked with 5% non-fat dried milk in TBST buffer (pH 7.6, 3.03g Tris base,
18.8g glycocine, 1g SDS, 1000 ml ddH2O, plus 1ml Tween-20) for 2 h at room temperature.
Then, the membranes were incubated overnight at room temperature with diluted primary anti-
body: BDNF Rabbit Monoclonal Antibody (1:1000, EPITMICS, EP1293), Bcl-2 Antibody (1:500,
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Cell signaling, #2876), Mouse monoclonal to Bax (1:1000, abcam, ab5714). A monoclonal anti-
body against β-actin (1:2000, Proteintech, 60008–1-IG-16) was used as control for protein gel
loading. The membranes were then washed three times with TBST, and incubated with HRP-
conjugated secondary antibody (1:5000, Proteintech, SA00001–2) at room temperature for 2 h.
Protein bands were analyzed using the enhanced chemiluminescence detection system (BeyoECL
Plus kit, Beyotime, P0018). Integrated optical densities were analyzed using Image J software. Ex-
periments were repeated three times independently.

Statistical analysis
All experiments were repeated at least three times. Data are expressed as the mean ± S.E.M.
Statistical significance is assessed using one-way analysis of variance (ANOVA) and Least-sig-
nificant difference (LSD) test for post-hoc comparisons). Differences were considered signifi-
cant at P< 0.05.

Results

H2S upregulates the level of BDNF protein in PC12 cells
To illustrate whether BDNF is involved in the protective effect of H2S against FA-elicited neu-
rotoxicity, we first investigated the effects of H2S on the level of BDNF protein in PC12 cells.
After treatment of PC12 cells with different concentrations of NaHS (100, 200, and 400mM), a
donor of H2S, the level of BDNF protein in cells was markedly increased (Fig. 1). This data in-
dicated that BDNF may be involved in the neuroprotection of H2S.

H2S prevents formaldehyde-induced downregulation of BDNF in PC12
cells
Next, we explored the effect of H2S on the expression of BDNF protein in formaldehyde (FA)-
exposed PC12 cells. We found that treatment with different concentrations of FA (60, 120, or
240 μM, for 24 h) markedly downregulated the levels of BDNF in PC12 cells (Fig. 2A). Interest-
ingly, pretreatment with NaHS (200 μM) for 30 min significantly rescued FA-induced the
downregulation of BDNF protein in PC12 cells (Fig. 2B). In addition, treatment of PC12 cells
with NaHS alone also upregulated the levels of BDNF protein. These data indicated that BDNF
may be involved in the protection of H2S against FA-induced neurotoxicity.

Blockage of BDNF-TrkB pathway reverses the protective effect of H2S
against FA-indcued cytotoxicity in PC12 cells
To confirm the hypothesis that BDNF-TrkB pathway mediates the protection of H2S against
FA-induced neurotoxicity, we next explored whether K252a, a specific BDNF-TrkB pathway
inhibitor, reverses the protective role of H2S against FA-indcued cytotoxicity. Pretreatment of
PC12 cells with K252a (10 nM) for 30 min before the administration of NaHS (200 mM) signif-
icantly attenuated NaHS-suppressed the loss of cell viability induced by treatment with FA
(120 μM) (Fig. 3). K252a (10 nM) or NaHS (200 mM) alone did not affect the viability of PC12
cells. These data suggested that H2S protects PC12 cells against FA-induced cytotoxicity via
BDNF-TrkB pathway.

Blocking BDNF-TrkB pathway prevents the inhibitiory effects of H2S
against FA-induced oxidative stress
To further confirm the mediated role of BDNF-TrkB pathway in the protection of H2S against
FA-induced neurotoxicity, we explored whether K252a reverses the protection of H2S against
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FA-induced oxidative stress in PC12 cells by detecting the levels of intracellular ROS, MDA,
and 4-HNE. K252a (10 nM, for 24 h) alone had no influence on the levels of intracellular ROS,
MDA, and 4-HNE in PC12 cells (Fig. 4A-C). However, pretreatment with K252a (10 nM) for
30 min markedly suppressed the inhibitiory effects of NaHS (200 μM) on the increases in the
levels of intracellular ROS (Fig. 4A), MDA (Fig. 4B), and 4-HNE (Fig. 4C) in PC12 cells in-
duced by treatment of 120 μM of FA for 24 h. Notably, treatment of PC12 cells with NaHS
alone downregulated the levels of ROS (Fig. 4A) and 4-HNE (Fig. 4C). These data indicated
that inhibition of BDNF-TrkB pathway reverses H2S-caused protection against FA-induced ox-
idative stress in PC12 cells.

Inhibition of BDNF-TrkB reverses the protective effect of H2S against
FA-induced apoptosis in PC12 cells
We further investigated whether K252a reverses the protection of NaHS against FA-induced
apoptosis. The statistical findings from FCM analysis after PI staining indicated that K252a re-
verses the protection of NaHS against FA-induced apoptosis. As shown in Fig. 5A, exposure of
PC12 cells to FA (120 μM, for 24 h) caused significant apoptosis and the apoptotic effects

Fig 1. Effect of H2S on the expression of BDNF protein in PC12 cells. PC12 cells were treated with NaHS
(100, 200, and 400 μM) for 24 h. The expression of BDNF protein was determined byWestern blot using anti-
BDNF antibody, and β-actin was used as a loading control. The ratio of BDNF to β-actin is normalized by the
value in control group. Values are expressed as the mean ± S.E.M. of three independent experiments. *P<
0.05, versus control group.

doi:10.1371/journal.pone.0119478.g001
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Fig 2. Effect of H2S on the expression of BDNF protein in formaldehyde-treated PC12 cells. (A) PC12 cells were treated with formaldehyde (FA, 60,
120, or 240 μM) for 24 h. (B)After pretreatment of PC12 cells with NaHS (200 μM) for 30 min, FA (120 μM) was added to culture medium and coincubated for
24 h. The expression of BDNF protein was determined byWestern blot using anti-BDNF antibody, and β-actin was used as a loading control. The ratio of
BDNF to β-actin is normalized by the value in control group. Values were expressed as the mean ± S.E.M. of three independent experiments. **P< 0.01,
versus control group; ##P< 0.01, versus FA-treated along group.

doi:10.1371/journal.pone.0119478.g002

Fig 3. Effect of K252a on H2S-induced protection against formaldehyde-exerted cytotoxicity in PC12
cells. PC12 cells were preincubated with K252a (10 nM) for 30 min before pretreatment with NaHS (200 μM)
for 30 min, and then cotreated with formaldehyde (FA, 120 μM) for 24 h. Cell viability was determined by the
CCK-8 assay. Results were expressed as the mean ± S.E.M. of three independent experiments. **P< 0.01,
versus control group; ##P< 0.01, versus FA-treated alone group; &&P< 0.01, versus cotreatment with NaHS
and FA group.

doi:10.1371/journal.pone.0119478.g003
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induced by FA were inhibited by co-treatment with NaHS (200 μM) for 24 h; however, this
protective effect of NaHS was markedly prevented by pretreatment with 10 nM of k252a for 30
min. Caspase-3 is a critical executioner of apoptosis. As shown in Fig. 5B, pretreatment with
k252a (10 nM, for 30 min) significantly abolished NaHS (200 μM, for 24 h)-suppressed the in-
crease in caspase-3 activity induced by treatment of 120 μM of FA for 24 h. In addition, the ac-
tivity of caspase-3 was also decreased caused by NaHS alone (Fig. 5B), which was consistent
with the protection of NaHS against FA-induced apoptosis. These data indicated that BDNF-
TrkB pathway mediates H2S-caused protection against FA-induced apoptosis in PC12 cells.

Inhibition of BDNF-TrkB reverses the protective effect of H2S against
FA-induced modification of Bax and Bcl-2 in PC12 cells
Finally, we investigated whether BDNF-TrkB pathway mediates the protective effect of H2S
against FA-induced change in apoptosis-related proteins in PC12 cells. We found that pretreat-
ment of PC12 cells with K252a (10 nM, for 30 min) reverses the protection of NaHS against
FA-induced upregulation of Bax protein expression (Fig. 6A) and downregulation of Bcl-2 pro-
tein expression (Fig. 6B). Notably, treatment with NaHS alone (200 μM, 24 h) decreased the
levels of Bax (Fig. 6A) and increased the levels of Bcl-2 (Fig. 6B) in PC12 cells. However, co-
treatment with K252a (10 nM) and NaHS(200 μM) for 24 h significantly abolished the NaHS-
induced downregulation of Bax (Fig. 6A) and upregulation of Bcl-2 (Fig. 6B). These results in-
dicated that BDNF-TrkB pathway is able to mediate the inhibitory role of H2S in FA-induced
proapoptotic potential.

Discussion
H2S is an emerging novel endogenous neuroprotectant. We have previously demonstrated that
H2S ablated FA-induced neurotoxicity [26,27]. Emerging evidence support that Brain-derived
neurotrophic factor (BDNF) has neuroprotective effect [44–47]. The present work was de-
signed to elucidate whether BDNF is involved in the protection of H2S against the neurotoxici-
ty of FA in PC12 cells. Our present study included three significant findings: (1) NaHS, a
donor of H2S, upregulates the level of BDNF protein in PC12 cells; (2) NaHS markedly rescues
FA-induced downregulation of BDNF in PC12 cells; (3) Blocking BDNF-TrkB pathway with
K252a, an inhibitor of TrkB receptor, reverses the protective effect of H2S on FA-induced

Fig 4. Effect of K252a on H2S-induced suppression in formaldehyde-mediated oxidative stress in PC12 cells. PC12 cells were preincubated with
K252a (10 nM) for 30 min before pretreatment with NaHS (200 μM) for 30 min, and then cotreated with formaldehyde (FA, 120 μM) for 24 h. (A) The
generation of intracellular ROS was measured by NBT reduction assay as described in “Materials and methods.”. (B) The level of MDA in PC12 cells was
measured by MDA Elisa kits. (C) The level of 4-HNE in PC12 cells was measured by 4-HNE Elisa kits. Results were expressed as the mean ± S.E.M. of three
independent experiments. *P< 0.05, **P< 0.01, versus control group; ##P<0.01, versus FA-treated alone group; &&P< 0.01, versus cotreated with NaHS
and FA group.

doi:10.1371/journal.pone.0119478.g004
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Fig 5. Effect of K252a on H2S-induced protection against formaldehyde-elicited apoptosis in PC12
cells. PC12 cells were preincubated with K252a (10 nM) for 30 min before pretreatment with NaHS (200 μM)
for 30 min, and then cotreated with formaldehyde (FA, 120 μM) for 24 h. (A) The rate of apoptosis was
assessed by flow cytometry after PI staining. (B) The activity of caspase-3 was determined by caspase-3
activity Elisa kit. Results were expressed as the mean ± S.E.M. of three independent experiments. *P< 0.05,
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neurotoxicity in PC12 cells. Collectively, these results implicate that H2S inhibits the neurotox-
icity of FA in PC12 cells through upregulating the BDNF-TrkB pathway.

Formaldehyde is the simplest aldehyde that shows high reactivity toward cellular macro-
molecules like DNA and proteins. Accumulating evidence demonstrate that FA exerts many
detrimental effects on the central nervous system (CNS) [5,25,48,49]. FA exposure induces
learning and memory impairment, as well as neurotoxicity in vivo and vitro experiments
[12,13,26,50–52]. Our previous study shown that FA inhibits the production of endogenous
H2S [24], and exogenous H2S protects PC12 cells against FA-mediated cytotoxicity, apoptosis
and endoplasmic reticulum stress [26,27]. However, the exact mechanisms underlying this pro-
tective role of H2S need to be further studied. Interestingly, our previous study confirmed that
H2S increases the level of BDNF protein and then attenuates Hcy-induced ER stress and neuro-
nal apoptosis in the hippocampus of rats [38]. Our present findings that NaHS increased the
level of BDNF protein and reversed FA-induced down-regulation of BDNF in PC12 cells are
consistent with the observation in the hippocampus of rats [38]. BDNF and its receptor TrkB,
which are broadly expressed in the CNS, activate various intracellular signaling pathways asso-
ciated with the neuroprotective effects, including contributions to neuronal survival, synaptic
plasticity and cognitive functions [53,54]. Additionally, BDNF plays a prominent role in neuro-
protection against a variety of stimuli-induced neuronal cell death, such as oxidative stress and
apoptosis [55–57]. Therefore, our present findings that H2S upregulates the level of BDNF

**P< 0.01, versus control group; ##P< 0.01, versus FA-treated alone group; &&P< 0.01, versus cotreated
with NaHS and FA group.

doi:10.1371/journal.pone.0119478.g005

Fig 6. Effect of K252a on H2S-caused suppression in formaldehyde-induced upregulation of Bax and downregulation of Bcl-2 in PC12 cells. PC12
cells were pre-incubated with K252a (10 nM) for 30 min before pretreatment with NaHS (200 μM) for 30 min prior and the cotreated with formaldehyde (FA,
120 μM) for 24 h. The expression of Bax (A) and Bcl-2 (B) were detected byWestern blot using anti-Bax antibody and anti-Bcl-2 antibody, respectively. In all
blots, β-actin was used as a loading control. The ratio of Bax or Bcl-2 to β-actin was normalized by the value in control group. Values were expressed as the
mean ± S.E.M. of three independent experiments. **P< 0.01, versus control group; ##P<0.01, versus NaHS-treated alone group; $ $P<0.01, versus FA-
treated alone group; &&P< 0.01, versus cotreated with NaHS and FA group.

doi:10.1371/journal.pone.0119478.g006
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protein in FA-exposed PC12 cells indicated that BDNF-TrkB pathway may be involved in the
protection of H2S against FA-induced neurotoxicity and pushed us to confirm whether BDNF
mediates the protection of H2S against the neurotoxicity of FA in PC12 cells.

In this study, we found that the blockage of BDNF-TrkB pathway with K252a, a specific
TrkB receptor inhibitor, reversed the inhibition effect of H2S on cytotoxicity of FA, indicating
that H2S-produced protection against FA-induced cytotoxicity in PC12 cells is mediated by
upregulation of BDNF. This is in agreement with the report that upregulation of BDNF pre-
vents human neuronal cells from the cytotoxicity associated with Aβ and H2O2 [35]. Interest-
ingly, increasing evidence illustrates that oxidative damage is one of the most critical effects of
FA exposure [58,59]. Thus, we want to investigate whether inhibition of BDNF-TrkB pathway
reverses the protective effect of H2S on FA-induced oxidative stress in PC12 cells. We found
that treatment with NaHS alone decreases the levels of ROS in PC12 cells. Although it has no
statistical significance between NaHS alone group and K252a alone group, we found that
K252a revises the NaHS-induced downregulation of ROS levels in PC12 cells. These data imply
the potential antioxidant action of H2S via regulating BDNF-TrkB pathway. Furthermore, we
found that K252a treatment certainty attenuates the inhibitory effect of NaHS against FA-
elevated ROS levels in PC12 cells. These data are consistent with the previous finding that
BDNF prevent auditory neurons against oxidative damage by significantly down-regulating
the levels of ROS and increasing neurons survival [60]. However, the relationship between
ROS and pathway of BDNF-TrkB is complex. It has been demonstrated that ROS act in a neu-
roprotective manner by BDNF-independent activation of TrkB and that the neurotoxic conse-
quences of ROS are paralleled by neuroprotective consequences [36]. Thus, the efficacious
therapeutic intervention aimed at diverse CNS disorders is selectively inhibiting the neurotoxic
while preserving the nneuroprotective consequences of ROS [36].

Subsequently, we detected the levels of active aldehyde, which is one of the most common
products and toxic markers of oxidative stress [61,62]. Malondialdehyde (MDA) and 4-
hydroxynonenal (HNE) are two endogenous aldehydes, which are commonly used as a marker
of oxidative stress [63]. Similarly, we found that NaHS not only reduced the basic levels of 4-
HNE in PC12 cells but also suppressed FA-induced accumulation of 4-HNE and MDA and
that K252a application markedly ablates NaHS-induced downregulation of accumulation of
MDA and 4-HNE in FA-treated PC12 cells. These results complement our hypothesis that H2S
protects PC12 cells against FA-induced oxidative stress by upregulation of BDNF-TrkB path-
way. Notably, in the present work, we shown that NaHS not completely makes FA-induced
upregulation of MDA and 4-HNE levels return to the levels of control group. We have previ-
ously confirmed that the neurotoxicity of FA is involved in the disturbed H2S synthesis. This
implies that it may involve another pathway in FA-induced upregulation of ROS and 4-HNE
independent of disturbance in H2S generation.

Several studies described that reactive oxygen intermediates and active aldehyde are able to
elicit apoptosis in a large variety of cultured cells [64,65]. Then, we further investigated whether
inhibition of BDNF-TrkB pathway with K252a abolishes the inhibition of NaHS on FA-
induced upregulation of apoptosis and activation of caspase-3, which is a major executioner of
apoptosis [66]. Additionally, apoptosis is governed by a number of regulators and the Bcl-2
protein family constitutes a central checkpoint [67]. Change in the levels of poptotic protein
Bax and anti-apoptotic protein Bcl-2 is critical for determining cell fate [68]. In this study, we
found that K252a treatment reverses NaHS-induced downregulation of Bax protein and upre-
gulation of Bcl-2 protein, indicting the important role of BDNF-Trk B pathway in the protec-
tion of H2S in PC12 cells. Furthermore, we found that K252a treatment abolishs the prevention
of NaHS from FA-induced increases in the apoptotic rate and the activation of caspase-3 in
PC12 cells. We also found the K252a reverses the protective effect of H2S against FA-induced
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upregulation of Bax protein levels and downregulation of Bcl-2 protein levels in PC12 cells.
These data suggest that BDNF-TrkB pathway mediates the protective effect of H2S against the
progression of FA-induced apoptosis in PC12 cells. Taken together, our data indicate that
BDNF-TrkB pathway mediates H2S-exerted protection against FA-induced neurotoxicity, in-
cluding cytotoxicity, oxidative stress, and apoptosis in PC12 cells.

Although K252a acts as a specific and potent inhibitor of TrkB, the specificity or lack of
specificity of this pharmacological agent should be mentioned. K252a is a potent inhibitor of
various protein kinases including Protein kinase A, Protein kinase C and Protein kinase G,
while also being a competitive inhibitor with respect to ATP[69]. Because of the lack of speci-
ficity of k252a, it remains to be established whether other pathways, such as various protein ki-
nases, mediate H2S-induced neuroprotection against FA neurotoxicity. Clearly, in the future,
further studies are necessary to understand whether various protein kinases are involved in this
neuroprotection of H2S.

In summary, the present work identified that H2S upregulates the BDNF-TrkB pathway in
PC12 cells and that the blockage of BDNF-TrkB pathway reverses the protection of H2S against
FA-induced cytotoxicity, oxidative stress, and apoptosis in PC12 cells. Our results suggest that
the BDNF-TrkB pathway may be a newly contributory mechanism to the protective effects of
H2S against FA-induced neurotoxicity and other neurotoxicity paradigms. However, further
studies are needed to uncover the mechanisms underlying H2S-rescued BDNF downregulation.
It has been reported sulfhydration involves in various fuctions of H2S [70–73] In the future, we
will focus on defining whether H2S alteres the level of BDNF by sulfhydration.
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