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A new theory and an exact computer algorithm for calculating kinetics and thermodynamic properties
of a particle system are described. The algorithm avoids trapping in metastable states, which are
typical challenges for Molecular Dynamics (MD) simulations on rough energy landscapes. It is based
on the division of the full space into Voronoi cells. Prior knowledge or coarse sampling of space
points provides the centers of the Voronoi cells. Short time trajectories are computed between the
boundaries of the cells that we call milestones and are used to determine fluxes at the milestones.
The flux function, an essential component of the new theory, provides a complete description of the
statistical mechanics of the system at the resolution of the milestones. We illustrate the accuracy
and efficiency of the exact Milestoning approach by comparing numerical results obtained on a
model system using exact Milestoning with the results of long trajectories and with a solution of the
corresponding Fokker-Planck equation. The theory uses an equation that resembles the approximate
Milestoning method that was introduced in 2004 [A. K. Faradjian and R. Elber, J. Chem. Phys.
120(23), 10880-10889 (2004)]. However, the current formulation is exact and is still significantly
more efficient than straightforward MD simulations on the system studied. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4913399]

I. INTRODUCTION

The Molecular Dynamics (MD) method is a useful tool
for studying properties of matter with atomically detailed
simulations. MD makes it possible to connect microscopic
structures and interactions with thermodynamics, kinetics,
and mechanisms of molecular processes. Nevertheless, a
significant limitation of these simulations is that of time
scales. The fundamental numerical time step (∼10−15 s) is
much shorter than many observation times in biophysics,
for example, enzymatic reactions can take milliseconds and
longer. This limitation makes MD simulations for these
systems extremely expensive. While considerable progress in
extending time scales of MD was made by improvements
in specialized and general hardware,1 significant limitations
remain on the length of a single trajectory (microseconds for
readily accessible machines) and on generating an ensemble
of long trajectories necessary for estimating kinetics. Methods
to speed up these calculations are desired.

Why are so many time steps required when the spatial
reorganization of the molecules that we examine is frequently
small? MD simulations can be long because a significant
fraction of the time the system is located at metastable states or
deep free energy minima. Nothing much happened while the
system diffuse in the metastable state. Shortening the wait time
at the metastable states while still retaining the correctness of
the sampling and time scales is a prime motivation behind
the exact Milestoning algorithm. We comment that in many
biomolecular systems, the number of metastable states can
be very large. In general, it is not sufficient to use a two
state system (reactant and product) as an effective description

of complex dynamics. In many biophysical systems, it is
necessary to consider a truly rough energy landscape with
almost a continuum of temporal and spatial scales. A classic
example is the study of myoglobin.2 Appropriate technologies
for such complex systems are desired.

Indeed, a number of different theoretical and algorithmic
approaches aim to extend the time scale of simulations and
produce trajectories probing slow kinetics. Notable methods
are action-based approaches. In this class of techniques,
trajectories of time scales much longer than temporal ranges
accessible to MD are estimated.3 Other approaches4 are aimed
at sampling trajectories that pass over a few significant energy
barriers. Individual trajectories in the latter case are not long
in time but are rare and therefore the average process is slow.
On rough energy landscapes, in which we find numerous
metastable states, broad distributions of barrier heights, and
wide range of minimum depths, individual trajectories may be
long in time. Technologies based on short and rare trajectories
are difficult to use in a straightforward fashion in these
systems. This is since individual trajectories between reactants
and products can be long (the trajectories may be trapped for
a long time in metastable states that are not the initial or the
final states). Hence, kinetics may not be sampled properly
by rare (and short) trajectory strategies. Methods like replica
exchange transition interface sampling5 aimed to enhance
sampling by identifying the metastable states and focusing
on the transitions between the metastable states using short
trajectories. The number of these metastable states and the
complexity of characterizing them can grow exponentially
with the system size.6 Studies of such systems are a significant
challenge, and an efficient algorithm to enumerate them is not
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known. It is desired to develop a technique that enhances the
time scale of simulations and is less sensitive to the features
of the underlying energy landscape.

Approaches like PPTIS (Partial Paths Transition Interface
Sampling),7 Weighted Ensemble (WE),8 and Milestoning9 aim
to address the last problem and consider dynamics that can
be a mix of diffusive (small barrier) and activated (large
barrier) processes. Designing the method with rough energy
landscapes in mind leads to technologies that are less impacted
by the broad distributions of barriers and minima we frequently
encounter in molecular biophysics10 or the “small barrier”
problem of material science.11 Both PPTIS and Milestoning
were introduced as highly efficient and approximate methods,
while WE is in principle exact for stochastic dynamics. PPTIS
and Milestoning exploit the use of short trajectory fragments
to estimate a local kinetic operator. The operator is then used
in probabilistic modeling of longer time scales.

The purpose of the present manuscript is to formulate
and illustrate an exact Milestoning approach. It offers an
exact description of the statistical mechanics of the system
while retaining many of the useful features of the original
approximate algorithm.12 The theory was tested and illustrated
extensively in the past (see, for instance, Refs. 13 and 14)
and a review is available.12 Nevertheless, since the theory
and implementation have evolved considerably and are now
exact, we repeat and redefine some of the concepts that were
introduced earlier in the formulation of Faradjian and Elber9

and Kirmizialtin and Elber.12 The current formulation also
builds on the Voronoi tessellation of Markovian Milestoning
introduced by Venturoli and Vanden-Eijnden15 and adjusted
to avoid milestone crossing by Majek and Elber.16 Finally,
the idea of exact molecular dynamics trajectories through
interfaces was discussed in a more limited fashion in earlier
works by Warmflash, Bhimalapuram, and Dinner and in a
follow up paper by Dickson, Warmflash, and Dinner.17,18 It
was also examined by Vanden-Eijnden and Venturoli in their
trajectory tilting approach.19 These studies did not offer a
complete statistical mechanical view, which is offered by the
approach of exact Milestoning.

Compared to weighted ensemble, another method that
is statistically exact,8 Milestoning is more flexible in the
choice of the dynamics. The WE approach requires stochastic
equations of motion to allow splitting and termination of
trajectories. Milestoning uses stochastic considerations only
to determine initial conditions and can use straightforward
and deterministic equations such as Hamilton equations. The
exact Milestoning algorithm can be applied to non-equilibrium
cases.

This manuscript is organized as follows. In Sec. II, we
motivate the study and present the general principles of
exact Milestoning and the corresponding algorithms. More
specifically, we start with the definition of the milestones
(Sec. II A), continue to define the core equations for the
probability of crossing a milestone and of the absolute flux
(Sec. II B), derive the formula for the stationary flux, a
core entity of the Milestoning theory (Sec. II C), discuss the
algorithm to compute the stationary flux (Sec. II D), consider
the probabilities of the states (Sec. II E), and finally examine
moments of the distribution of the first passage time (Sec. II F).

In Sec. III, we consider a numerical example. In Sec. III A,
we describe the simple two-dimensional energy surface that
we use for illustration. The type of the dynamics (Brownian)
is described in Sec. III B. The results and discussion are in
Sec. IV. In Sec. IV A, we consider numerical calculations of
the stationary flux and the MFPT (Mean First Passage Time)
using exact Milestoning. In Sec. IV B, we solve the same
problem using the Fokker-Planck equation (FPE). In Sec. IV C,
we compare exact Milestoning and the FPE solutions. In
Sec. IV D, we compare the exact Milestoning calculations
to a calculation based on very long trajectories (the most
straightforward approach for this type of problem in systems
with a large number of degrees of freedom) and discuss
accuracy and efficiency. In Sec. IV E, we examine the rate
of convergence as a function of the initial guess and illustrate
that starting from equilibrium distributions at the milestones
is significantly more efficient than initiating the system at one
milestone. The summary of the paper is in Sec. V.

II. THEORY AND CALCULATIONS

A. Definition and the choice of the milestones

A system of N particles at time t is fully characterized by
a phase space vector, x (t).

We are given a set of points (in phase or coordinate
spaces), {xi}Li=1, which we call anchors. These points guide the
trajectory calculations and establish centers of Voronoi cells,
which were introduced to Milestoning by Vanden-Eijnden and
Venturoli.15 A Voronoi cell j is defined as the set of all points
x such that their distance to x j is shorter than a distance to any
other anchor, xk (k , j). A dividing surface between two cells,
i and j, which we call a milestone, is the set of all points x such
that their distances from i and j is the same and smaller than the
distance to any other anchor. For example, if the anchor points
form a straight line in a two-dimensional space, the milestones
would be orthogonal lines exactly between the anchors. A
trajectory may cross a milestone and transition between two
Voronoi cells. Crossing a milestone is the fundamental event
in the theory of Milestoning and a state is defined by the
last milestone that was crossed. We denote milestones by Mα

where the index α is a shortcut for a pair of anchors, say, i j.
The total number of milestones is M .

How do we obtain the initial set of anchors? There are
numerous ways of obtaining them. In the past, we have used
our algorithms for reaction path calculations21,22 to determine
points along a reaction coordinate and to conduct Milestoning
calculations in one dimension.14,23,24 In other studies, we
have used chemical intuition to determine relevant sample
coordinates for protein folding (backbone torsions),25 pick up
structure from replica exchange equilibrium calculations,26 or
even use a field representation of material density.27 Hence,
the choice of anchors is highly flexible, and we rely on the user
to provide a sensible sample of anchors that can (a) describe
the process of interest as a sequence of transitions between
cells associated with the anchors and that (b) the transitions
between cells can be effectively sampled by short trajectories.
While we have not emphasized this point in the past, the
set of anchors can be adjusted dynamically. As we explore
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more phase space points using trajectories between interfaces,
we may discover new portions of phase space that require
sampling and therefore new anchors can be generated on the
fly.

There is also considerable flexibility in the definition of
the distances mentioned above. In the present discussion, the
distance between any two points, xi and x j, is simply di j

=

�
xi − x j

�t �xi − x j

�
. However, the distance can be defined

also in coarse space. Let a vector of coordinates in coarse
space be Q (x) Q ∈ RJ, where J < 3N . The distance in coarse

space is dQ, i j =

�
Qi −Q j

�t �Qi −Q j

�
. For example, when

describing protein folding, the coordinates of the protein and
not of the solvent are likely to be sufficient to describe the
reaction. Of course, the dynamics is still conducted in the full
space of x (t).

B. Definitions: Space of events, probability of events,
flux, and kernel

1. Definitions

Milestoning events: The basic event of the statistical
theory for kinetics and thermodynamics is the last crossing
of a milestone (say, α) by a trajectory. The set of all events is
Ω. A trajectory such that the last milestone that it crossed is α
is said to be in a state α.

pα (x, t) · dx: It is the probability that a trajectory last
crossed a milestone α at a phase space point x at time t ′ in
the time interval t ′ ∈ [0, t], given that at time 0, the trajectory
already crossed a milestone and was in Ω.

Hence, no other milestone was crossed up to time t
after milestone α was crossed at t ′. Any trajectory in the set
can be assigned to an event of the set Ω with a probability
pα (x, t). Since a trajectory must have crossed a milestone
earlier, the sum of the probabilities of all events is one and
can be written as


α


Mα

pα (x, t) dx = 1. This normalization

may raise a concern about time zero. That is, what is the
milestone that was crossed when we start probing the process?
We therefore set an initial condition that at time zero, the
trajectory must have been in Ω and we satisfy this condition
by requiring that the trajectory crosses a milestone exactly at
time 0 with a probability pα (x, t = 0).

qα (x, t) · dt · dx: It is the probability that a trajectory last
crossed a milestone α at a phase space point x between times t
and t + dt given that at time zero the trajectory crossed already
a milestone and therefore was in Ω.

We call the function qα (x, t) the absolute flux or, in short,
the flux. Note that the flux function as defined is always
positive. Therefore, it differs from the usual definition of flux in
continuum mechanics. Since the system is assumed ergodic,
and since we setup initial conditions that imply crossing at
time zero, a trajectory must have crossed the latest milestone
at some time t. We can therefore normalize this probability as

α


Mα

dx
∞
0

dt · qα (x, t) = 1.

Kαβ (x ′, t ′; x, t) · dx · dt: It is the probability of crossing
milestone β between times t and t + dt (t > t ′) at phase space
point x given that milestone α was crossed at time t ′ at

phase space point x ′ and no other milestone was crossed
between t and t ′. It is also called the kernel and is normalized
in a similar way to the flux function. We sum up over all
crossing events and times given the earlier crossing event
of milestone α at phase space point x and time t. We have
β


Mβ

dx ′
∞
t

dt ′Kαβ (x, t; x ′, t ′) = 1.

We are now ready to write an expression for pα (x, t),
pα (x, t)

=

t
0

qα (x, t ′)

1 −


β∈ᾱ


Mβ

t
t′

Kαβ (x, t ′; x ′, τ) dτdx ′


dt ′.

(1)

Equation (1) means the following: we ask what is the

probability of finding a trajectory at state α, i.e., that at time t,
the last milestone that the trajectory crossed was α. Consider
all crossing events into state α at earlier times t ′ ∈ [0, t]. These
crossing events may contribute to the probability of being at
state α. However, some of these events are lost from state α
between t ′ and t since they cross another milestone before time
t. We therefore remove from these crossing events the losses
to other states β. The notation β ∈ ᾱ means milestones β that
can be crossed after milestone α was crossed without passing
any other milestone as an intermediate event. In other words,
the milestones β ∈ ᾱ share a Voronoi cell with milestone α.
For example, if α is an interface between cells i and j, then β
is an interface between cells j and k.

Because Eq. (1) is formulated from a phase point x ′ to
another phase point x, it is exact. In the past, we formulated an
approximate version of Eq. (1) in which only a weight function
of the milestone was computed.9 The flux and the kernel still
depend on the phase space points. We approximate the flux
function as a canonical distribution conditioned on being at a
milestone multiplied by a constant, and the kernel was applied
on the sampled points exactly.12 This approximation implies
memory loss of trajectories between milestones and has proved
useful in a number of applications (for recent applications, see
Refs. 25 and 27–30). Nevertheless, the focus of the present
paper is on exact applications. Equation (1) holds of course
also for non-equilibrium processes.

The sequence of events of Eq. (1) is illustrated schemati-
cally in Figures 1 and 2.

While qα (x, t) seems like a flux function in the sense of
continuum mechanics, it is not the direct derivative of pα (x, t).
The time derivative of the probability of being at state α is

dpα (x, t)
dt

= qα (x, t)

−

β


Mβ

t
0

qα (x, t ′) Kαβ (x, t ′; x ′, t) dt ′ · dx ′.

(2)

Equation (2) is a sum of a gain and a loss at time t. We gain
from trajectories that cross milestone α exactly at time t and
lose trajectories that cross α (enter state α) earlier and exactly
at t leave state α through another milestone β. The loss term
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is an integral over earlier entry times and summation over all
exit channels β and x ′.

Note that Eq. (1) is not closed. We expressed pα (x, t) in
terms of two other functions which at present are not known

(qα (x, t) and Kαβ (x, t ′; x ′, t)). We therefore write another
equation for the flux. In our kinetic model, no particles are
lost during a transition. Hence, we write an equation stating
the conservation of trajectories in terms of the flux function,

qα (x, t) · dt =




pα (x, t = 0) · dt t = 0



β

t
0


Mβ

qβ (x ′, t ′) Kβα (x ′, t ′; x, t) · dx ′ · dt ′

· dt t > 0




. (3)

Equation (3) is at the center of the Milestoning theory and has
the following physical meaning: we ask on the left side what
is the probability that milestone α was crossed between time t
and time t + dt at phase space point x. On the right hand side
we count the pathways in which this transition may happen. If
we are at time zero, then there is an initial condition (top term)
that counts the trajectories that cross milestone α exactly at
time 0. The lower term is for times that are different from zero.
Crossing α at time t is by a trajectory of a well-defined state.
Hence at earlier time, it must have crossed another milestone
(β). The summation and integral in Eq. (3) is over all the
trajectories that cross milestone β at earlier times t ′ and then
continue to cross α exactly at time t. This summation accounts
for all the events of crossing of α at time t. No other events in
Ω that contribute to this transition are possible.

We will now show that Eq. (3) for the flux function qα (x, t)
can be solved exactly. The flux function is a core entity of
Milestoning that enables the calculations of equilibrium and
kinetic observables such as the free energy and the moments
of the mean first passage time. It is therefore no wonder that

FIG. 1. A schematic drawing of Milestoning in two dimensions. The mile-
stones are the blue lines between the anchors (red circles). A trajectory is
shown as a curve that alternates colors when the last milestone crossed is
modified. In the illustration, it crossed milestone α and then β. See text for
more details.

we spent considerable time on the theory of how to compute
qα (x, t) and on an algorithm to extract it from MD trajectories.

C. An equation for the stationary flux function,
qα,stat(x )

To simplify the basic expression provided by Eq. (3), we
consider stationary processes and stationary flux. A subset
of stationary processes includes systems at equilibrium. We
comment that even at equilibrium the flux is not necessarily
zero. In the directional Milestoning picture proposed by Májek
and Elber,16 the flux from cell i to cell j is considered a different
function from the flux from cell j to i and it is not zero for a
system at equilibrium at a finite temperature.

We consider processes for which a stationary long time
limit is well defined. Of course, it is not guaranteed that
a stationary solution exists and one can imagine a non-
equilibrium process with an oscillating external force for
which the flux never becomes stationary. However, in the
current formulation, we restrict ourselves to stationary, long-
time processes. The goal of the current section is the derivation
of an equation for the stationary flux qα,stat (x).

Another restriction is the type of processes that we
consider which is of processes homogeneous in time. For

FIG. 2. A schematic representation of the sequence of events considered in
the basic Milestoning equation (Eq. (1)). The first event is the passage through
milestone α at time t ′. Then during propagation from time t‘ to t , some
trajectories change their state by passing another milestone β. We consider
only the fraction of trajectories that do not pass any other milestone up to
time t as in state α.
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example, typical MD trajectories with time independent
potentials are time homogeneous. In this case, the kernel
does not depend on the absolute times but only on the time
difference; hence, we write

Kβα (x ′, t ′; x, t) → Kβα (x ′; x, t − t ′) .
The Laplace transform is a convenient approach to handle
Eqs. (1) and (3) because both equations are convolutions of
time homogeneous processes. After the Laplace transform,
the convolutions are reduced to algebraic products, which are
simpler to manipulate. Moreover, it is easy to use Laplace
transformed functions to derive the long time limit as we
illustrate below.

We express the stationary flux in terms of the Laplace
transform of the time dependent flux function. We define the

Laplace transform of a function g (t) as g̃ (u) =
∞

0−
exp (−ut)

g (t) dt, where u is the Laplace variable, and the time integral
starts from small negative values. For the flux function, we
write

q̃α (x,u) =
∞

0−

qα (x, t) exp (−ut) dt . (4)

Consider now a time t̄ that is finite but sufficiently long
such that for all practical purposes, the flux qα (x, t̄) is time
independent (stationary) and is equal to qα,stat (x). We can
separate Eq. (4) to two integrals

q̃α (x,u) =
t̄

0−

qα (x, t) exp (−ut) dt

+

∞
t̄

qα,stat (x) exp (−ut) dt

=

t̄
0−

qα (x, t) exp (−ut) dt

+ qα,stat (x) · 1
u

exp (−ut̄) .

Multiplying the above equation by the Laplace variable u and
taking the limit of u → 0, we have

lim
u→0

[u · q̃α (x,u)] = lim
u→0


u ·

t̄
0−

qα (x, t) exp (−ut) dt


+ lim

u→0


u · qα,stat (x) · 1

u
exp (−ut̄)


,

lim
u→0

[u · q̃α (x,u)] = qα,stat (x) .

(5)

Similarly, we define the Laplace transform of the time
homogeneous kernel

K̃βα (x ′; x,u) =
∞

0−

Kβα (x ′; x, τ) exp (−uτ) dτ. (6)

Consider the Laplace transform of the kernel at the limit of
u → 0,

lim
u→0

�
K̃βα (x ′; x,u)� = lim

u→0



∞
0−

Kβα (x ′; x, τ) exp (−uτ) dτ



=

∞
0−

Kβα (x ′; x, τ) dτ, (7)

lim
u→0

�
K̃βα (x ′; x,u)� ≡ Kβα (x ′; x) ,

Equation (7) has a simple physical interpretation as the
probability that a trajectory will cross milestone α at phase
space point x for the first time given that it crossed milestone
β at phase space point x ′ before. The actual time difference
between the crossings no longer matters. For future reference,
we also define the time independent kernel—Kβα (x ′; x).

Keeping Eq. (5) in mind, we now take the Laplace
transform of Eq. (3), multiply the result by the Laplace variable
u, and take the limit of u → 0,

lim
u→0

[u · q̃α (x,u)]
= lim

u→0
[u · pα (x, t = 0)]

+ lim
u→0




β


Mβ

dx ′ · u · q̃β (x ′,u) K̃βα (x ′; x,u)

.

(8)

The first term on the right hand side of Eq. (8) vanishes, as
it should for initial conditions that have no impact on the
stationary solution. We use Eqs. (5) and (7) to write

qα,stat (x) =

β


Mβ

dx ′qβ,stat (x ′) · Kβα (x ′; x) . (9)

Equation (9) is a linear equation for the vector qstat with the
milestone number as an index. The kernel is known exactly
from short MD trajectories between milestones. Given a set
of initial conditions at the interface (provided as a sample
from the flux function), the kernel transformed these initial
conditions by trajectory calculations into hitting points on
nearby milestones. We can write Eq. (9) more compactly using
bold-faced letters to denote vectors and matrices. We have

qt
stat = qt

statK. (10)

Both the vector and the matrix are typically of high dimension.
However, the kernel is known exactly and is a transition
probability. This facilitates the computational algorithm,
which is described next.

D. An algorithm to compute the stationary flux

Equation (10) is a linear problem on the unknown qt

given the transition kernel (matrix) K. The linear problem can
be solved, in principle, by standard means. For example, the
left eigenvector of the matrix K with an eigenvalue of one is
the desired solution for Eq. (10). All the absolute values of the
eigenvalues of K are between zero and one and the eigenvector
with eigenvalue one is unique if the system is ergodic. This
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also follows from the kernel being a transition matrix. It is
therefore clear that multiplying qt by K numerous times will
reduce the contributions of all the eigenvalues that are smaller
than one and will retain the desired solution.31

We solve for the flux vector qt Eq. (10) by power
iterations.31 The iterations are over flux vectors and are
denoted by

�
q(n)t	N

n=0, where N is the number of iterations
used. The sequence of iterations is given by




q(0)
α (x) ∝ exp (−βH (x)) x ∈ Mα ∀α

q(n+1)t = q(n)tK n = 0,1,2, . . . .
(11)

The Boltzmann distribution follows from the NVT ensemble
and is clearly not exactly the flux, hence the need for iterations.
We generate a sample from the Boltzmann distribution by
Monte Carlo (MC) or MD algorithms tailored for constant
temperature simulations conditioned to be at milestone α. A
better initial guess can be obtained by computing forward and
backward trajectories to the nearby interfaces. The phase space
points, provided by the exact flux function, are sampled from a
first hitting distribution. That is, integration backward in time
of the phase space points yields trajectories that cross first
a milestone different from the starting milestone (Figure 3).
This picture was discussed first in the context of PPTIS.7

FIG. 3. A schematic drawing of trajectory fragments initiated at milestone
α. Backward trajectories in time (dashed lines) are used to assess if the
trajectories are sampled from FHPD. The red dashed trajectory re-crosses the
initial milestone α before hitting milestone β. Therefore, it is not sampled
from FHPD. The green trajectory hits milestone β before any other milestone
and is sampled from FHPD. Note that the forward trajectories (black lines)
are allowed to re-cross the initial milestone before they finally terminate
at a nearby milestone. The forward trajectories illustrate the operation of
the transition matrix K that takes phase space points from one milestone
and transmits them with certain probability to phase space points at another
milestone. For Milestoning calculations, we also record the time length of
the forward trajectory fragments (black lines). It is possible to exploit the
identity of the terminating milestones of the backward trajectories (dashed
lines) as well, but so far we have not done so. The final termination points
of the trajectories (for example, the black circle at milestone β) are used as
starting points for the next iteration of the flux q(n+1).

We implemented this condition for acceptance of trajectories
in directional Milestoning16 to increase the accuracy of the
initial flux function avoiding the over counting of trajectories
that cross the same interface multiple times. Each trajectory
must be counted only once regardless of the number of times it
crosses sequentially and repeatedly the same interface. Hawk
and Makarov introduced a filter that extends to more than one
milestone.32

Even this filter is not providing the exact flux function
since we have no record of the fate of the trajectories beyond
the nearby interfaces. It is possible that the distribution at a
nearby interface is still inaccurate. The condition provided in
Eq. (11) is global and it cannot be satisfied exactly by local
considerations unless iterations are applied. In principle, the
initial guess for the flux function should not affect the final
results, however, the number of iterations that is required to
obtain the correct answer is influenced by the initial condition.
It makes sense to try to determine a best approximation to the
flux function locally and to reduce the number of required
(expensive) iterations.

The iterations have a simple physical interpretation.
We initiate trajectories at a milestone and continue these
trajectories to the nearby milestones. The next iteration
uses the final phase space point of the previous terminating
trajectories at a milestone as initial conditions and continues
these trajectories to yet another layer of milestones. Hence,
each of the iterations extends the time length of the trajectories.
If a very large number of iterations are used, exact long
trajectories are generated. Hence, it is not surprising that
Milestoning becomes exact at the limit of a large number of
power iterations. Of course, this particular scenario suggests
no computational advantage compared to straightforward
molecular dynamics. It only suggests a formal connection to
exact calculations and an analysis method.29 We expect, as
we illustrate a number of times in the past, that if the system
is close to equilibrium, rapid convergence to the correct flux
can be achieved using good guesses (and only short traject-
ories).

The flux is not normalized in the usual sense. For
convenience, we write

qα,stat (x) = wα fα (x) , (12)

where wα is an undetermined weight that defines the relative
contributions of different milestones to the overall flux. This
weight is a prime target of the computations since it is useful
in various numerical variants of Milestoning. For example,
wα determines the weights of edges for molecular kinetic
networks.33 It is the only term that carries information about
the kinetics in the zero iteration, since the distribution within
the milestone

(
f (0)α (x)) is of equilibrium. Hence, a physical

interpretation of the zero iteration is of a system that is
equilibrated within a milestone but not necessarily between
milestones. The local equilibrium within a milestone is the
“memory loss” approximation that was used in the first version
of Milestoning.34 It is assumed that trajectories spend enough
time between the milestones such that the distribution on the
terminating milestone is of local equilibrium. This separation
of time scales can be achieved by proper selection of the
interfaces. For example, if a picture of a single reaction
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coordinate is appropriate and if the space normal to the
reaction coordinate is small and local equilibrium in the
milestone can be achieved rapidly, then the memory loss
assumption is likely to be valid.14 In a reduced coarse-
grained description of the system, only the milestones and
their weights remain.

We emphasize that the above considerations of “memory
loss” are not required in exact Milestoning. In exact Mileston-
ing, the iterations guarantee convergence to the exact answer
regardless of the initial guess for the flux function. Poor initial
guesses may cause however slower convergence rate.

The function fα (x) is normalized,
fα (x) dx = 1. (13)

Note that the Eq. (10) determines the overall flux only up to a
multiplying constant, λ, which we take to be positive. Hence,
if (qα,stat (x) = wα fα (x))Mα=1 is a solution of Eq. (10), so is the
vector (λ · wα fα (x))Mα=1.

The second line of Eq. (11) requires the calculations of a
high dimensional integral over the phase space points x. Each
phase space point is used to initiate a trajectory fragment
that runs to termination, which is formally equivalent to the
operation of K on the initial phase space point. We calculate
this integral by sampling in phase space. The sampling is
conducted according to the flux q(n). In the first iteration,
the sample is determined by the canonical distribution. In the
next iteration, we use points that were created by terminating
trajectories at the milestones. Let the set of nth iteration phase
space points at milestone α be


x(n)αi

Lα

i=1
, where Lα is the

number of sampled points. The probability density associated
with this set is

q(n)
α,stat (x) = w

(n)
α

Lα


i=1, ...Lα

δ
(
x − x(n)αi

)
(14)

which is equivalent to approximating the function fα (x) in
Eq. (12) by a sum of Dirac’s delta functions. Operating on this
set yields a new set of phase space points using Eq. (11),

w
(n+1)
α

Lα


i=1, ...Lα

δ
(
x − x(n+1)

αi

)

=

β

w
(n)
β

Lβ

 
j=1, ...Lβ

δ
(
x ′ − x(n)β j

)
Kβα (x ′, x) dx ′,

(15)
w
(n+1)
α =


β

w
(n)
β

×



i=1, ...,Lα


j=1, ...Lβ

Kβα

(
x(n)β j , x

(n+1)
αi

)
/(LαLβ)


.

The second line is obtained by integration of the phase space
variable x in the first line of Eq. (15). The final formula is
a direct equation for the vector of weights of the milestones
w. At the limit of sufficient number of iterations, we have
w(n+1) → w(n). It is convenient to re-write Eq. (15) as a
linear equation for the vector of coefficients w(n+1), which
is consistent with the approximate variation of Milestoning.12

Equation (15) is a power iteration of the type w(n+1)t = w(n)tK

and it converges to the dominant eigenvector of the matrix K.
It can also be cast as an eigenvector problem and, as such, one
can use an eigenvalue solver with better convergence. Both
equations converge to the same limit,

w
(n+1)
α

Lα


i=1, ...Lα

δ
(
x − x(n+1)

αi

)

=

β

w
(n+1)
β

Lβ

 
j=1, ...Lβ

δ
(
x ′ − x(n)β j

)
Kβα (x ′, x) dx ′,

(16)
w
(n+1)
α =


β

w
(n+1)
β

×



i=1, ...,Lα


j=1, ...Lβ

Kβα

(
x(n)β j , x

(n+1)
αi

)
/(LαLβ)


.

In practical applications, the length of the vector and the
dimensionality of the transition matrix, once the phase space
variables are integrated out, are manageable and so far have not
exceeded tens of thousands. With the weight of the milesto-
nes calculated, the fluxes in Eq. (14) can be determined as
well.

An important question is the error assessment and tests of
the convergence of the iterations. In general, we use ensemble
averages to test convergence. This is because we can estimate
them with reasonable accuracy even for large systems. For
example, we may consider wα ≡


Mα

qα (xα) dxα. However, for

the small and simple test case, we consider here it is possible
to look at the results at greater details. We therefore introduce
also the Rayleigh quotient r for the fluxes which is given by

r ≡


q(n+1),q(n)�


q(n),q(n)� =



q(n)K,q(n)�


q(n),q(n)� , (17)

where the ⟨·, ·⟩ is the L2 inner product. The Rayleigh quotient
is bound between minus one and one since the kernel K does
not increase the length of a vector. It is equal to one if the
results are converged. Our representation of the flux density
uses Dirac delta functions.

The second convergence measure that we used is the
relative error in the 1-norm, ∆, between flux vectors of
sequential iterations,

∆α =
q(n−1)

α − q(n)
α
1

q(n)
α
1
. (18)

The simulations converge when ∆α = 0. These measures
are useful also for conducting the iterations optimally. It is
possible that fluxes at selected milestones vary slowly or
converge rapidly. Therefore an adaptive iterative scheme is
possible and likely to show efficiency gains. We illustrate this
phenomenon in Sec. III.

We summarize below the algorithm for computing the
stationary flux q.

1. For each milestone Mα, sample configurations, xα,
from a known trial distribution, typically canonical qα (x) ∝
exp (−H (x) /kT) x ∈ Mα.

2. Compute forward trajectories from the points xα
sampled from the current qα for all α. We record the initial
and final points of the trajectory fragments as well as the time
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length. This operation samples the matrix product qt ·K. The
time length of the trajectories is used in other calculations.

3. Estimate the total flux through the interface α by
summing up the points that terminate at α. This operation
is equivalent to the integration w

(n+1)
α =


Mα

q(n+1)
α (xα) dxα.

4. Check convergence of the iterations: (1) | ⟨qK,q⟩ /⟨q,q⟩
− 1| < ε , (2) q(n−1)

α − q(n)
α
1

q(n)
α
1
≤ ε, or by (3) observ-

ables of interest. If the calculation has not converged, use the
final phase space points of the trajectory fragment to obtain a
new qα and go to 2.

The stationary flux function is the basic entity of the
Milestoning theory and algorithm. However, it is not a
common experimental observable. To make the connection
to the more typical observables of equilibrium and kinetics,
we show below how (with the help of the flux function) we can
determine the probability of a state and its free energy (Sec. II
E). We follow up with the calculations of the moments of the
first passage time (Sec. II F).

We finally comment that the original version of Mileston-
ing9 is a simplified form of the exact Milestoning formulation.
In the original version, no iterations were conducted and the
trial distribution qα (x) ∝ exp (−H (x) /kT) x ∈ Mα was used
in the equation for the weights of the milestones (Eq. (15)).
There was no further refinement of the distribution within the
milestone. Hence, the memory loss approximation was used.

E. The stationary probability

We consider the probability, pα (x, t), that Mα is the last
milestone that was passed at a phase space point x before time
t. At stationary or equilibrium conditions, the dependence on
time can be omitted and we use this probability to define a cor-
responding “free energy” as Fα (x) = − (kBT) · log (pα (x)),
where the temperature, T , and the Boltzmann constant, kB,
enters the calculations through the initial conditions of the
trajectories (see Sec. II D and Eq. (11)). As we have done for
the flux, we consider the Laplace transform for the probability
(Eq. (1)) to have

p̃α (x,u) = q̃α (x,u) · 1
u


1 −


β


Mβ

dx ′K̃αβ (x, x ′,u)

. (19)

We multiply Eq. (21) by the Laplace variable u and consider
the limit in which it is approaching zero. This is the long
time limit that gives the stationary solution of the probability
(similar to the limit of the flux function in Eq. (5)),

lim
u→0

u · p̃α (x,u) = pα,stat (x) . (20)

We elaborate on the expression on the right hand side of Eq. (19),

lim
u→0

1
u


1 −


β


Mβ

dx ′K̃αβ (x, x ′,u)


= lim
u→0

1
u


1 −


β

∞
0−


Mβ

dt · dx ′ · exp(−ut)Kαβ (x, x ′, t)


= lim
u→0

1
u


1 −


β

∞
0−


Mβ

dt · dx ′ · {1 − ut} Kαβ (x, x ′, t)


= lim
u→0

1
u


1 −


β

∞
0−

dt

Mβ

dx ′Kαβ (x, x ′, t)

+ u

β

∞
0−

dt

Mβ

dx ′ · t · Kαβ (x, x ′, t)


= lim
u→0

1
u


1 − 1 + u


β

∞
0−

dt

Mβ

dx ′ · t · Kαβ (x, x ′, t)


=

β

∞
0−

dt

Mβ

dx ′ · t · Kαβ (x, x ′, t)

≡ ⟨tα (x)⟩ , (21)

where we denote the average lifetime of a position xα at
milestone α as ⟨tα (x)⟩. It is the average time that it takes
a trajectory initiated at xα to reach a milestone different from
α for the first time. We now combine Eqs. (19) to (21) to
obtain

lim
u→0

[p̃α (x,u)]

= lim
u→0


q̃α (x,u) · 1

u


1 −


β


Mβ

dx ′K̃αβ (x, x ′,u)



, (22)

pα,stat (x) = qα,stat (x) · ⟨tα (x)⟩ .
The last expression is a remarkably simple result for the
probability of being at state α. It is a product of the stationary
flux function to cross milestone α multiplied by the average
time that the crossing trajectory lives in this state (before
crossing another milestone). We call this time—the lifetime
of a milestone. Compared to the previous calculations of
the flux function, we need to add only a single new entity
(the milestone lifetime) that can be computed from the same
trajectory fragments that we used to estimate the flux. If
we sample Lα trajectories at milestone α and phase space
point x with termination times at other milestones {ti}Lα

i=1,
the lifetime of milestone α at phase space point x is ⟨tα (x)⟩
= 1

Lα


i=1, ...,Lα

ti. Hence, no new trajectories are required.

F. The mean first passage time

To study kinetics, we focus on the first passage time. The
first passage time is defined as the time it takes the system to
reach for the first time a state f given that it started from a
state i. The first passage time is a random variable that can be
sampled with trajectory calculations or its distribution function
can be computed. We prefer to calculate the moments of the
distribution function of the first passage time. In particular, the
first moment of this distribution, ⟨τ⟩, or the MFPT is widely
used to study kinetics. For reactants’ population that decays
exponentially in time, the MFPT is the inverse of the rate
constant.
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To model the first arrival to the final state, we consider
a specific choice of the kernel with an absorbing boundary at
milestone f which we call KA. We set

KA, f α (x; x ′, t) = 0 ∀α. (23)

The MFPT or ⟨τ⟩ is the time that it takes a trajectory to enter
the absorbing state multiplied by the probability to enter the
absorbing state at time t, averaged over all times. In other
words, it is the first moment in time of the flux at milestone f ,

⟨τ (x)⟩ =
∞

0−

t · qf (x, t) dt or


τf
�

=


M f

dx f

∞
0−

dt · t · qf (x, t) . (24)

It is important to note that the flux as defined in Eq. (24) is no
longer stationary. This is a result of the choice of the kernel
made in Eq. (23). The kernel is no longer conserving and the
flux is decaying as a function of time. This is necessary since
Eq. (24) is diverging for a non-zero stationary flux.

We can write the integral over time as a derivative in
Laplace space,

∞
0−

t · qf (x, t) dt = lim
u→0

∞
0−

exp (−ut) t · qf (x, t) dt

= − lim
u→0

d
du

∞
0−

exp (−ut) qf (x, t) dt

= − lim
u→0

d
du

q̃f (x,u) . (25)

We already discussed q̃α (xα,u) (see, for instance, Eq. (8))
which we could further exploit for our purpose here,

q̃α (x,u)= pα (x, t = 0)
+


β


Mβ

dx ′ · q̃β (x ′,u) K̃A, βα (x ′, xα,u) ,

dq̃α (x,u)
du

=

β


Mβ

dx ′


dq̃β (x ′,u)
du

K̃A, βα (x ′, x,u)

+ q̃β (x ′,u) dK̃A, βα (x ′, x,u)
du


.

(26)

Or in a more compact matrix notation,

q̃t
�
I − K̃A

�
= pt (t = 0) ,

dq̃
du

t �
I − K̃A

�
− q̃t d

du
K̃A = 0.

(27)

We determine the derivative of q̃ with respect to the Laplace
variable in the compact notation

dq̃t

du
= q̃t dK̃A

du
�
I − K̃A

�−1

= pt (t = 0) · �I − K̃A

�−1 dK̃A

du
�
I − K̃A

�−1
. (28)

We define the matrix KA ≡ lim
u→0

K̃A =
∞

0−
KA (t) dt. Hence,

whenever we do not write explicit time dependence, we imply
integration over time.

We also consider the matrix of local average transition
times between the milestones, T. This matrix is also minus
the derivative of the Laplace transform of the matrix K̃A (u)
at the limit of zero Laplace variables. It has a simple physical
interpretation. It is the first moment of time of the probability
transition matrix KA (t),

T = − lim
u→0

dK̃A (u)
du

= − lim
u→0

d
du



∞
0−

exp (−ut) ·KA (t) dt



=

∞
0−

t ·KA (t) dt . (29)

Note that ⟨τ⟩ = − lim
u→0

dq̃ f

du
so the negative signs of T and ⟨τ⟩

that emerge from the differentiation with respect to the Laplace
variable cancel out to give

⟨τ⃗⟩t = pt (t = 0) · (I −KA)−1T(I −KA)−1. (30)

We note that the transition time is a function of the phase
space points at the two interfaces. Interestingly, the explicit
dependence on the absorbing milestone disappears in the final
expression as is illustrated by further manipulations below.
This is typical to Markovian processes in which the MFPT
depends only on the starting and not the end point.9

The MFPT in Eq. (30) is a vector that contains information
on all milestones. Here, we are interested only in the average
time to reach for the first time the absorbing milestone f .
Hence, we are interested in a single element of the vector�⟨τ⃗⟩t�

f
. To obtain this single element, we multiply Eq. (32)

from the right by a column vector e f

�
x f

�
which is a unit

vector in the direction of the absorbing milestone. The scalar
product implies an integration over the phase space points of
the absorbing milestone, x f , to have

⟨τ⃗⟩t · e f = pt (t = 0) · (I −KA)−1T(I −KA)−1 · e f . (31)

As stated in the definition the rows of the transition matrix
K (including the integration over the phase space points in
the milestone) must add to one. The matrix KA is different
since the elements of the row of the absorbing state in KA,
and obviously their sum, are zero. As a result, the matrix KA

has non-negative eigenvalues smaller than one. This implies
that the inverse of (I −KA) in Eq. (31) is well defined. The
summation of the rows of KA can be written as

KA · 1 = 1 − e f , (32)

where 1 is a column vector. Each of the elements of 1 is equal
1. Using Eq. (32), we can write

(I −KA) 1 = e f ,1 = (I −KA)−1e f . (33)

Substituting in Eq. (31), we have

⟨τ⃗⟩t · e f = pt (t = 0) · (I −KA)−1T · 1. (34)
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Consider the matrix vector product t ≡ T · 1. The resulting
elements of the column vector t are the summation of the row
of the matrix T. For example,

tα (x) =

β


Mβ

Tαβ (x, x ′) dx ′

=

β

∞
0


Mβ

dt · dx ′ · t · K A,αβ (x, x ′, t) . (35)

Equation (36) therefore takes its final compact form

⟨τ⃗⟩ f = pt (t = 0) · (I −KA)−1t. (36)

Equation (36) is central to the understanding of kinetics as the
MFPT plays an important role in many theories, experiments,
and simulations of molecular processes. Interestingly, if the
kernel is replaced by a single exponential function,9 Kαβ ∝
exp (−t/tα) which implies a Markov process,34,37 we obtain
the same expression as Eq. (36) where tα = (t)α.

The expression in Eq. (36) can be difficult to compute in
exact Milestoning since the solution of a large linear system
(I −KA) or a geometric series expansion in KA is required.
In the original version of Milestoning, this was of a smaller
concern since the matrix depends only on the milestone index
and not on the phase space point in the Milestone. In exact
Milestoning, we retain the dependence on the phase space
point. To find a simpler expression that depends only on the
flux vector, we define a new kernel KC (C for cyclic) in which
the flux absorbed at milestone f is instantaneously transported
to the initiating milestone(s),

KA = KC − e fpt (t = 0) . (37)

An intriguing relationship is stated below,

qfpt (t = 0) = qt (I −KA) . (38)

Equation (38) is demonstrated in Eq. (39) in which we
used the condition for a stationary solution qt = qtKC for a
conserving K,

qt (I −KA) = qt − qtKA

= qt − qt
�
KC − e fpt (t = 0)�

= qt − qtKC +
�
qt · e f

�
pt (t = 0)

= qt − qt + qfpt (t = 0)
= qfpt (t = 0) . (39)

Multiplying Eq. (36) by qf , we have

qf ⟨τ⃗⟩ f = qfpt (0) · (I −KA)−1t = qt (I −KA) (I −KA)−1t,

qf ⟨τ⃗⟩ f = qt · t, (40)

⟨τ⃗⟩ f =
�
qt · t

�
/qf .

Equation (40) is a major result for the calculation of the
MFPT since it includes only vectors. It is a product of the
vector of fluxes and the vector of local life times of the
milestones. Hence, the short trajectories described in the
flux and stationary probability calculations are used again to
compute the MFPT with no additional cost.

Equation (40) is similar to an expression derived by
Reimann, Schmid, and Hänggi (RSH) for the MFPT for

non-Markovian stationary processes.38 We discuss below the
connection between their formula and Eq. (40).

We denote the alternative definition by ⟨τRSH⟩,

⟨τRSH⟩ =


α


Mα

pα,stat (x) dx
Mi

qi,stat (x) dx
. (41)

The flux qi is through the ith milestone that feeds new
trajectories into the system until a stationary flux is reached
with the balancing of the absorbing boundary. The absorbing
milestones are set in such a way that their own flux is matched
by the flux into the source milestone (and hence the use of K
below). In Milestoning, we emphasize the use of fluxes and
therefore write an adjusted expression, which is equivalent
to Eq. (41). The sum in the denominator in our case is over
the flux into the absorbing state, while RSH sum the flux
to the initial state. However, because of the cyclic boundary
conditions, these two fluxes are the same,

⟨τRSH⟩ =


α


Mα

qα,stat (x) tα (x) dx
M f

qf ,stat (x) dx
≡ (q · t) /qf ,stat. (42)

Further exploitation of Laplace transforms allows us to derive
expressions for higher moments of the MFPT. For example,
the second moment of the first passage time is



τ2 �x f

��
=

∞
0−

t2qf

�
x f , t

�
dt = lim

u→0

d2q̃f

�
x f ,u

�

du2 . (43)

Based on the collection of equalities, we derived earlier

q̃t
�
I − K̃A

�
= pt (t = 0) , q̃t = pt (t = 0) �I − K̃A

�−1
,(

dq̃
du

) t �
I − K̃A

�
− q̃t d

du
K̃A = 0,(

dq̃
du

) t
= pt (t = 0) �I − K̃A

�−1 dK̃A

du
�
I − K̃A

�−1
.

Differentiating Eq. (28) with respect to the Laplace variable,
we have(

d2q̃
du2

) t �
I − K̃A

�
− 2

(
dq̃
du

) t dK̃A

du
− q̃t d2K̃A

du2 = 0,(
d2q̃
du2

) t �
I − K̃A

�

= 2pt (t = 0) �I − K̃A

�−1 dK̃A

du
�
I − K̃A

�−1 dK̃A

du

+pt (t = 0) �I − K̃A

�−1 d2K̃A

du2 , (44)(
d2q̃
du2

) t
= pt (t = 0) �I − K̃A

�−1

×

2

dK̃A

du
�
I − K̃A

�−1 dK̃A

du
+

d2K̃A

du2

 �
I − K̃A

�−1
.

As in the calculation for the MFPT, we multiply from the right
by the unit vector e f , and using the relationship (I −KA)−1e f

= 1 in the limit u → 0, we have



094102-11 J. M. Bello-Rivas and R. Elber J. Chem. Phys. 142, 094102 (2015)



τ2�

f
= pt (t = 0) (I −KA)−1


2T(I −KA)−1t + T(2)1


,6pt



τ2�

f
=
�
qt/qf

� 
2T(I −KA)−1t + t(2)


,

(45)

where we define the second moment matrix and time

T(2) =
∞

0

t2KA (t) dt, t(2) = T(2)1. (46)

This completes the illustrative derivation of the second
moment of the first passage time.

Equation (9) for the stationary flux, Eq. (22) for the
stationary probability, Eqs. (36) and (40) for the MFPT, and
Eq. (45) for the average of the second moment of the first
passage time are the main results of this section.

III. AN ILLUSTRATION

A. A model with an entropy barrier

We consider the two-dimensional energy landscape dis-
cussed in Ref. 9. It consists of a double well potential with the
basins connected through a narrow channel. This model for
entropic barrier was used in the past to evaluate the quality of
the Milestoning approximation.9 Here, we use the same model
to evaluate the impact of the iterations on the accuracy and
efficiency of the exact Milestoning algorithm. The potential
energy (see Figure 4) is

U (x, y) = x6 + y6 + exp (−x/σ)2 1 − exp (−y/σ)2 . (47)

The numerical results shown below were computed with
σ = 1/10.

B. Model for the dynamics

For illustration purposes, we focus on a low dimension-
ality and a simple model that we can solve accurately. The
two dimensional double well potential, which is described
in III A, has this advantage. However, a complication of

FIG. 4. A contour plot of the two-dimensional energy landscape that is
used in the text to illustrate the exact Milestoning algorithm. We consider
a transition from the well in the left to the well on the right. Also shown are
the milestones (thick black lines). Note the narrow channel connecting the
two wells. The channel does not include an energy barrier. Hence, the model
considered is of an entropic barrier.

low dimensionality systems can be the lack of ergodicity.
Milestoning requires ergodicity since the transition kernel
must connect all states. To ensure ergodicity in the current test
case, we use a stochastic model for the dynamics, overdamped
Langevin

dz
dt
= −∇U + R, (48)

where z is a two dimensional vector z = (x, y) and R is a
random force that follows the fluctuation dissipation theorem
⟨R⟩ = 0 and ⟨R (t) R (t ′)⟩ = 2kTδ (t − t ′). Milestoning can be
used on a diverse set of ODEs and SDEs, including the
overdamped Langevin equation. To solve Eq. (48) and obtain
the coordinates z as a function of time, we used the BAOAB
algorithm.39 The temperature, kT , was 0.025 in all calculations
with the exception of the study of the MFPT in which it
was 0.008. The lower temperature helped us establish clearer
dynamic characteristics of an activated process. However, the
lower temperature requires more expensive calculations and
we prefer to do the other studies at higher temperatures. The
time step was∆t = 10−4. Straightforward long time trajectories
from the initiating milestone to the last (absorbing) milestone
were computed for comparison.

We consider a total of seven milestones defined as the
hyperplanes (lines in this particular case),

Mi = {(x, y) ∈ R2 | x = −0.6 + (i − 1)∆x}, (49)

where ∆x = 0.2. The hyperplane M1 is the initial milestone,
while M7 is the absorbing milestone.

IV. RESULTS AND DISCUSSIONS

A. Stationary flux and mean first passage time from
exact Milestoning

Fig. 5 shows the estimates of the stationary flux (inte-
grated over y and hence the same as the Milestoning weights,
w, defined in Eq. (12)) for each milestone as functions of the
number of iterations. Note that the scale does not start from
zero and the errors are highly non-uniform. The convergence
is considerably more rapid far from the absorbing boundary
that distorts the initial guess of an equilibrium distribution at
the milestone. Milestones 1-4 are near convergence after 10
iterations. Near the absorbing boundary more iterations are
required with a maximum number of about 30.

The estimated milestone lifetimes (the components of the
vector t) as the iterations proceed are shown in Figure 6. Note
that since the last milestone is absorbing, we never obtain an
estimate for t7. The range of times that we obtain is narrow
and rapid convergence to the asymptotic value is observed.
In a number of cases, essentially a single iteration brings
us within ten percent of the converged value. Interestingly,
the convergence of the local mean first passage time is less
influenced by the proximity to the absorbing boundary in
contrast to the calculation of the stationary flux.

In Fig. 7 we show the overall mean first passage time as
a function of the iteration number. The MFPT is computed
according to Eq. (40). Note that the range of the MFPT values
is narrow and it is possible to obtain a sound result with a
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FIG. 5. Estimates for the components
of the stationary flux vector at each iter-
ation.

relatively small number of iterations. The inset in the figure
focuses on the first 50 iterations. Results within 15% of the
final value can be obtained by ten iterations.

The above calculations illustrate the convergence of
the algorithm. It is useful to establish their correctness by
conducting a study of the system using different computational
means. We shall compare the ensembles of short trajectories
used in Milestoning to long (uninterrupted) trajectories to
verify the accuracy and efficiency of our procedure. This
comparison is especially useful when considering the alter-
native of straightforward molecular dynamics simulations.
However, the results of trajectory ensembles tend to be
noisy, and similar to other stochastic sampling procedures, the
averages converge relatively slowly with respect to the number
of operations. It is therefore useful to compare the calculation
to a significantly different computational approach with better
convergence properties for the system at hand. The present test
case is of low dimensionality. Systems of low dimensions can
be studied accurately using numerical solutions of the Fokker-
Planck equation. We describe a Fokker Planck solution of the
model system and compare the results to Milestoning data
below.

B. The Fokker-Planck solution

Consider the planar strips

Ωi=

�(x, y)2 ∈ R2 | xi − ∆x < x < xi + ∆x
	
. (50)

For each i = 1, . . . ,6, we see that the boundary ∂Ωi of the ith
strip is the disjoint union of the two milestones Mi−1 and Mi+1.

The survival probability of the system, denoted by S = S
(x, y, t), is the solution of the initial-boundary value problem,




∂S
∂t

(x, y, t) = ∇ · J(x, y, t), (x, y) ∈ Ωi, t > 0,

S(x, y, t) = 0, (x, y) ∈ ∂Ωi, t ≥ 0,
S(x, y,0) = gi(y)δ (x − xi) , (x, y) ∈ Ωi.

(51)

The flux J is given by

J(x, y, t) = β−1∇S(x, y, t) + S(x, y, t)∇U(x, y) (52)

and Si is a density function. The Milestoning calculation
is conducted between milestones i = 1 and i = 7, the last
milestone being absorbing. For the solution of the partial
differential equation (PDE), which is conducted on a spatial
grid, we add a reflective milestone M0 that precedesM1.

FIG. 6. Estimates for the local mean
first passage times for the first six mile-
stones. No estimate of the local MFPT
can be provided for the final absorbing
milestone (milestone 7).
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FIG. 7. Estimated (global) mean first passage time. The inset provides the
evolution of the estimate during the first 50 iterations of the algorithm.

No such reflective boundary was added for the trajectory
calculations since the potential energy itself prevents the
trajectories from reaching M0. Since the probability of
reaching M0 is exceptionally small, the trajectory calculations
in Milestoning and the solution of the Fokker-Planck equation
on the grid are equivalent.

From the survival probability, we can obtain the density
of the first hitting point distribution at the milestones Mi±1 by
the formula

Si±1(y) =
 ∞

0
|J1(xi±1, y, t)| dt . (53)

The non-zero entries of the transition matrix K are then
KM,1 = 1 and

Ki, i±1 =

 ∞
−∞ Si±1(y) dy ∞

−∞(Si−1(y) + Si+1(y)) dy
(54)

for i = 1, . . . , M − 1.
Hence, we can compare the transition matrix computed

by the Brownian trajectories to the results of the partial

differential equation. Our initial condition is a stationary
flux distribution (determined by the Milestoning calculations)
at only one interface and we run this distribution in time
until the density terminates at the nearby milestones. The
fraction of density that is accumulated at the nearby milestones
determines the elements of the transition matrix. The transition
matrix answers the question: given that we start from a
particular milestone, what is the probability that the system
will reach a particular (other) milestone at any time?

Time evolutions of densities computed with the Fokker
Planck equation with the conditions described above are
shown in Figure 8.

C. A comparison between the Fokker Planck and
exact milestoning solutions

For comparison, we consider the transition probabilities
averaged over time and over the coordinate in the milestone.
In the Milestoning language, we have

Kαβ =


Mα,Mβ

dxαdxβ



∞
0

dt · Kαβ

�
xα, xβ, t

�
(55)

which is also the transition matrix used directly in the
approximated version of the Milestoning theory.9

In Table I we compared the transition matrices, Kαβ,
computed with exact Milestoning and by the Fokker Planck
equation. It is obvious that the agreement is excellent.

In Table II we compare the weights of the stationary
fluxes through the milestone (Eq. (15)). The agreement of the
results from Milestoning and the Fokker-Planck equation is
excellent. Of course, the stationary vectors are the eigenvectors
of the transition matrix with the eigenvalue of one. Since the
transition matrix is well reproduced, it is expected that the
eigenvectors will be in agreement as well.

The lifetimes of the milestones measure how long it
takes on average for a trajectory initiated on milestone α

FIG. 8. The time evolution of the prob-
ability density of a milestone. The sim-
ulation starts with the density at a mile-
stone and is propagated in time using a
solver for the partial differential equa-
tion. The density is absorbed at the
nearby milestones and the simulation
continues until it disappears. The results
are used to estimate the probability of a
transition to a particular milestone and
the decay time. In the figure, the time
dependent density is renormalized each
step for clarity. A is for milestone at
x=−0.2, B for a milestone at x= 0, and
C for a milestone at x= 0.2. Time pro-
gression is recorded from left to right.
See text for more details.



094102-14 J. M. Bello-Rivas and R. Elber J. Chem. Phys. 142, 094102 (2015)

TABLE I. The transition matrix as a function of the milestone index.

The transition matrix Kαβ computed with exact Milestoning

0 1 0 0 0 0 0
0.3186 0 0.6814 0 0 0 0
0 0.9491 0 0.0509 0 0 0
0 0 0.4958 0 0.5042 0 0
0 0 0 0.0810 0 0.919 0
0 0 0 0 0.6806 0 0.3194
1 0 0 0 0 0 0

The transition matrix Kαβ computed with the Fokker Planck equation

0 1 0 0 0 0 0
0.3197 0 0.6821 0 0 0 0
0 0.9492 0 0.0508 0 0 0
0 0 0.4996 0 0.5004 0 0
0 0 0 0.0848 0 0.9152 0
0 0 0 0 0.6818 0 0.3182
1 0 0 0 0 0 0

to reach (any) other milestone for the first time. Formally, it

is defined as tα ≡


β

∞
0−


Mα


Mβ

t · Kαβ

�
xα, xβ, t

�
dxβ · dxα · dt.

The lifetimes are compared in Table III. We remark that the
milestone lifetime is a good estimator for the length of a
trajectory that we will need to use in Milestoning and can be
used to predict expected efficiency.

The overall MFPT, the time that it takes on average for a
trajectory initiated at the first milestone to reach for the first
time the absorbing milestone on the right, is 129.7525 in exact
Milestoning and 129.4489 in the Fokker Planck solution. It is
interesting that the MFPT is two orders of magnitude larger
than the individual transition times, suggesting significantly
higher efficiency in sampling a single transition event in
Milestoning compared to a straightforward trajectory (in
Milestoning, we only compute the trajectory fragments).
Further evaluation of Milestoning efficiency is discussed in
Sec. IV D.

A more detailed picture is obtained when we considered
the lifetimes as a function of the position in the milestone
and between specific pairs of milestones. These distributions
are shown in Figure 9. Again the agreement between Fokker
Planck (solid black line) and blue dots (Milestoning) is
excellent.

In a Markovian process, the local transition times are
distributed exponentially (without the delay time seen in all
the distributions of Figure 9). The delays suggest that at the
short time limit the Markovian assumption is violated. Indeed,
we do not expect a master equation to be accurate at short times
in the coarse space of the milestones.

TABLE II. The stationary flux as a function of the milestone index.

Exact Milestoning

0.1524 0.4556 0.3195 0.0183 0.0246 0.0226 0.0072

Fokker-Planck equation

0.1520 0.4558 0.3200 0.0183 0.0244 0.0223 0.0071

TABLE III. Comparing the lifetimes of Milestones.

Computed with exact Milestoning

0.6304 1.0896 0.8985 0.4937 0.9261 1.0862 0

Computed with the Fokker-Planck equation

0.6224 1.0666 0.8850 0.5009 0.9104 1.0638 0

Other useful indicators of the dynamics are the stationary
first hitting point distributions (FHPD) which are shown in
Figure 10. The FHPD are obtained in the Fokker Planck

FIG. 9. The probability densities of local transition times between pairs of
milestones as a function of the transition time are shown. The indices of the
milestones are indicated at the top of the panels. The black solid line is the
solution of the Fokker Planck equation and the exact Milestoning are the blue
dots.
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FIG. 10. First hitting distributions between pairs of milestones are shown as
a function of the coordinate in the milestone line. The pairs are indicated at
the top of the panel. The solid lines are the solutions of the Fokker Planck
equation. The blue dots are the results of exact Milestoning calculations. The
distributions are normalized to one. See text for more details.

equation by imposing absorbing boundaries at the nearby
interfaces to the milestone on which trajectories were started.

Another measure of accuracy is the convergence of the
stationary flux. The stationary flux at individual milestones,
computed with exact Milestoning, must be time independent
also under the Fokker Planck formulation. Hence, if we
provide to the Fokker Planck equation, the stationary fluxes of
exact Milestoning as initial conditions and we propagate the
spatial distribution as a function of time no spatial changes
should be observed.

To show the convergence to the stationary flux distri-
bution, we ran a simulation of exact Milestoning for up to
30 iterations and then took the resulting estimate q of the

FIG. 11. Estimate for the stationary flux in the milestones compared with an
additional iteration of exact Milestoning that solves the densities of the first
hitting points by PDE methods. Note that the distributions are asymmetric
with respect the origin at x since there is an absorbing boundary on the right.

stationary flux as the initial conditions for the Fokker Planck
equation in Eq. (51),

gi(y) = Si(y)
Si(y) dy

for the problems with i = 1, . . . , M. The resulting matrix
K and first hitting distributions gi can be used to obtain
a new stationary flux vector q. This is akin to running an
additional iteration of exact Milestoning where the first hitting
distributions are obtained numerically by solving the partial
differential equation for their densities. The estimate for the
stationary flux obtained with Milestoning is indeed a fixed
point of the transition operator as can be seen on Figure 11.
The relative error in the L1-norm between the estimated flux
from Milestoning and the one coming from this additional
iteration solving is equal to 0.0177.

We conclude that the accuracy obtained from the
ensemble of trajectories in Milestoning is comparable to what
we can get from the direct solution of the Fokker Planck
equation.

In Sec. IV D, we compare the computational efficiency of
exact Milestoning with long trajectories.

D. Comparison of Milestoning to long trajectories

A total of one hundred independent instances of each
of the following two types of numerical experiments were
conducted: uninterrupted trajectories from the first milestone
on the left to the absorbing milestone on the right and
Milestoning. For both types of experiments, we compute the
mean first passage time to go from a point sampled from the
canonical distribution conditioned to x = −0.6 to any point at
x = 0.6. We setup the system at a temperature of kT = 0.008
and used a time step length of ∆t = 10−4 for the numerical
integration of the trajectory fragments. In the uninterrupted
trajectories, each independent experiment accumulates its own
set of estimates for the first passage time and outputs the
running average. For the Milestoning calculations, we setup
milestones at the lines x = −0.6, −0.55, −0.5, −0.4, −0.3,
−0.2, −0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.55, and 0.6. From each
of them we drew a total of 250 trajectory samples per iteration
and we allowed the simulation to proceed for a total of 250
iterations.
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FIG. 12. Histogram of empirical distribution of first passage times. The bar
highlighted in yellow is the numerical estimate of the MFPT. In the inset, we
plot the same data on logarithmic scale to emphasize the exponential nature
of the distribution.

Each of the 108 815 individual samples of the first passage
time obtained by the uninterrupted trajectories was collected
in order to compute an empirical distribution for the FPTs
whose details are found in Figures 12 and 13.

To check the efficiency of the calculation, it is useful
to examine running averages. We consider the MFPT as
a function of the number of force evaluations. Every time
step requires one force evaluation. In molecular dynamics
simulations, the calculations of the forces are the most time
consuming operation per step. The running average of the
MFPT is shown in Figure 13.

Observe that there are very few samples of the running
MFPT coming from uninterrupted trajectories below 1010

force evaluations. Due to this lack of samples, the statistics
are poor. However, the Milestoning runs sample significantly
the MFPT for this range of force evaluations.

FIG. 13. Running averages coming from both types of experiments. The
black line is the best numerical estimate for the MFPT. The distribution of
the dots show the running average for the 100 repeats of the calculation either
for long trajectories (red) or Milestoning (blue).

FIG. 14. (a) Box plots for MFPTs obtained from uninterrupted trajectories.
The horizontal line is the best estimate for the MFPT. (b) Box plots for MFPTs
obtained from Milestoning.

Further information about the error and the convergence
is provided in Figures 14(a) and 14(b). These figures use box
plot representations to illustrate the changes in the MFPT as a
function of the number of force evaluations.

From the above plots, it is evident that Milestoning is
significantly more efficient than straightforward molecular
dynamics even in a case without an energy barrier (the barrier
in our example is entropic).

E. Dependence on the initial guess

Milestoning is an iterative solution of vector-matrix
operation that determines an eigenvector with an eigenvalue
one. The speed of convergence depends on the initial guess
of the eigenvector. Here, we consider this dependence. In the
first version of Milestoning,9 the distribution at the interface
was taken from equilibrium. We use the same initial condition
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FIG. 15. Local convergence of each
flux distribution. For each milestone,
we use the error measurement�
qn
i −q

n−1
i

�
∞/

�
qn
i

�
∞ to highlight

the maximum discrepancy between
the current and the previously
obtained flux distribution. The red
line corresponds to the experiment
in which all the trajectories are
initially at the first milestone while
the blue line shows the corresponding
results for the experiment in which
trajectories are initially sampled
from all milestones according to the
Boltzmann distribution.

here. Now we also consider an extreme case in which the
whole population is concentrated at the first milestone and
then propagated with iterations throughout the system. The last
choice mimics the calculations in the Forward Flux Sampling
(FFS) algorithm.40

FIG. 16. Global convergence results using Rayleigh quotients. The figure
on the top displays the inner products (appropriately normalized) of the flux
distributions qn−1 and qn. The graph on the bottom shows the inner product
for the current iteration qn and the reference flux qref= q500. Again, the red
color corresponds to the experiment where the initial trajectories are started
only at the first milestone while the blue color is for the experiment where we
initially run trajectories from every milestone assuming canonical distribution
at each milestone.

We consider again the same set of seven milestones
M1, . . . , M7 that were used in previous experiments. We
started a total of 100 trajectory fragments per (relevant)
milestone per iteration for a total of 500 iterations.

In this case, we used reflecting boundary conditions at
the last milestone. This yields a symmetric stationary flux
distribution due to the last row of the transition matrix being
K7,k = δ6,k.

In Figure 15 we show the convergence of the flux as
a function of the iteration number. It is obvious that 500
iterations were not required and that starting from the canon-
ical distribution is a much faster algorithm. Nevertheless, the
efficiency of the algorithm starting from a single initiating
milestone is not too bad. It suggests that one could use the exact
Milestoning procedure to compute non-equilibrium process in
which the distributions at nearby milestones are built on the
fly. The only input is the milestone we start from.

Global convergence is shown in Figure 16 illustrating
again faster convergence of the thermally distributed “old
Milestoning” initial guess.

V. SUMMARY

We have introduced a new variant of Milestoning, which
is exact (subject to converged sampling). This variant proposed
a new way of computing kinetics and thermodynamics from
trajectories using as a guideline a mesh of Voronoi cells.
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Since short trajectories are computed over a limited spatial
range, the algorithm avoids many of the ergodicity problems
of straightforward MD and trapping in metastable states. Of
course, this conceptual gain is not coming completely for
free and some initial guesses and exploratory simulations
are necessarily to identify plausible locations of the Voronoi
cells. However, if such a sample is available (the center
of the Voronoi cells, the anchors, can be obtained by high
temperature trajectories, for example) the gain in efficiency
and convergence is profound. Essentially, a complete picture
of the statistical mechanics of the system is obtained at reduced
cost.

The algorithm is based on iterative determination of
stationary flux vectors at milestones. The stationary fluxes are
elements of the eigenvector of the transition matrix with an
eigenvalue one. The transition matrix (in contrast to the prior
versions of Milestoning) is not computed explicitly. Instead,
we consider the products of this matrix times a vector, which
is the current iteration and estimate of the stationary flux. The
vector-matrix products are conducted repeatedly to generate
an iterative solution to the flux vector. The properties of
the transition matrix guarantee convergence of the iteration
process under mild conditions.

We illustrate that the algorithm is significantly more
efficient than straightforward MD, which is not surprising
since the earlier approximate versions of Milestoning were
already much more efficient than MD. The older version
of Milestoning is essentially a single iteration of the exact
Milestoning procedure. The iterations make the exact version
between 10 and 100 times slower in the current implemen-
tation. This still leaves ample speedup of exact Milestoning
compared to straightforward MD. Because of the relatively
short distances between milestones and the short duration of
the trajectories, the calculations are not very sensitive to the
structure of the energy landscape. This is because at short
distances and times the variations in the energy landscape are
small.

Also encouraging is the observation that the approximate
version of Milestoning that uses only a single iteration is quite
reasonable for the example presented and provides results that
are not too far from the exact answer.

Nevertheless, we comment that the exact and full deter-
mination of the flux vector in Milestoning (if desired) remains
a challenge. It is a very long vector of length of the number
of milestones times the number of phase space points within
a milestone. So, while we have an exact linear equation for it,
an exact solution of the flux vector at high dimension is not
possible. The more likely scenario is the use of sampling to
compute averages and integrals that rely on q for sampling
in the milestone. For increased accuracy of estimates of the
flux that goes beyond the canonical weight of the zero order
iteration (Eq. (11)), trajectory fragments can be computed
in the forward and backward direction like in directional
Milestoning.16 This is similar in spirit to the methods of
PPTIS7 and to the Milestoning with memory.32 Also, similar
to the approach taken in the Markov state model,41 full
trajectories from reactants to products, if available, can be
analyzed for crossing events and the exact Milestoning theory
can be used to extract kinetics and thermodynamics. For the

case of full exact trajectories, the sampling of the flux vector
at the milestone is done from the exact distribution.

More can be done to increase the efficiency of the
Milestoning algorithm and work in that direction is in progress.
For example, the sampling in a milestone need not be
uniform and it depends on the level of convergence achieved
locally. The local sampling at milestones, which is trivially
parallelizable, can be optimized to ensure better distributions
of effort. Addition and subtraction of milestones can be
automated to take into account newly discovered domains of
the coarse variables. A useful work in that direction can be
found in Ref. 42.
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