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Abstract

Barrett’s esophagus (BE) is defined as any metaplastic columnar epithelium in the distal 

esophagus which replaces normal squamous epithelium and which predisposes to cancer 

development. It is this second requirement, the predisposition to cancer, which makes this 

condition both clinically highly relevant and an important area for ongoing research. While BE has 

been defined pathologically since the 1950’s (Allison and Johnstone, Thorax 1955), and identified 

as a risk factor for esophageal adenocarcinoma since the 1970’s (Naef A.P., et.al. J Thorac 

Cardiovasc Surg. 1975), our understanding of the molecular events giving rise to this condition 

remains limited. Herein we will examine what is known about the intestinal features of BE and 

how well it recapitulates the intestinal epithelium, including stem identity and function. Finally, 

we will explore laboratory models of this condition presently in use and under development, to 

identify new insights they may provide into this important clinical condition.
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Introduction

Barrett’s esophagus (BE) occurs in the in the distal esophagus in the setting of chronic 

gastroesophageal reflux disease (GERD) and is histopathologically defined as the 

replacement of the normal squamous epithelium with an intestinalized columnar epithelium 

(1). Clinically, the importance of Barrett’s esophagus lies in the observation that it is an 

important risk factor for esophageal adenocarcinoma (EAC) (2). This is not unique, as 

metaplasia has been linked to malignant transformation in other tissues including the 

stomach, where gastric intestinal metaplasia precedes gastric cancer, and in the cervix and 

lung, where squamous metaplasia in the columnar epithelium precedes the onset of cancer 

(3).

Efforts directed at understanding the pathogenesis of BE and its progression to EAC have 

been increasing over the last 15 years. Driving this increased focus has been the well-

established observation that the rates of EAC have been increasing within the U.S. and 

western European populations over the last 3 decades (2). While this imperative to better 

understand BE onset and progression to dysplasia and cancer has become clearer, much 

about the pathogenesis of this disease remains poorly understood. Herein we review the 

intestinal differentiation of BE and explore approaches currently used to study BE in the 

clinics and laboratories.

Molecular features of BE overlap with but do not completely recapitulate 

normal intestinal differentiation in the esophagus

Histologically BE is characterized as the replacement of the normal multilayered squamous 

epithelium with a specialized columnar-lined epithelium containing intestinal-type goblet 

cells. In fact, there are three types of columnar epithelium observed in the distal esophagus 

including (1) a junctional (cardia-type) epithelium, (2) a gastric fundic-type epithelium with 

parietal and chief cells, and (3) a specialized, intestinal-type metaplasia with prominent 

goblet cells (4). However, in a widely circulated position statement, the AGA defined 

Barrett’s esophagus as “the condition in which any extent of metaplastic columnar 

epithelium that predisposes to cancer development replaces the stratified squamous 

epithelium ….” (5). Therefore, it is this risk of progression to EAC that has led to the 

clinical focus on intestinalized metaplasia, although there are many questioning whether for 

clinical surveillance the focus should be broadened to include all columnar epithelium in the 

distal esophagus.

BE is referred to as an “intestinal” metaplasia because all four of the main intestinal 

epithelial cell lineages have been detected in BE tissues, including enterocytes, Paneth cells, 

enteroendocrine cells, and of course goblet cells. However, these cell lineages are not 

typically fully mature. At the ultrastructural level, enterocytes are frequently described as 

“pseudoabsorptive” displaying apical microvilli, but mature cells with a well defined brush 

border are rare (6). Nevertheless, these “pseudoabsorptive” BE cells express many genes 

associated with absorptive enterocytes.
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BE and associated tissues have been characterized using squamous-cell specific and 

glandular epithelial-cell specific cytokeratins (CK) and differentiation markers. CK7 and 

CK20 staining patterns may specifically distinguish BE from other histologically-related 

conditions including intestinal metaplasia of the gastric antrum and cardia (7, 8). Goblet 

cells are much more abundant in BE than in normal small intestine, and they are marked by 

the presence of acidic mucins detected by Alcian Blue staining, with Mucin 2 (MUC2) being 

perhaps the most important (9). Like the cytokeratins, mucin expression patterns have been 

used to distinguish BE from cardia and antrum metaplasia, with MUC1 and MUC6 

expression in BE distinct from mucin expression in the cardia and antrum (10).

Gene expression profiling revealed not only a similarity between normal upper GI (i.e. 

gastric and duodenal) mucosa and BE but stark differences between the squamous normal 

esophageal tissues and BE. Amongst genes relatively specific to BE are CK8, CK20, 

MUC2, MUC5AC, MUC6 and mucin-associated trefoil factors TFF1, TFF2 and TFF3 (11, 

12). Analyzing multiple datasets from six independent studies several transcription factors 

(CDX1, CDX2, HNF1, and HNF4) and the TGF-β/BMP pathway have been identified being 

significantly enriched in BE (13). Homeobox transcription factors CDX1 and CDX2 are 

required for normal intestinal development, although their role in BE intestinal metaplasia 

and cancer is presently unclear. Both are induced in esophageal keratinocytes exposed to 

bile and acids in vitro and in vivo (14-16). In addition, our own gene array analysis of BE 

identified CDX1 and the c-myc pathway as possible candidate transcription factors 

cooperating to induce mucin production and changes in keratin expression in the BE 

epithelium (17).

Cell of origin of Barrett’s esophagus

There are several accepted hypotheses concerning which cells give rise to BE in adults with 

GERD (Figure 1). They include 1) “transdifferentiation” of squamous epithelial cells into 

columnar BE cells; 2) migration upward of subesophageal gland cells; 3) migration of an 

embryonic population residing at the squamo-columnar junction; 4) migration of columnar 

epithelia cells from the gastric cardia; and finally, 5) migration in of bone marrow 

progenitors. There are published studies in support of all these possibilities, and none have 

yet been formally excluded. In support of the first premise, scanning electron microscopy 

has revealed a unique multilayered epithelium (MLE) at the squamo-columnar junction and 

within columnar mucosa (Figure 2). MLE comprises 4-8 layers of distinctive stratified 

squamous-like cells defined by intercellular ridges topped with superficial mucinous 

epithelial cells expressing microvilli (18, 19). MLE has been postulated as an early or 

intermediate stage of columnar metaplasia (19, 20). MLE expresses both squamous-cell and 

glandular differentiation markers (20, 21) in line with the “transdifferentiation” hypothesis. 

In addition, MLE develops in a rat model of gastroesophageal reflux-induced BE (22), as 

well as our study targeting the intestine-specific transcription factor Cdx2 into the murine 

esophagus (14).

In other studies, comparing gland morphology and immunohistochemical staining patterns 

has led several groups to conclude that BE and MLE may arise from the esophageal gland 

duct epithelial cells (Table 1) (20, 23). Corroborating this premise, Braxton et al. have 
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recently reported that esophageal submucosal glands display unique reflux-induced 

metaplastic changes (24). However, the lack of esophageal submucosal glands in rodents 

limits experimental modeling and testing of this hypothesis

Another potential cell of origin of human BE is a unique cell population described by Wang 

et al. (25). Rodent stomach consists of the forestomach and distal stomach, lined by the 

squamous and glandular epithelium, respectively. The transcription factor p63 is required for 

normal development of the squamous epithelium of the forestomach and esophagus in mice 

(26). In p63−/− mice, the squamous epithelium fails to form, and there is a compensatory 

expansion of cells from the glandular compartment. In particular there is expansion of a 

population normally observed on the border of the squamous and glandular epithelium (25). 

These cells are thought to be embryonic remnants since similar cells are observed during 

esophageal development. However, these embryonic mouse cells fail to express the 

intestine-specific transcription factor Cdx2, which is very frequently observed in human BE 

(25). This suggests this model may not be truly representative of the human disease.

Developmental signaling pathways regulate cell fates and differentiation in 

BE

During embryogenesis, the primitive foregut endoderm develops into the esophageal tube 

consisting of simple epithelium topped with a superficial layer of ciliated epithelial cells and 

supported by the surrounding mesoderm. The ciliated epithelium is replaced by a stratified 

squamous epithelium beginning at the fourth month of gestation (27). In addition, we know 

from the mouse that in the developing esophagus, the foregut epithelial cell fate is subjected 

to regulation by transcription factors NKX2.1, p63 and Sox2. While NKX2.1 facilitates 

columnar cell differentiation in the trachea, p63 and Sox2 cooperate to promote squamous-

cell differentiation in the esophagus (28). p63 and Sox2 define the development of the 

normal esophageal epithelium; loss of either results in the failure of squamous epithelial 

formation and the persistence of mucus-producing ciliated columnar epithelial cells in 

embryonic and newborn mice (29, 30).

Esophageal development is also regulated by other embryonic signaling pathways including 

Hedgehog (Hh), Wingless (Wnt), and bone morphogenic protein (BMP) (31). Hh signaling 

is required for a proper separation of the single anterior foregut tube into the esophagus and 

trachea (32, 33). Canonical Wnt signaling functions to promote columnar cell differentiation 

in the trachea by inducing NKX2.1 and downregulating SOX2 (34). Lastly, excess BMP 

signaling can lead to failure of the transition from ciliated columnar epithelium to the 

differentiated, multilayered squamous epithelium characteristic of a mature esophagus and 

forestomach (35). Together these observations suggest a complex, interconnected web of 

developmental signaling pathways and transcription factors serve to coordinated the 

emergence of a mature, multilayered squamous epithelium in the developing esophagus. It is 

interesting to speculate whether BE represents a failure of this network.

To explore this possibility, the roles of these and other transcription factors and 

developmental signaling pathways have been examined in human BE tissues (Table 2). p63, 

which is not expressed in BE or esophageal adenocarcinoma but is frequently present in BE- 
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associated MLE (20), can be downregulated in primary esophageal epithelial cells when 

they are treated with bile salts and/or acid, suggesting that p63-mediated squamous-cell 

commitment may be impaired upon gastroduodenal reflux conditions (36). The role of 

BMP4 in BE pathogenesis is more complex. BMP4 is overexpressed in GERD esophagitis 

and BE epithelium, as well as a rat model of reflux esophagitis. In in vitro culture studies, 

BMP4 treatment of squamous epithelial cells induced a significant shift in the gene 

expression toward that of cultured BE cells (37), and BMP4 overexpression alone leads to 

non-specialized columnar metaplasia in mice (38).

BMP4 was also found to be a key mediator of Hh signaling. Hh is induced in esophageal 

epithelial cells exposed to bile salts and acids. Hh is targeted at stromal fibroblasts, where it 

induces the secretion of BMP4, which feeds back to the epithelium where it enhances the 

epithelial expression of SOX9 and the induction of columnar cell differentiation markers 

(39). SOX9, but not CDX2, appeared to be sufficient to drive columnar differentiation of 

squamous epithelium and expression of intestinal differentiation markers including CK8 

(40). In summary, multiple developmental signaling pathways and downstream transcription 

factors are likely to have functional roles driving the formation of Barrett’s esophagus in the 

setting of GERD.

Identification of BE stem cells

There has not yet been any definitive identification of a stem cell functionally or based on 

broadly cell markers. Several groups have identified populations of cells expressing 

intestinal stem cell markers Lgr5 (41), doublecortin and CaM kinase-like-1 (DCAMKL-1) 

(42) and SOX9(43). However, expression of these markers does not confer stem cell status 

alone. Although controversial, label retaining cell (LRC) populations have been implicated 

as stem cells in some tissues. In a very novel in vivo study in humans, a rare slow-cycling 

LRC population, representing <0.1% of epithelial cells, has been detected in the crypt base 

in BE. Moreover, >99% of these LRC do not express lineage-specific markers such as 

defensin-5, MUC2 and chromogranin A (44). BE stem cells have also been investigated in a 

mouse model with genetic fate mapping, identifying a Lgr5+ gastric cardia stem cell which 

may serve as the stem cell in this BE-like metaplasia (45). Clearly, much more work needs 

to be carried out to identify stem cell populations giving rise to BE.

Studying Barrett’s Esophagus in the laboratory

It is certainly true that animal models, particularly mouse models, have become a critical 

component of biomedical research, as they allow for the evaluation of genetic alterations 

and/or environmental variables in a controlled manner. However, animal models for BE, in 

particular mouse models, have been difficult to develop. Despite some notable successes 

(14, 38, 45, 46), mouse models have several important limitations. One problem is that mice 

lack submucosal glands which are, as we have observed, a potential cell population from 

which BE cells emerge (23). Moreover, mice have a squamous epithelium-lined 

forestomach, which means the squamo-columnar junction in mice occurs in the stomach 

rather than at the distal esophagus as it does in humans. Lastly, the squamous epithelium in 

the mouse esophagus and forestomach is keratinized, while in humans the esophagus is lined 
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by non-keratinized squamous epithelium. This argues that developmental and gene 

expression pathways are likely different between mice and humans, thereby giving rise to 

different epithelial structures. Together, these observations do questions about the utility of 

the mouse as a model animal for human BE, and suggest that novel human cell-based tissue-

engineered culture systems may be a better way to accurately model the in vivo events 

giving rise to Barrett’s esophagus.

Immortalized Human Cell Lines in Barrett’s Research

One great limitation to basic laboratory research into the pathogenesis of BE and EAC has 

been the dearth of reliable cell lines and cell culture model systems. Adding to this 

difficulty, in 2010 it was revealed that four highly utilized cell lines thought to be human 

EAC (TE-7, SEG-1, BIC-1, and SK-GT-5) were in fact cancers from other tissues entirely 

(47, 48). Therefore, when reviewing the literature prior to 2010, care must be taken to 

confirm which cell lines were used. At present there are 10 confirmed human EAC cell lines 

(Table 3 and Figure 3) (48, 49). A PubMed search for papers using these cell lines found 

only 191 published reports, establishing the limited research that has been carried out thus 

far on this cancer. Clearly, the biology and treatment of esophageal adenocarcinomas is 

significantly understudied and therefore less well understood compared to other human 

cancers.

There has also been an emphasis and some success in establishing immortalized cell lines 

from BE tissues (Figure 3). Five immortalized Barrett’s epithelial cell lines have been 

established using retroviral transduction of human telomerase reverse transcriptase (hTERT) 

(50, 51). Two of these cell lines, CP-A and BAR-T cells, originated from non-dysplastic BE 

biopsies, while CP-B, CP-C, and CP-D were all derived from Barrett’s with HGD. 

Moreover, compared to the other cell lines, the BAR-T cells are the most “normal” in that 

they maintain a diploid status and respond normally to contact inhibition (52). In contrast the 

CP-A, B, C, and D cell lines all have documented chromosomal abnormalities (53), 

including 17p loss of heterozygosity or p53 mutations documented in CP-B, C, and D lines. 

Many of the studies using these cell lines in traditional 2-dimensional (2D) culture 

environments have explored the effects of Barrett’s etiologic agents, acid and bile acid 

exposure, on cellular responses at the molecular level, including production of reactive 

oxygen species, anti-oxidant responses, DNA damage, and nuclear factor kappaB activation 

(54-57). Perhaps most revealing has been the induction of a malignant transformed 

phenotype in non-dysplastic BAR-T cells either by chronic acid exposure or the introduction 

of defined genetic changes (58, 59).

Lastly, there are four published immortalized human squamous esophageal cell lines, EPC2-

hTert, NES-B3T, NES-G2T, and HET1A (Figure 3) (50, 60, 61). The first three are 

immortalized by ectopic expression of human telomerase, and the fourth, HET1A cells, are 

immortalized by ectopic expression of the SV40 T antigen, a viral oncoprotein which 

inactivates p53 and the retinoblastoma protein (pRb), among other targets (62). Many of the 

published studies using these immortalized human esophageal cell lines have explored the 

responses of these cells to a variety of Barrett’s etiologic agents, including chronic acid and 

Nakagawa et al. Page 6

Best Pract Res Clin Gastroenterol. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bile acid treatment (16), BMP-4 (37), retinoic acid (63, 64), and the intestine-specific 

transcription factors Cdx1 and Cdx2 (17, 61, 65).

Treatment of esophageal keratinocytes with acid or bile acid pulses can induce low levels of 

intestinal transcription factors like Cdx2, but has not induced a true intestinal metaplasia (16, 

66). Moreover, esophageal keratinocytes treated with BMP-4 begin expressing BE-

associated cytokeratins and a more intestinalized pattern of gene expression (37). In another 

study using HET1A cells, Cdx2 expression was associated with increased cell proliferation 

and an intestinal pattern of gene expression (67). In summary, while these treatments did 

yield increased expression of intestine-specific genes and changes in cell morphology, none 

has yet succeeded at inducing a complete BE phenotype from human keratinocytes.

Engineered Human Tissue Systems to Model Barrett’s Esophagus

Physiologically relevant research models must strive to best mimic human in vivo 

microenvironments in an in vitro setting. As we discussed, animal models have many 

benefits as well as significant limitations. Moreover, traditional 2-dimensional cell culture 

approaches using immortalized human cells fail to capture the significant contributions of 

the multicellular microenvironment inherent in vivo. The development of the organotypic 

culture (OTC) systems that allows for the co-culture of immortalized human epithelial cell 

lines together with primary fibroblasts in 3-dimensional (3D) tissue reconstructions 

represents a novel means by which to perform in vitro experiments that are still 

physiologically relevant (68).

Organotypic cultures are more complex to initiate but yield a well differentiated 

multilayered squamous epithelium that is physiologically similar to that observed in the 

human esophagus. A collagen matrix is poured that includes human embryonic fibroblast 

cells (Figure 4A) (68). This culture is allowed to mature for 4 days, then human primary 

esophageal keratinocytes or an immortalized cell line like EPC2-hTert are layered on top 

and maintained in culture for an additional four days (Figure 4B). For the final maturation of 

the culture, the media level is reduced until the epithelium is at the air-liquid interface which 

provokes additional proliferation and differentiation in the epithelial cells (Figure 4C). The 

final epithelium that emerges is a fully differentiated, multilayered epithelium which closely 

mimics the normal squamous epithelium seen in esophageal biopsies including localization 

of stem cell marker p63 in the basal cell layer and differentiation markers filaggrin and 

involucrin in the differentiated suprabasal compartment (Figure 4D-G). This physiologically 

relevant engineered tissue thus provides a novel platform for the study of many human 

esophageal diseases.

Barrett’s immortalized cell lines can also be cultured under OTC conditions, and this 

revealed several unrecognized properties. Most strikingly, CP-A cells yielded mucin-

producing goblet cells when cultured under OTC conditions, though they were also were 

unexpectedly highly invasive into the collagen matrix despite their origin from a non-

dysplastic BE sample (69). These phenotypes are not apparent when these cells are cultured 

under traditional culture conditions, emphasizing the importance of migrating future 

research into these more physiologically relevant culture systems.
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Our laboratory has utilized this culture system for a number of years, and have on several 

occasions observed new cellular phenotypes emerge when cells were cultured under OTC 

conditions, including new gene expression. In a series of studies to determine if human 

esophageal keratinocytes can be induced to adopt an intestinalized, BE like morphology, we 

introduced expression of several genes associated with BE, including transcription factors 

(Cdx1, Cdx2, Atoh1/Math1), Wnt signaling (β-catenin), and pro-inflammatory 

Cyclooxygenase-2 (Cox2-the rate limiting enzyme in eicosanoid synthesis) in human EPC2-

hTert cells (17, 65, 70, 71). Typically, these genes had little effect on cell morphology or 

gene expression when cells were maintained under more classic 2-dimensional culture 

conditions. However, we observed significant induction of small intestine and BE-associated 

genes when these cells were cultured under OTC conditions. For example, expression of the 

goblet cell transcription factor Atoh1/Math1 in EPC2-hTERT cells induced expression of 

the BE markers Keratin 20 (K20) and Mucin 2 (MUC2) (Figure 5A, B), but only when 

grown under OTC conditions (65, 70, 71). Most significant was the response of the cells to 

the inflammation-associated enzyme Cox-2, where we induced cells capable of polarized 

secretion of Alcian blue positive intestinal mucins including MUC5B (Figure 5C,D) (70). In 

addition, using this same OTC system, we determined through a genetic approach that the 

onset of a true BE from keratinocytes is a multistep process that requires increased 

proliferation, senescence inhibition, and epigenetic alterations (65).

We and others are presently working on developing approaches to increase the complexity 

OTC cultures in order to better model the microenvironment of BE. One approach is to 

include other relevant cell types including immune, endothelial, smooth muscle, and neural 

cells (72, 73). Coincident with this, we will need a much better understanding of the cells 

present within the BE microenvironment. It is anticipated that this approach may yield new 

insights into what drives disease progression. Together, this novel multicellular OTC culture 

system and new primary human squamous keratinocyte and Barrett’s cell culture methods 

will lead to innovative engineered human esophageal and Barrett’s tissues that can better 

model physiologic responses and therefore serve as a far superior research platform than any 

that are presently available.

Summary

Barrett’s esophagus is the replacement of the normal stratified squamous epithelium with a 

columnar epithelium containing intestinal mucin-producing goblet cells. BE has been 

strongly associated with chronic GERD and is a well recognized risk factor for EAC. Of 

concern, the rates of EAC have been increasing within the U.S. and western European 

populations, which is why there is now greater urgency for research into this disease. We 

have made progress in characterizing BE at the ultrastructural and molecular levels. BE is 

referred to as an “intestinal” metaplasia because all four of the main intestinal epithelial cell 

lineages have been detected in BE, however these cell lineages are typically not fully 

mature. We also have evidence that a number of important developmental signaling 

pathways (BMP4, Hh, Wnt, and Notch) and transcription factors (Cdx2, Myc, Atoh1/Math1, 

Sox2, and Sox9) are critically important for regulating both normal developmental events at 

the distal esophagus as well as the induction of Barrett’s epithelial phenotype. However, 

much remains unknown yet regarding BE, in particular, which cell population the BE cell 
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emerges from, and what are the molecular events or steps by which BE progresses to EAC. 

These are critical questions for investigators that, once answered, will significantly impact 

disease prevention and management. Despite the presently limited set of experimental model 

systems in which to study BE and EAC, innovations in tissue engineering and human cell 

based organotypic culture systems hold great promise as platforms for future investigations 

into disease pathogenesis and progression.
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Practice Points

• Barrett’s esophagus occurs in the in the distal esophagus and is defined as the 

replacement of the normal stratified squamous epithelium with an intestinalized, 

columnar epithelium.

• Barrett’s Esophagus has been strongly associated with chronic gastroesophageal 

reflux disease (GERD), and is an important risk factor for esophageal 

adenocarcinoma.

• Esophageal adenocarcinoma incidence is increasing in the US and other 

Western countries, therefore identification and treatment of patients with 

Barrett’s esophagus is a clinical imperative.
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Research agenda

• The cell of origin for the Barrett’s Esophagus remains unknown. Definitive 

studies identifying the molecular pathogenesis and cell of origin are needed.

• There are a limited number of model systems and cell lines by which Barrett’s 

esophagus can be studied in the laboratory; innovative, more physiologically 

relevant models are urgently needed.

• The stem cell for Barrett’s has not yet been identified and should be a focus for 

future investigation.

• An improved understanding of the role of the network of developmental and 

signaling pathways in the pathogenesis of Barrett’s esophagus is needed

• Advances in tissue engineering of innovative, multicellular organotypic culture 

systems that recapitulate in vivo structure and function and permit hypothesis 

testing for BE and EAC pathogenesis.
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Figure 1. 
Multiple tissue and cell types have been hypothesized to serve as the cell of origin for BE 

comprising intestinal-type columnar epithelial cells with goblet cells (deposition of mucins 

are depicted as blue oval shapes) in (A). Esophageal squamous epithelial cells 

(keratinocytes) or submucosal esophageal gland ductal epithelial cells (B) may give rise to 

BE directly. MLE is suspected as a BE precursor lesion (C). MLE has been linked to 

esophageal glands in human. BE may be accounted for by migration of residual embryonic 

esophageal cells or reactivation of the developmental pathways (e.g. BMP4, Hh)(D). 

Migration of gastric cells (e.g. Lgr5-positive stem cells in red at the grand base)(E) and 

circulating bone marrow progenitor (F) remain the possibilities.
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Figure 2. 
Multilayered epithelium features distinct stratified squamous epithelium-like cell layers 

topped by a layer of columnar cells containing goblet cells. Photomicrograph, a courtesy of 

Dr. Nirag Jhala, MD, University of Pennsylvania Perelman School of Medicine.
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Figure 3. 
Cell lines commonly used in Barrett’s esophagus and esophageal adenocarcinoma research 

cultured on a 2-dimensional support. Images are of cells using phase-contrast light 

microscopy or tranmission electron microscopy (TEM). Images provided by Jianping Kong 

MD PhD and Ali Soroush, University of Pennsylvania Perelman School of Medicine.
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Figure 4. 
Organotypic culture (OTC) technique to model human esophageal epithelium and Barrett’s 

esophagus in an in vitro system. A. Culture is initiated by plating human embryonic 

fibroblasts in a collagen matrix for 4 days. B. Human esophageal keratinocytes or Barrett’s 

epithelial cells are then plated on top of the collagen matrix. C. Once eithelial cells are 

confluent, the level of the cell culture media is reduced to place the epithelium at the air-

liquid interface. D. Example of normal appearing multi-layered human esophageal 

epithelium that forms after EPC2-hTERT cells are grown under OTC conditions. H&E: 

stained by hematoxylin and eosin. E. p63 immunohistochemistry staining of an OTC culture. 

Immunohistochemistry for differentiation markers F. Filaggrin and G. Involucrin. Images 

provided by Jianping Kong MD PhD University of Pennsylvania Perelman School of 

Medicine.
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Figure 5. 
Introduction of Math1 or Cox2 expression in EPC2-hTERT cells leads to new intestinal and 

BE associated gene expression in OTC cultured cells. Immunohistochemistry for A. KT20 

and B. MUC2 in EPC2-hTERT cells expressing Math1. C. Alcian blue histochemical 

identification of intestinal mucins expressed by EPC2-hTERT cells expressing the pro- 

inflammatory enzyme cyclooxygenase-2 (Cox2). D. Immunohistochemistry for intestinal 

MUC5B in EPC2-hTERT cells expressing Cox2. Images provided by Jianping Kong MD 

PhD University of Pennsylvania Perelman School of Medicine.
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Table 1

Molecular markers defining BE and of potential cell origin of BE

BE and potential cell of origin Histologic Markers

BE intestinal metaplasia CK7, CK8, CK18, CK20
MUC1, MUC2, MUC5AC, MUC6, CDX1, CDX2, BMP4

Gastric glands MUC1, MUC5AC, MUC6

Esophageal squamous epithelium p63, SOX2, CK14, CK13
MUC1, MUC4

Esophageal gland p63, CK13
CK7, CK8, CK18, CK20, MUC5B

Multilayered epithelium p63, SOX2, CK4, CK13,
CK7, CK8, CK18, CK20, MUC2, MUC5AC, MUC6, CDX2

Embryonic esophageal cells
< ~embryonic day 15.5-17.5: CK7, CK8, CK18, MUC4,
BMP4
> ~ embryonic day: p63, SOX2, CK14, CK13

Bone marrow progenitors Donor cell Y-chromosome

CK, cytokeratin. CK7, CK8, CK18 and CK20 are columnar cell-specific; CK14, CK4, CK13 are squamous cell-specific. MUC, mucin. MUC2, 
MUC5AC, MUC5B and MUC6 are secretory mucins. MUC1 and MUC4 are membrane-anchored mucins.
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Table 2

Developmental factors implicated in BE

Factors
Biological functions

General function Normal esophagus BE

BMP4 Ligand
(BMP pathway)

Epithelial stratification and
differentiation during the esophageal
development

Upregulated to promote
intestinalization in concert
with CDX2

Hh Ligand
(Hh pathway) Tracheoesophageal separation intestinalization

by inducing MUC2

SOX2 Transcription
factor

Squamous epithelial
homeostasis/stem cell homeostasis
Cooperates with p63
Inhibits CDX2

Downregulated

P63 Transcription
factor

Squamous epithelial
homeostasis/stem cell homeostasis

Downregulated

CDX2 Transcription
factor Not expressed Upregulated to promote

Intestinalization
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Table 3

Validated human cell lines used in Barrett’s esophagus and esophageal adenocarcinoma research

Cell Line Type Background Ref

EPC2-hTert INE Squamous esophageal epithelium from male non-BE
patient–immortalized by hTERT

(50, 51).

HET1A INE Squamous esophageal epithelium–immortalized by
SV40 virus Large T antigen

(50, 60,
61)

NES-B3T INE Squamous esophageal epithelium from BE patient–
immortalized by hTERT

(50, 51).

NES-G2T INE Squamous esophageal epithelium from non-BE
patient–immortalized by hTERT

(50, 51).

BAR-T IBE hTERT immortalized non dysplastic Barrett’s
esophagus from a 69 year-old male

(52)

CP-A IBE hTERT immortalized non dysplastic Barrett’s
esophagus

(53)

CP-B IBE hTERT immortalized dysplastic Barrett’s esophagus (53)

CP-C IBE hTERT immortalized dysplastic Barrett’s esophagus (53)

CP-D IBE hTERT immortalized dysplastic Barrett’s esophagus (53)

ESO26 EAC Established from a 51 year-old Caucasian male with a
primary tumor located at the gastroesophageal
junction and distal esophagus with known lymph node
and distant metastases.

(48, 49)

ESO51 EAC Established from a 74 year-old Caucasian male with a
primary adenocarcinoma of the distal esophagus and
Barrett’s esophagus.

(48, 49)

FLO-1 EAC Established from a primary distal esophageal
adenocarcinoma in a 68 year-old Caucasian male.

(48, 49)

JH-EsoAd1 EAC Established from a distal esophageal adenocarcinoma
(moderately to poorly differentiated) within Barrett’s
esophagus.

(48, 49)

KYAE-1 EAC Established from the pleural effusion from a from a 60
year old Asian male with a distal esophageal adenocarcinoma.

(48, 49)

OACM5.1 EAC Established from a lymph node metastasis from a 47
year-old Caucasian female with primary
adenocarcinoma of distal esophagus and Barrett’s
esophagus. The patient also exhibited pleural
metastases.

(74)

OACP4C EAC Established from a primary gastric cardia tumor in a
55 year-old Caucasian male. The patient also
exhibited lymph node and pleural metastases.

(48, 49)

OE19 EAC Also known as JROECL19, was established from a
well-differentiated adenocarcinoma of gastric
cardia/esophageal gastric junction of a 72 year old
male patient.

(75)

OE33 EAC Also known as JROECL33, was established from a
poorly differentiated adenocarcinoma of the lower
esophagus with Barrett’s metaplasia from a 73 year
old female patient.

(75)

SK-GT-4 EAC Established from a primary well-differentiated
adenocarcinoma arising in the distal esophagus within
Barrett esophagus of an 89 year-old Caucasian male.

(76)

INE: immortalized normal esophagus; IBE: immortalized Barrett’s esophagus; EAC: Esophageal adenocarcinoma; hTERT: human telomerase 
gene;
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