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The canonical Wnt signaling pathway, mediated by β-catenin, is
crucially involved in development, adult stem cell tissue mainte-
nance, and a host of diseases including cancer. We analyze existing
mathematical models of Wnt and compare them to a new Wnt
signaling model that targets spatial localization; our aim is to dis-
tinguish between the models and distill biological insight from
them. Using Bayesian methods we infer parameters for each
model from mammalian Wnt signaling data and find that all mod-
els can fit this time course. We appeal to algebraic methods (con-
cepts from chemical reaction network theory and matroid theory)
to analyze the models without recourse to specific parameter val-
ues. These approaches provide insight into aspects of Wnt regula-
tion: the new model, via control of shuttling and degradation
parameters, permits multiple stable steady states corresponding
to stem-like vs. committed cell states in the differentiation hierar-
chy. Our analysis also identifies groups of variables that should be
measured to fully characterize and discriminate between compet-
ing models, and thus serves as a guide for performing minimal
experiments for model comparison.

experimental design | bistability | Bayesian inference | matroids |
chemical reaction network theory

The Wnt signaling pathway plays a key role in essential cellular
processes ranging from proliferation and cell specification

during development to adult stem cell maintenance and wound
repair (1). Dysfunction of Wnt signaling is implicated in many
pathological conditions, including degenerative diseases and
cancer (2–4). Despite many molecular advances, the pathway
dynamics are still not well understood. Theoretical investigations
of the Wnt/β-catenin pathway serve as testbeds for working hy-
potheses (5–12).
We focus on models of canonical Wnt pathway processes with

the aim of elucidating mechanisms, predicting function, and
identifying key pathway components in adult tissues, such as
colonic crypts. We compare four preexisting ordinary differential
equation models (5–8) and find, using injectivity theory, that for
any given conditions and parameter values, none of the models is
capable of multiple cellular responses.
In many tissues Wnt plays a crucial role in cell fate specifi-

cation (3). At the base of colonic crypts, cells exist in a stem-like,
proliferative phenotype in the presence of Wnt. As these cells’
progeny move up the crypt axis they enter a Wnt-low environ-
ment and change fate (perhaps reversibly), becoming differen-
tiated, specialized gut cells (13). In neuronal and endocrinal
tissues, Wnt/β-catenin data suggest cell fate plasticity under
different environmental conditions (14, 15). Here, we introduce
a new model motivated by experimental findings not described in
previous models (16–18) to investigate bistable switching in the
Wnt pathway. We find the new model to be capable of multiple
cellular responses; furthermore, our parameter-free techniques
identify that molecular shuttling (between cytoplasm and nu-
cleus) and degradation together may serve as a possible mech-
anism for governing bistability in the pathway, corresponding to,
for example, a committed cell state and a stem-like cell state.

Comparison of models (and mechanisms) requires data; the
type of comparison performed depends on the data at hand. If
data show bistability (two distinct response states), then we could
rule out all models that preclude bistability; however the con-
verse is not true (a graded response may be compatible with all
models). Experimental studies in Xenopus extracts have been
performed to validate a model of Wnt signaling (5), with further
pathway elucidation in refs. 19, 20; however, the parameters
identified in these studies may differ markedly from those in-
volved in mammalian Wnt signaling (21, 22). With the aim of
discriminating between models, we present the five Wnt models
under a unifying framework, with standardized notation to fa-
cilitate comparison. We fit parameters to recently published
mammalian β-catenin signaling time-course data using Bayesian
inference (22) and find that all of the studied models can de-
scribe the data well, demonstrating that additional data are re-
quired to compare models.
To determine which sets of protein species should be mea-

sured for carrying out a comparison between models and data,
we introduce matroid theory to systems biology. A matroid is
a combinatorial structure from mathematics, and in our case, it
provides all of the steady-state invariants (23, 24) that have
minimal sets of variables. The algebraic matroid associated with
the steady-state ideal determines specific sets of species that
should be measured to perform model discrimination without
knowledge of parameter values. We demonstrate this parameter-
free analysis with experimental data for two Wnt models.
In the next section, we introduce the previous models and new

shuttle model. We perform injectivity–multistability analysis and
classify the shuttle model as the only one capable of multistability.
Next we infer the parameters of five competing models for
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time-course β-catenin data, revealing that all of the models fit the
data. Finally we introduce algebraic matroids to inform experi-
mental design for discriminating between models and data.

Models
Over the past decade, Lee et al.’s seminal model of canonical
Wnt signaling (5) has spawned many variants. Briefly, the un-
derlying biology of the pathway that these models describe is as
follows (25): Wnt binds to cell-surface receptors that transduce
a signal via a multistep process involving Dishevelled (Dsh) to
the so-called destruction complex (DC), which contains forms of
Axin, adenomatous polyposis coli (APC), and glycogen synthase
kinase (3) (GSK-3). In the absence of a Wnt signal, the DC
actively degrades β-catenin––which is being continually synthe-
sized in the cell––by phosphorylating it and marking it for pro-
teasomal degradation. Following Wnt stimulation, degradation
of β-catenin is inhibited through phosphorylation of DC mem-
bers, leading to accumulation in the cytoplasm of free β-catenin,
which is able to translocate to the nucleus where it can form
a complex with T-cell factor (TCF) and lymphoid-enhancing
factor proteins and influence the transcription of target genes.
These are cell-type specific, although genes controlling self-
renewal and proliferation are commonly regulated across many
cell types (1).
We include the core processes as well as the following in the

proposed shuttle model (Fig. 1A and SI Appendix):

i) spatial localization of shuttling components Axin, APC, GSK-3,
and Dsh, the importance of which has been reported for
each species (17, 26–30);

ii) an alternative degradation mechanism whereby β-catenin is
degraded while still bound to active DC and sequestered but
not degraded by inactive DC (16);

iii) catalysis of the reverse reaction by phosphatase (P) that
converts DC from inactive to active form by dephosphory-
lating members of the DC (18, 31, 32).

The behavior of four other published models is analyzed and
compared with that of the shuttle model (5–8). Fig. 1B sum-
marizes the distinguishing qualitative features of each model; full
model descriptions, using a standardized notation that differs
from the authors’ originals, are summarized by a composite model
in SI Appendix.

Results and Discussion
Wnt signaling interaction networks are polynomial systems
whose steady-state solutions are defined by sets of algebraic equa-
tions for the species’ concentrations; this opens up avenues for
parameter-free analysis, as we show here.

Parameter-Free Analysis of Wnt Models I: Multistability. We are in-
terested in determining whether or not a given model can produce
multiple positive stable responses (states). Standard approaches
from dynamical systems [e.g., bifurcation and singularity theory
(33–35)] are useful for small systems or when we have knowledge
of the parameters, however, for systems of more than a few free
variables (the shuttle model has 19 species and 31 parameters),
such approaches become infeasible. To overcome this, we apply
theory developed for chemical reactions to Wnt pathway models;
this is particularly helpful for determining whether multiple states
are possible without the need for parameter values or sampling.
There are various conventions in chemical reaction network
theory (CRNT) for describing the number of positive steady
states; we use the following terminology:

i) injectivity implies at most one steady state;
ii) multistationarity is the capacity for multiple steady states;
iii) multistability is the capacity for multiple stable (accessi-

ble) steady states.

We test the injectivity of each model following graph-theoretic
or Jacobian-based approaches used in CRNT (36–40). We find
that only the Schmitz et al. (7) and the shuttle model fail injec-
tivity and exhibit multistationarity. Further analysis reveals that
the Schmitz et al. model is capable of at most two steady states,
only one of which is stable (see SI Appendix for proofs). Whereas
all of the previous models possess at most one positive stable
steady state for any choice of the parameter values and con-
served species’ concentrations, the shuttle model has the capacity
for multistationarity and multistability. We find that when three
species shuttle (e.g., Dsh, inactive DC, and β-catenin), the model
exhibits two stable states; we proceed to analyze this version of
the shuttle model. Previous mathematical studies have proven
shuttling across compartments is a mechanism for multistability
(41, 42).
For each model, we have a minimal collection fi of polynomial

relations (including conservation laws) and xj of species. The
model is injective if the determinant of the Jacobian matrix

A

Wnt on

B

Fig. 1. Comparison of models of Wnt signaling. (A) Schematic of the new shuttle model in the absence (Left) and presence (Right) of a Wnt stimulus. DC and
Dsh exist in inactive (i) and active (a) forms. P: phosphatase. For a full description of the reactions specifying this model, see SI Appendix. (B) Comparison of
models: the shuttle model is compared with four others from literature (5–8) based on the features that are present–absent in each model.
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(∂fi=∂xj, which is polynomial in the parameters) has all positive
or all negative coefficients: this ensures that the determinant is
nonvanishing in the positive orthant where all feasible parameters
lie. Although the shuttle model fails injectivity, we can find
a set of eight sufficient conditions on the parameters (inequal-
ities defining a semialgebraic set contained in the injective region
of parameter space) that precludes multistationarity (SI Appen-
dix). Negating these gives necessary, but not sufficient, con-
ditions on the parameters for multistationarity, which depend
explicitly on the degradation and shuttling rate constants (Fig.
2B). Because the parameter values are unknown, we compute an
illustrative bifurcation diagram for a specific parameter set sat-
isfying these necessary conditions. These diagrams are similar to
dose–response curves in an experimental setting, and they dem-
onstrate different behavior as the shuttling and degradation rate
constants are varied (Fig. 2 A and C).
Within a certain parameter region, we can either observe

a graded response or switching and hysteresis behavior (Fig. 2C).
The hysteresis loop shown by the black (stable state), blue (switch
to committed state), and red (threshold switch to stem-like state)
arrows enables switching at different thresholds between two
stable steady states. Whereas over short timescales bi- and mono-
stable behavior is indistinguishable (Fig. 2D), at steady state these
differences emerge. In the bistable regime the low level of gene
transcription is associated with a committed cell state and the
high level with a stem-like phenotype over long time periods (Fig.
2D). As the value of a parameter, for example β-catenin shuttling
into the cytoplasm ðk25Þ, decreases below a threshold, the bi-
furcation diagram predicts that cells will differentiate. If the
shuttling rate was adequately increased, according to the diagram
at these particular parameters, these cells would dedifferentiate
to a stem-like state. If the parameter regime were known, bi-
furcation analysis and singularity analysis could also predict
parameters governing reversible and irreversible behavior (e.g., k5,
irreversible in Fig. 2A).
If qualitative data showed a clear bistable switch, then the shuttle

model would be the best model. However, given quantitative
rather than qualitative data, how can we compare models?

Wnt Model Comparison via Parameter Inference. Where competing
models describe the same biological processes, one can perform
parameter inference or model selection; such methods have been
applied to a variety of problems in systems biology, ranging from
cancer modeling to population genetics (43, 44).
Inferring parameters from data via Bayesian analysis provides

the posterior probability distribution over the parameters, from
which more information can be gleaned than by point estimates
alone. In Fig. 3B, we demonstrate the Bayesian inference pro-
cedure by considering a 2D subset of the parameter space (rates
of β-catenin synthesis and β-catenin degradation). This panel
shows how over successive iterations we can home in on the most
probable region of parameter space given the data.
Each of the Wnt models has a different number of parameters.

In an attempt to compare the models fairly and to reduce the
size of the parameter space that we are searching, for each model
we choose to fix all of the parameters (at estimated or arbitrary
values) except for three. These three are allowed to vary and are
used to fit the model to the Wnt/β-catenin time-course data re-
cently published in ref. 22; see Materials and Methods for details.
We chose the free parameters based on their point of influence
on the pathway, targeting parameters with direct or near-direct
influence on β-catenin dynamics (Fig. 3A); the fits we obtained
after performing inference are shown in Fig. 3C. We see that
even with only three degrees of freedom, good parameter fits are
obtained for all of the models. Studying the posterior for each
model reveals relationships between parameters: high β-catenin
production and low β-catenin degradation rates are favored
across models, but β-catenin-TCF binding rates vary considerably
between models.
The disparity between model complexity and data availability

prevents us from choosing between models based on model

selection analysis. The problem could be addressed by simplify-
ing models or collecting more data [additionally, experimental
design influences Bayesian model selection results (45)]. Here,
we proceed to use parameter-free methods to help guide experi-
ments for model discrimination.

Parameter-Free Analysis of Wnt Models II: Matroids. Instead of
classifying the feasible behaviors of the whole system, we can use
the finer structure of a model to derive relations in each part of
the system, for example, the concentrations of species in a chem-
ical reaction network at steady state. The matroid of a model is
a list of

i) the subsets of species that are related, and
ii) the subsets of species whose concentrations are unrelated.

A matroid is a set with a notion of independence for its sub-
sets. The classic example of a matroid is an arrangement of vec-
tors. Suppose v1 = ð1; 0; 0Þ; v2 = ð0; 1; 0Þ; v3 = ð0; 0; 1Þ; v4 = ð1; 1; 0Þ,
as in Fig. 4A. A set of vectors is called “dependent” if it is linearly
dependent, i.e., there is a set of scalars, not all zero, such that
multiplying by the vectors and adding them together results in the

A B

C

D

Fig. 2. Bistability of shuttle model. (A) Bifurcations diagrams as a proof-of-
concept for feasible shuttle model behavior. Reversible and irreversible behav-
iors are observed; however, this could change if parameter values are known. In
each case the high state of target gene transcription corresponds to a stem-like
state and the low state corresponds to a differentiated cell state. (B) Two of the
eight necessary conditions for multistationarity of the shuttle model. (C) Model
exhibits different behaviors as degradation parameter k14 is varied: for low
values, bistability; for moderate values, switch-like (ultrasensitive) response; and
for high values, graded response. (D) Simulated trajectories for target gene
transcription from five different initial conditions. In the bistable region we see
two steady states reached; in the monostable region only the high (stem-like)
state can be reached. Note that initial behavior in each region is similar: it is
important to simulate for long enough to recover these differences in behavior.
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zero vector. Here, fv1; v2; v4g is dependent because v1 + v2 − v4 =
ð0; 0; 0Þ. If no such relation exists, the set is called “independent.”
Any set of size 3 or smaller excluding 1-2-4 is independent (Fig.
4A). The matroid does not remember the coordinates of the
vectors, only whether any subset is dependent or independent.
The matroid construction in our discussion uses algebraic
independence instead of linear independence. Explicitly, if there
is a polynomial relationship that a collection of species satisfies
at steady state, they are considered a dependent set. Note that
this only considers relationships at steady state, where the
possible species concentrations describe an algebraic variety. The
independent and dependent sets of molecular players in each
model may help compare models, guide experiments, and pos-
sibly reject models as described throughout this section.
We calculate the matroid of five Wnt signaling pathway

models (four shown in Fig. 4B). Each model has a rank r, which
dictates the number of species from the full set whose concen-
trations can be independently specified; taking measurements of
r independent species determines (in terms of parameters) the
values for all other species. Circuits are minimal dependent sets
of species––they become important when we consider model
discrimination. A matroid can be represented pictorially by point
arrangements: the set of species labeling a point has rank 1, the
set on a line has rank 2, the set on a two-dimensional plane has
rank 3, and so on (Fig. 4C). Any two species labeling the same
point are algebraically related, as are any three species on a line,
any four species in a plane, etc.
We describe how the matroid of a model is computed in more

detail in SI Appendix; the input is the polynomial ideal of steady-
state relations and the output is a list of all circuits with their
polynomial relations. Strictly speaking, a circuit is defined as a set
of variables. However, in this application, we record the poly-
nomial relations, because these are the support-minimal steady-
state invariants. One approach involves computing a Gröbner
basis for every elimination ordering, a feasible although lengthy
computation for small systems. An alternative uses linear algebra
to pinpoint the sets of variables appearing in invariants; then, it
uses this information in conjunction with elimination or numer-
ical algebraic geometry software to find polynomials (see ref. 46
for more detail). This approach is only now being implemented

because algebraic matroids have only recently been adopted for
applications, e.g., low-rank matrix completion (47).
The results of the matroid calculations (Fig. 4B) prompt bi-

ological insight; for illustration, we analyze the van Leeuwen
et al. model (12). In this model, five species (called “loops”) can
be determined from just the parameters. Among the others, any
pair not including Xp (β-catenin marked for ubiquitination) is
dependent; therefore, an experiment measuring two of these
concentrations could potentially reject the model if data are
inconsistent with the relation. Assuming the model is consistent
with data, measuring Xp and any other nonloop is enough to
determine all steady-state concentrations in terms of parameters.
Unlike the other models, the solution set for the shuttle model

has two irreducible components (loosely, proper subsets that
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Fig. 3. Bayesian parameter inference of Wnt signaling models. (A) De-
scription of the parameters that are inferred for each of the models used
to fit the data describing β-catenin dynamics following a Wnt stimulus.
(B) Depiction of the posterior probability distribution used for approximate
Bayesian computation. The sequentially decreasing region of probability
(blue ovals) defines the joint space of two parameters. Here we show syn-
thesis and degradation rates that are a subset of the full parameter space.
This is applicable to any of the Wnt models considered. (C) Fits to the data
simulated from the posterior distribution for each model (1,000 particles
simulated). Bars represent the 5% and 95% intervals.
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Fig. 4. Matroids allow for parameter-free model discrimination and pre-
diction. (A) Depiction of linear dependence and independence in a vector
space (see main text for additional information). (B) Schematic representa-
tion of the matroids for Wnt models. Each species represented by a loop is
determined from the parameters alone; groups of species represented on
a point can be determined by measurement of one of the species; groups of
species represented on a line can be determined by measurement of two
species. For notation used see SI Appendix, Table S1. (C) Schematic of rank,
which corresponds to “what-to-measure.” So, for rank 1, measure 1 species
to determine all of the others, for rank 2, measure 2, etc. (D) Deletion is
a matroid-theoretic operation which removes a species x from the ground
set of the matroid and only considers dependencies of the original model
that excluded x. Deleting T and CXT gives a rank 4 matroid which can be
visualized by planes in 3D space, as shown here.
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should be considered separately). The matroids for the two irre-
ducible components both have rank 5. The number of compo-
nents for a given model is determined by its algebraic structure;
the number of components and real positive steady states are not
analogous––multiple steady states may appear even when we
have only one component. As described above, if we want to
know all species concentrations in the shuttle model, five mea-
surements must be made and these measurements should be
chosen to be independent. For example, measuring TCF (T) and
any four species not lying in the same plane in Fig. 4D would
determine all species concentrations.
The minimal sets of species from the matroid can also be used

to study part of the system. The partial information (relations on
a subset of species) obtained from the matroid can be used as
a self-consistency check between data and competing models
and, in this way, serves as a method to rule out models. Model
discrimination based on steady-state invariants has been per-
formed for one specific ordering, so by including the matroid we
can recover all possible steady-state invariants with different
variables (full set of circuit polynomials, as defined in ref. 48),
including conserved quantities. For example, Tan et al. (22)
measured average β-catenin in the cytoplasm (X) and the nu-
cleus ðXnÞ after Wnt stimulation; we can investigate the re-
lationship between these species. There are two models that
include X and Xn species: Schmitz et al. and shuttle. In the Schmitz
et al. model, X and Xn are encoded in the circuit polynomial

I = h1ðδÞX2 + h2ðδÞX2
n + h3ðδÞXXn;

where hi; i∈ ð1; 2; 3Þ are functions of the parameters (δ). From
the data in ref. 22, we can test its compatibility with the model via
a parameter-free method as described in ref. 24. Briefly, the
method tests whether the data satisfy the Schmitz et al. circuit
polynomial by checking whether there exist ~hi, i∈ ð1; 2; 3Þ satis-
fying I = 0, given these data. Clearly, if the circuit polynomial is
satisfied then the coplanarity condition holds with ~hi = hi.
Model compatibility is determined by computing the co-

planarity error ðΔÞ via the singular value decomposition of
the matrix

�
X̂

2
X̂

2
n X̂X̂n

�
0
@

~h1
~h2
~h3

1
A= 0;

where X̂ denotes the observed value of species X. The null hy-
pothesis that the model is compatible with the data can be
rejected when the coplanarity error (normalized smallest singu-
lar value) is greater than a statistical bound as described in ref.
24 and SI Appendix, which is determined by the Gaussian mea-
surement noise in the data and the invariant structure.
Before we test the models with data from ref. 22, we simulate

data from both the shuttle and Schmitz et al. models. We draw
random parameters from a lognormal distribution and then
simulate 100 replicate measurements of ðX ;XnÞ with noise [we
perturb the data with noise ∼ 10−6Nð0; 1Þ]. We test model
compatibility at 5% significance level; results of the coplanarity
test identify that the Schmitz et al. model is incompatible with
data generated by the shuttle model (ΔSchmitz = 64; 820, where the
compatibility cutoff is 11.15). Unsurprisingly, the Schmitz et al.
model is compatible with data generated by itself (ΔSchmitz =
3:768, cutoff = 11:15). We use the three replicates of X and Xn
from ref. 22 at t= 120; 240 min, and assume the data are close to
steady state. Because the noise in the data is unknown, we test
different noise levels and are able to rule out the Schmitz et al.
model up to noise ∼ 10−4Nð0; 1Þ (SI Appendix). By consulting the
matroid of the shuttle model, we find that X and Xn are in-
dependent, thus no circuit polynomial exists and any data are
compatible with the shuttle model (an additional species is re-
quired to form a circuit polynomial). Thus, as demonstrated,

matroids guide experiment design to discriminate between
models with minimal required measurements.

Conclusions
There is a wealth of mathematical and experimental research on
Wnt signaling, aimed at understanding the pathway well enough
to target Wnt-implicated diseases. There are two significant
challenges to overcome. The disparity between models and data
that we have highlighted via Bayesian inference prevents us from
constraining parameter values in a manner that often helps to
elucidate mechanisms and predict function. The second challenge
is the gap between in vitro and in vivo studies, and the corre-
sponding differences in parameter values. This is supported by
evidence on the variation in parameter estimates between naive
and crowded (physiological) in vitro molecular experiments (49,
50). To gain insight into these complex systems described by
complicated models, we must evade this parameter problem.
Parameter-free approaches can provide additional information

about the β-catenin/Wnt pathway. Based on injectivity–multi-
stationarity analysis, we find that the shuttle model predicts the
possibility of a regulatory switch, acting early in the cell fate de-
termination pathway. Other systems have also reported early
checkpoints in cell fate signaling in activation of apoptosis
through receptor–ligand binding (51, 52). We identify the
possibility of important roles for spatial localization and deg-
radation in cell fate switching. In the Erk pathway, it is also
seen that either localization (via shuttling) or degradation by
apoptosis is crucial for bistable switching, both mathematically
and experimentally (42, 53–55). We report for the first time, to
our knowledge, that a combination of these processes governs
the dynamical regime.
By computing the algebraic matroid of different Wnt models,

we can characterize the dependencies between species. The
matroid results enable us to guide experiments (which species
to measure) to discriminate between models with data, all of
the while not requiring parameter values. The mechanisms for
bistability identified above are of course not exclusive and one
could imagine many other models exhibiting bistability via
different mechanisms. This scenario could prompt previously
unidentified insight using our model discrimination framework,
now with multiple bistable models.
Given the current (and growing) complexity of models across

a wide range of topics, tools such as those demonstrated here
offer strong potential for testing models and for predictions to be
made. In addition, we provide possible directions for future ex-
perimentation to narrow the gap between data and models, and,
through our predictions, help to unravel the workings of the
intricate and essential Wnt pathway.

Materials and Methods
Bayesian Inference. Model selection in systems biology can be performed
using Bayesian inference (56). Here we perform parameter inference for
model selection using approximate Bayesian computation, which forgoes
evaluation of the likelihood function and instead calculates the (here Eu-
clidean) distance between model and data (57), implemented in the ABC Sys-
Bio package (58). For each model we compare the total free β-catenin level
(in some cases addition of two species) with the data provided by ref. 22.

Multistability. Determining whether a model is capable of multiple responses
can be tested using injectivity. The injectivity of each model was determined
using CRNT toolbox (59); for those that were not injective (Schmitz et al.
and shuttle), we computed the determinant of the Jacobian following
(42), and analyzed the sign of the coefficients in Mathematica (Version 9.0;
Wolfram Research). Bifurcation diagrams were computed using Oscill8
(available at oscill8.sourceforge.net/doc) and visualized with MATLAB (R2013a;
The MathWorks).

Matroids. Matroid computation is performed by structured variable elimi-
nation on eligible polynomial systems. This is carried out using symbolic al-
gebra software Macaulay2 (60) with the aid of packages presented in ref.
46. Code is available at math.berkeley.edu/∼zhrosen/matroids.html. When
the set of steady-state solutions has multiple irreducible components, the
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matroid was computed for each to assess the independence structure in each
regime. Isolated points in the solution set were not analyzed, as the matroid
is trivial. Model discrimination was performed in Sage (available at cloud.
sagemath.com) following the method presented in ref. 24.
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