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Europe has experienced a stagnation of some crop yields since the
early 1990s as well as statistically significant warming during the
growing season. Although it has been argued that these two are
causally connected, no previous studies have formally attributed
long-term yield trends to a changing climate. Here, we present
two statistical tests based on the distinctive spatial pattern of
climate change impacts and adaptation, and explore their power
under a range of parameter values. We show that statistical power
for the identification of climate change impacts is high in many
settings, but that power for identifying adaptation is almost
always low. Applying these tests to European agriculture, we find
evidence that long-term temperature and precipitation trends
since 1989 have reduced continent-wide wheat and barley yields
by 2.5% and 3.8%, respectively, and have slightly increased maize
and sugar beet yields. These averages disguise large heterogeneity
across the continent, with regions around the Mediterranean expe-
riencing significant adverse impacts on most crops. This result means
that climate trends can account for ∼10% of the stagnation in Euro-
pean wheat and barley yields, with likely explanations for the re-
mainder including changes in agriculture and environmental policies.
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Europe has experienced a stagnation of yields for some crops,
particularly wheat and barley, with a plateau since the early

to mid-1990s (Fig. 1A) (1, 2). Explanations for this stagnation
have focused on changing agricultural policy and, to a lesser ex-
tent, on shifting climate patterns (3, 4). Much of Europe saw the
introduction of more stringent environmental policies during the
1990s, as well as the decoupling of subsidy payments from farm
production in the European Union, both of which would be ex-
pected to lower the intensity of cereal production (5, 6). In ad-
dition, warming trends in the region have been large relative to
natural variability and could be expected to negatively affect yields,
particularly in southern Europe (SI Appendix, Fig. S1) (7, 8).
Existing empirical evidence for either explanation is typically

weak, taking the form of coincidence in the direction and timing of
expected climate or policy effects with yield trends, so the relative
importance of these mechanisms has not been rigorously demon-
strated (3, 9). More persuasive detection and attribution studies
instead identify impacts using a distinctive spatial pattern of trends
associated with climate change forcing (10, 11). Because the spatial
distribution of long-term trends is less likely to be correlated with
other variables, these studies are better able to make a case for
climate’s causal effect on the outcome of interest. Fig. 1 B–E shows
the observed trends in yields of wheat, maize, barley, and sugar beet
in Europe between 1989 and 2009. Fig. 1 F–I shows the trends in
yield that would have been expected given observed changes in
growing-season temperature and precipitation and the sensitivity of
crops to those changes (8). Observed trends are both more positive
and more spatially heterogeneous than the predicted trends, which
would be expected given that the latter do not include the effects of
technological improvements or of changing economic or policy con-
ditions. Nevertheless, formal statistical tests can reveal whether or
not the distinctive pattern, or fingerprint, of climate trend impacts is
embedded within the observed pattern of long-term yield trends.

Formal detection of a climate change signal and the attribution of
that signal to anthropogenic greenhouse gas emissions has been
successful in many physical and some biological systems (10–12).
However, few studies have attributed changing yield pattern to
climate trends. This analysis is complicated by two factors. First, the
expected response of agriculture to a given temperature or pre-
cipitation forcing is determined by an imperfectly known response
function. This response uncertainty must be accounted for in de-
termining whether or not climate change has had a statistically
discernable impact. Second, farmers may or may not be adapting to
the climate change they have experienced, creating additional un-
certainty in the expected response of agriculture to climate forcing
(13). This potential for adaptation means there are two response
functions relevant to the detection (and prediction) of climate
change impacts: the short-run response function that includes limited
or no adaptation, and the long-run response function that includes
full adaptation (8).
In this paper, we first develop two general statistical tests that can

be applied to the detection of impacts and adaptation in any
managed system affected by climate change and report the power of
these tests under a range of parameter values. We then apply these
tests to Europe to determine whether climate trends have affected
yields and, if so, to what extent these impacts can explain the
stagnation of European cereal yields.

Statistical Tests for Climate Change Impacts and Adaptation
Here, we present two formal statistical tests, the first designed to
distinguish a system affected by climate trends from one not af-
fected, and the second to distinguish a system adapting rapidly
from one not adapting. Both tests rely on knowing the climate
response function, namely how the outcome of interest y should
respond to changes in climate variables w, either including
adaptation [the long-run response function, y= fLRðwÞ] or not
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including adaptation [the short-run response function, y= fSRðwÞ].
These response functions could be determined statistically (the
approach in this paper), using a process-based model, or from
known theoretical relationships. In many cases, the response
functions may be nonlinear and in most cases will contain un-
certain parameters.
As in other detection and attribution studies, these tests rely

on comparing the spatial pattern of long-term trends in the
variable of interest to what would be expected given the observed
long-term trends in climate (14). Three linear time trends are
calculated for each region i: the observed trend, the predicted
long-run trend, and the predicted short-run trend:

yit = α0 +Observed_Trendi p t+ «it;

fLRðwitÞ= α1 +Predicted_Trend_LRi p t+ «it;

fSRðwitÞ= α2 +Predicted_Trend_SRi p t+ «it:

The region-specific trends Predicted_Trend_LRi and Predicted_
Trend_SRi give a distinctive spatial pattern of the expected cli-
mate change impact that can be compared with the observed
trends. The climate variables used in this paper (wit) are the
average growing season temperature and rainfall in subnational
region i in year t.
Our first test for the detection of climate change impacts (test 1)

is based on the regression:

Observed_Trendi = β0 + β1Predicted_Trendi + «i; [1]

where Predicted_Trendi could be either from the short- or long-
run response function. Here, we report results using the long-run
response function because it includes fewer parameters, but
results are robust to this decision. Because this specification
includes the intercept term β0, which demeans both the observed
and predicted trends, the test relies on the spatial pattern of
trends around the mean to estimate the climate signal, a charac-
teristic “fingerprint,” rather than the absolute magnitude of
change. Our statistical test is simply the following: H0: climate
trends have no explanatory power, β1 = 0; H1: climate trends have
explanatory power, β1 > 0.
This hypothesis is tested using the test statistic τ1 = bβ1

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarð bβ1Þ
q

.
In the standard regression model, τ1 would be normally dis-
tributed under the null hypothesis. However, in this case, un-
certainty in the response function f ðwÞmeans that we cannot rely
on the standard normal approximation. Instead, we estimate the
distribution of τ1 under the null using a bootstrap-t procedure
that accounts for uncertainty in the parameters of the response
function and therefore in the estimation of predicted trends
(Methods). The 1-α quantile of this distribution then gives us the
critical value for a test of size α. We compare τ1 against the critical
value and reject the null if τ1 is larger, meaning it would be unlikely
to occur if the null were true. The value of α is arbitrary, but is
conventionally set at 5%, the value we use in this paper.
The second test (test 2) is designed to distinguish a system

adapting rapidly from one adapting slowly to climate change
impacts. It relies on two regressions:

Observed_Trendi = γ0 + γ1Predicted_Trend_SRi + «i; [2]

Observed_Trendi = γ2 + γ3Predicted_Trend_SRi

+ γ4ðPredicted_Trend_LRi

−Predicted_Trend_SRiÞ+ «i:

[3]

If farmers have adapted quickly to the climate change experi-
enced, then model 3 should be significantly better at explaining

the variance in observed trends than model 2 and therefore
should have significantly smaller residuals. We test this with the
F statistic τ2 = ðRSS2 −RSS3Þ=ðRSS3=ðn− 3ÞÞ, where RSS2 is the
residual sum of squares from model 2 and RSS3 is the residual
sum of squares from model 3. The hypotheses are as follows: H0:
farmers are not adapting, τ2 = 0; H1: farmers are adapting, τ2 > 0.
We use the difference between the long- and short-run pre-

dicted trends rather than including them separately in the un-
restricted model (model 3) because Predicted_Trend_LRi and
Predicted_Trend_SRi are likely to be correlated. Under standard
statistical assumptions, τ2 would have an F distribution, but in
this case we again obtain the critical value by imposing the null
hypothesis and using a multistage pairs bootstrap to give the
distribution of τ2 under the null (Methods).
Before making statistical inferences, it is important to un-

derstand the power of the test to detect the signal of interest. If
the test has low power, then the probability of a false negative is
high and negative results cannot be interpreted either as evi-
dence that climate change has had no impact (test 1) or that
there has been no adaptation to climate change (test 2). SI Ap-
pendix, Table S3 and Figs. S5 and S6 show the results of a sim-
ulation analysis designed to determine the power of tests 1 and 2
under a range of reasonable conditions. These results suggest
that test 1 should have high power under many conditions. Even
if the magnitude of climate trends is small (as is the case in
detection and attribution analyses performed today), power can
be high if the noise (variation in yield trends from factors not
included in the model) is low and variance in the climate trends
and baseline climates is large, producing a distinctive signal. For
larger climate trends, power is consistently high for most pa-
rameter combinations.
In contrast, the simulation suggests that power for test 2 is

uniformly very low. Even given large climate trends and large
differences in the short- and long-run response curves, power is
frequently below 50% and only rarely exceeds 80%. Although
arbitrary, the acceptable minimum test power is typically con-
sidered to be at least 80%. Thus, in most contexts, reliable sta-
tistical detection of climate change adaptation is likely to be
challenging. Power may be higher if there is more variable ad-
aptation potential across the landscape (i.e., if the adaptation
“fingerprint” is more distinctive) or if specific adaptive changes
are being examined. However, in general, these results suggest
that studies finding no evidence for adaptation should, in the
absence of a power analysis, be interpreted with caution because
the probability of false negatives is likely high and a system
adapting to climate change cannot be reliably distinguished from
one not adapting.

Results
SI Appendix, Fig. S7 shows the simulated power of tests 1 and 2
using the actual climate trends, baseline climate, and noise ob-
served for five European crop yields (Methods, SI Appendix,
Table S4). The short- and long-run response functions were
determined statistically using a combination of cross-sectional
and interannual variation in yields and growing-season weather
(Methods, SI Appendix, and ref. 8). Consistent with the results of
the sensitivity analysis, the power of test 2 is uniformly low. The
power of test 1 varies but exceeds 80% for wheat, maize, barley,
and sugar beet yields. Power for oilseeds is lower largely because
the parameters of the response function are imprecisely estimated
(8). This simulation assumes 125 independent data points and
therefore, because yields are in reality correlated over space and
not independent, gives us an upper bound on test power for
our data.
We therefore perform test 1, the detection of climate trend

impacts, for wheat, maize, barley, and sugar beet yields. Table 1
shows the results of this statistical test, controlling for linear
changes in farm-gate prices and coupled subsidy payments
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(Methods). We find that the climate change fingerprint is sta-
tistically detectable for all crops: the value of the test statistic τ1
is highly unlikely under the null hypothesis, and thus in all cases we
are able to reject, at a test size of 5%, the hypothesis that long-term
climate trends have not affected the development of crop yields in
Europe. In other words, areas where temperature and precipitation
changes realized between 1989 and 2009 would be expected to
negatively impact yields have seen yields grow at slower rates
compared with areas where climate trends would be expected to
have had more positive impacts. The regression coefficients for
maize and sugar beet are fairly close to 1, but the wheat and barley
coefficients are less than 1, suggesting sensitivity to climate change
may be overestimated in the response functions for these crops (15).
SI Appendix, Table S5 gives results for two alternative speci-

fications—one that includes country fixed effects and one that
looks only at the impacts of temperature changes, controlling for
precipitation change (Methods). Adding country fixed effects
reduces the risk that results are being driven by unobserved
differences in economic or policy conditions between countries
(omitted-variable bias). However, because long-term tempera-
ture and precipitation trends vary smoothly across space, fixed
effects can also remove a large component of the climate signal,
exacerbating the effects of measurement error and causing
a downward bias on the estimated coefficient (attenuation bias).
SI Appendix, Table S5 shows that, as expected, country fixed
effects reduce the magnitude of the estimated coefficient bβ1,
although all results are still significant at the 10% level. For
wheat yield, adding country fixed effects substantially reduces the
magnitude of the regression coefficient, suggesting that this
result in particular is driven by intercountry rather than intra-
country variation.

Looking at the effect of temperature alone ignores the impact
of changing precipitation patterns on yields, but temperature
trends are more likely related to anthropogenic climate change
than rainfall changes. Although a formal attribution of warming
trends to greenhouse gas emissions is outside the scope of this
paper, temperature trends tend to be large relative to natural
variability and positive across much of Europe (SI Appendix, Fig.
S1). Power for temperature effects on maize yields is very low so
this crop drops out of the analysis, but results for wheat, barley,
and sugar beet are consistent with an effect of long-term tem-
perature trends on yields, although the result for wheat is not
statistically significant (P = 0.14; SI Appendix, Table S5).

Discussion
Temperature and precipitation changes in Europe have reduced
average production-weighted continent-wide wheat and barley
yields by 2.5% and 3.8% and have increased sugar beet and maize
yields by 0.2% and 0.3% relative to what they would otherwise be
(Fig. 2). These aggregate effects are fairly small, but the impacts
have not been evenly distributed. Warmer regions in southern
Europe have suffered most from warming, and in Italy this effect
has been compounded by drying, leading to yield declines of 5%
or more. In cooler regions such as the United Kingdom and
Ireland, the more limited impacts of warming have been offset
by benefits from increasing rainfall (Fig. 3). These results are
consistent with previous work that has found long-term climate
trends should have increased sugar beet yields in the United
Kingdom, decreased wheat yields in France, and that the yield
potential of wheat and barley has declined over much of Europe
due to warming (3, 9, 16).
During the 1980s, yields of both wheat and barley were

growing at ∼0.12 tons per ha per y (2, 17) (Fig. 1A). If they had

Fig. 1. Patterns and time evolution of crop yields in Europe and the predicted impacts of climate trends. (A) Area-weighted yields of the four crops examined
in this paper for the countries included in the study, 1960–2010 (SI Appendix, Table S1) (17). (B–E) Maps of the observed linear trend in yield in 1989–2009 for
wheat (B), maize (C), barley (D), and sugar beet (E) (25). Maps of the expected change in yield based on growing-season temperature and precipitation trends
in 1989–2009 (27, 28) and the yield response functions described by Moore and Lobell (8) (SI Appendix, Figs. S3 and S4) for wheat (F), maize (G), barley (H), and
sugar beet (I). White shows areas not included in the study due to insufficient data.
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continued growing at that rate after 1995, wheat and barley
yields would be 30% and 37% higher today, respectively. This
means that climate trends can account for ∼10% of the yield
stagnation observed in Europe over the last two decades. Changes
in agricultural subsidies and environmental policies, as well as
proximity to possible biophysical yield limits, remain likely ex-
planations for the major component of declining yield growth
(2, 4, 5). Since 1989, Europe has seen major reforms to its
agricultural subsidy policies. Although total support as a frac-
tion of farm revenue has stayed essentially constant, the form
of support shifted from price support to direct subsidy pay-
ments coupled to production following reforms in 1993, and to
decoupled payments not dependent on production after 2004.
This means that the fraction of farm support linked to com-
modity output declined steadily from 87% in 1989 to 27% in

2009 (18) (SI Appendix, Fig. S10). This change might be
expected to reduce the incentive for intensive cultivation and
therefore lower the rate of yield gains. In addition, changing
environmental policies restricted the use of fertilizer applica-
tion and may have limited yield growth (3, 19).
This paper is the first (to our knowledge) to present evidence

for the distinctive fingerprint of long-term climate trends on
European crop yields and to formally quantify the contribution
of a changing climate to yield stagnation in Europe. We find
evidence that trends in growing-season temperature and pre-
cipitation have affected wheat, maize, barley, and sugar beet
yields but estimate that the mean effect across Europe has been
relatively small, explaining ∼10% of the slowdown in wheat and
barley yield gains since the early 1990s. Impacts have been larger
in some regions: the combination of warming and drying trends

Table 1. Results of test 1, the detection of the impact of long-term climate trends on European
crop yields

Row name Wheat yield Maize yield Barley yield Sugar beet yield

Regression coefficient ðβ1Þ 0.41 1.39 0.50 0.82
SE 0.10 0.88 0.34 0.81
Test statistic (τ1) 4.03 1.58 1.47 1.00
P(τ1jH0) <0.002 0.002 0.012 0.02
Degrees of freedom 349 267 341 183
Adjusted R2 0.07 0.10 0.06 0.28

The null hypothesis is rejected for all crops at the test size of 5%. Significance levels are determined by
a block-bootstrapping procedure that includes resampling the parameters of the climate-yield response function
(Methods). Although centered on zero, this distribution is skewed to the left, meaning critical values are lower
than under standard normality assumptions [critical values for a one-tailed test under the normal approximation
are 1.64 (5%) or 1.28 (10%)].
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Fig. 2. Impacts of growing-season temperature and precipitation trends in 1989–2009 on European crop yields by country and for the whole region (Total).
Impacts are weighted by regional production of the relevant crop in 1989–1994 (Methods). The black line shows impacts calculated using the regression point
estimate (Table 1), and the colored bars show the 90% confidence interval obtained by inverting a two-tailed hypothesis test of size 10% (Methods). This
distribution is skewed for wheat, maize, and sugar beet yields, which is why the bars are asymmetric around the point estimate.
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in Italy has been particularly damaging, causing yields losses of
10% or more relative to baseline. Although the attribution of
European climate trends to greenhouse gas emissions is beyond
the scope of this paper, temperature trends are both large rela-
tive to natural variability and positive across much of Europe,
suggesting they may more likely be linked to anthropogenic cli-
mate change than the weaker and more variable precipitation
trends (SI Appendix, Fig. S1). We estimate that, in the absence of
the warming experienced over Europe since 1989, wheat, barley,
and sugar beet yields would be 3.5%, 3.8%, and 2.1% higher
than they are today (SI Appendix, Fig. S9). Finally, this paper
presents a formal statistical test for the detection of adaptation
to climate change impacts using the difference in projected
impacts made including and excluding adaptations. Our simu-
lation analysis shows that the power of this test is likely to be very
low in most contexts. Therefore, null results showing no evidence
for adaptation to climate change should be interpreted with
caution because the probability of false negatives is high, par-
ticularly given the relatively small amount of climate change
experienced to date.

Methods
Response Function Estimation. All variables were first detrended by fitting
linear time trends at the subnational region level. Short- and long-run yield
response functions to temperature and precipitation changes were then
jointly estimated for each crop using balanced panel data from 1989 to 2009
(8). The long-run response function is a quadratic in both growing-season
temperature and rainfall and is estimated using cross-sectional variation in
long-term climate, therefore implicitly including substantial adaptation (20).
The short-run response function includes an additional penalty term asso-
ciated with weather that is different from the expected climate and is

estimated using interannual variability. It therefore captures the effect of
short-term weather variation that is only partly anticipated by farmers and
so includes much less adaptation. The preferred model includes controls for
soil quality, altitude, irrigation, subsidies, as well as country fixed effects that
control for time constant variation between countries (21). Because the
long-term linear trends in climate and yield for each region are removed
before estimation, they do not influence the response function and there-
fore ensure the same data are not used to both train the response model
and test for the impact of long-run changes in climate. The variance–
covariance matrix of response function parameters are estimated using
a parametric block-bootstrap at the country level. The estimating equation,
response curves, and SEs are given in SI Appendix, with additional in-
formation in the study by Moore and Lobell (8).

Bootstrap of the Null Distribution. Any detection and attribution study
looking at the effect of climate on some outcome of interest (i.e., yields) must
account for the fact that the response of that outcome to a given change in
climate is uncertain. We account for this additional source of uncertainty by,
as part of each bootstrap, creating a new response function by resampling the
joint normal distribution of response function parameters and using this to
recalculate the predicted trends in yields. Then these newdata are resampled,
as in a traditional bootstrap, to calculate the distribution of the test statistic
under the null (22).

The bootstrap for test 1 uses a version of the bootstrap-t procedure (23). This
involves first calculating the regression coefficient bβ1 (Eq. 1), resampling the
parameters of the response function and recalculating predicted trends in yields
(to account for uncertainty in the yield response function), resampling the data
by country (to account for spatial autocorrelation within countries), and calcu-
lating the bootstrapped coefficient dβ1_b. The variance of dβ1_b is calculated by
repeating the previous steps, using the bootstrapped sample, 500 times to give

the bootstrapped test statistic τ1_b = ðdβ1_b − bβ1Þ
.� ffiffiffiffiffiffiffiffidVarp �dβ1_b�

�
. Because bβ1 is

subtracted in calculating τ1_b, this imposes the null hypothesis (i.e., that τ1_b
is equal to zero, in expectation) and so gives the distribution of τ1 under the null

Fig. 3. Spatial fingerprint of trends in growing-season temperature and precipitation in 1989–2009 on wheat (A), maize (B), barley (C), and sugar beet
(D) yields. The maps show the predicted trends in crop yield due to temperature and precipitation changes (Fig. 1 F–I) corrected by the regression coefficientbβ1(Table 1). White shows areas not included in the study due to insufficient data.
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(22). This procedure is repeated 500 times and the 1-α quantile of the resulting
distribution used as the critical value of a one-tailed test of size α. Cameron et al.
(23) show that this bootstrap-t procedure improves statistical inference in con-
texts with clustered data and a small number of clusters relative to the standard
cluster-robust errors.

For test 2, each bootstrap is performed by first resampling the parameters
of the response function from their joint distribution, recalculating the
predicted yield trends using these parameters, and then resampling the data
by country. Eq. 2 is then estimated using the bootstrap sample and RSS2_b
calculated as the residual sum of squares from that regression. The observed
trends are then regressed on the short-run predicted trends and a random
variable with the same mean and variance as the difference between the
long- and short-run predicted trends and RSS3_b calculated as the residual
sum of squares from this regression. The bootstrapped test statistic is cal-
culated as τ2_b = ðRSS2_b −RSS3_bÞ=ðRSS3_b=ðn− 3ÞÞ. Because the random var-
iable added in the second regression has no true explanatory power, this
procedure imposes the null hypothesis in generating the bootstrap and
therefore gives the distribution of τ2 under the null. This procedure is re-
peated 500 times and the 1-α quantile of the resulting distribution used as
the critical value of a test of size α. Step-by-step versions of these procedures
are given in SI Appendix for clarity.

Estimation of Climate Trend Impacts on Yields. Power for tests 1 and 2 was
determined using a simulation exercise parameterized using the European
crop and climate data. Data were simulated by creating 125 predicted trends
based on the distributions of baseline climates and long-term climate trends
in the dataset, and the estimated long- and short-run response functions.
White noise was then added with a variance determined by the actual un-
explained variance in long-term yield trends in the data to simulate the
observed yield trends. Tests 1 and 2were performed using the simulated data
and the bootstrapping procedure described above. This was repeated 500
times to determine the probability of rejecting the null hypothesis for each
crop. SI Appendix, Table S4 shows the parameter values used for this simu-
lation and additional details on the simulation analysis are given in SI Ap-
pendix. We also run a simulation to estimate the probability of rejecting
a true null hypothesis using test 2 and find this is very close to the desired
test size of 5% (SI Appendix, Fig. S8).

We conducted tests for which the power exceeds 80% (test 1 for wheat,
maize, barley, and sugar beet yields). Linear trends in growing-season tem-
perature and precipitation were estimated for the period 1989–2009 for each
region in countries included in the yield response model (SI Appendix, Table
S1) with at least 10 y of data. The growing season was defined using the
observed planting and harvest dates in each region (24). These trends were
combined with the baseline climate (1959–1988 mean) and the long-run
response function to generate the predicted trends in yields using a local
linear approximation of the nonlinear response function:

Predicted_Trend_Tempi = θ1,1
�
T +ΔT

�
+ θ2,1

�
T +ΔT

�2 −�
θ1,1T + θ2,1T

2
�
,

Predicted_Trend_Precipi = θ1,2
�
P +ΔP

�
+ θ2,2

�
P +ΔP

�2 −�
θ1,2P + θ2,2P

2
�
,

where θi,j are the parameters of the long-run response function (SI Appendix,
Eq. S1), T and P are the baseline growing-season temperature and pre-
cipitation climatologies, and ΔT and ΔP are the linear change in growing-
season weather between 1989 and 2009.

The observed linear trends in crop yields between 1989 and 2009 are used
as the dependent variable. Trends in farm-gate prices between 1989 and 2009
and trends in coupled crop subsidies per hectare of cropland between 1993
and 2009 are included as controls (25). This subsidy control captures the
change over this time period from subsidy payments coupled to production
to decoupled payments (SI Appendix, Fig. S10). The preferred estimating
equation is therefore the following:

Observed_Trendi = β0+ β1ðPredicted_Trend_Tempi + Predicted_Trend_PrecipiÞ
+ β2Price_Trendi + β3Subsidy_Trendi ,

[4]

where the coefficient of interest is β1, the combined effect of temperature
and precipitation changes on yields. SI Appendix, Table S5 also presents
two alternative specifications, one that includes country fixed effects in
Eq. 4 and one that examines only the effect of changing temperature,
Predicted_Trend_Tempi , including Predicted_Trend_Precipi as a control.

The corrected effect of climate trends on yield in region i is calculated as
β̂1*ðPredicted_Trend_Tempi + Predicted_Trend_PrecipiÞ and is shown in Fig. 3.
The mean effect in country j is a weighted average:

Impactj =
X
i∈j

β̂1*ðPredicted_Trend_Tempi + Predicted_Trend_PrecipiÞ*PiPj ,

where Pi is the mean production in region i over the 5 y at the start of
the dataset (1989–1994) and Pj is the same for country j. This assumes
that the same climate response (β̂1) applies over the whole region be-
cause the data available does not allow for a more disaggregated anal-
ysis. Ninety percent confidence intervals for the aggregated effect in
each country were obtained by inverting the 0.05 and 0.95 quantiles of
the bootstrapped distribution of τ1 to obtain coefficients corresponding
to the edges of the rejection region of a two-tailed hypothesis test of
size 10% (26).

ACKNOWLEDGMENTS. We thank the Neukermans Family Foundation Stan-
ford Interdisciplinary Graduate Fellowship for funding of this research.

1. Lin M, Huybers P (2012) Reckoning wheat yield trends. Environ Res Lett 7:024016.
2. Grassini P, Eskridge KM, Cassman KG (2013) Distinguishing between yield advances

and yield plateaus in historical crop production trends. Nat Commun 4:2918.
3. Brisson N, et al. (2010) Why are wheat yields stagnating in Europe? A comprehensive

data analysis for France. F Crop Res 119:201–212.
4. Peltonen-Sainio P, Jauhiainen L, Laurila IP (2009) Cereal yield trends in northern Euro-

pean conditions: Changes in yield potential and its realisation. F Crop Res 110:85–90.
5. Finger R (2010) Impacts of agricultural policy reforms on crop yields. EuroChoices 7:24–25.
6. Balkhausen O, Banse M, Grethe H (2008) Modelling CAP decoupling in the EU: A

comparison of selected simulation models and results. J Agric Econ 59(1):57–71.
7. Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop pro-

duction since 1980. Science 333:616–620.
8. Moore FC, Lobell DB (2014) The adaptation potential of European agriculture in re-

sponse to climate change. Nat Clim Chang 4:610–614.
9. Jaggard KW, Qi A, Semenov MA (2007) The impact of climate change on sugarbeet

yield in the UK: 1976–2004. J Agric Sci 145(4):367–375.
10. Santer BD, et al. (1996) A search for human influence on the thermal structure of the

atmosphere. Nature 382(6586):39–46.
11. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts

across natural systems. Nature 421(6918):37–42.
12. Cramer W, et al. (2014) Climate Change 2014: Impacts, Adaptation and Vulnerability.

Working Group 2 Contribution to the IPCC 5th Assessment Report (Cambridge Univ
Press, Cambridge, UK).

13. Stone D, et al. (2013) The challenge to detect and attribute effects of climate change
on human and natural systems. Clim Change 121(2):381–395.

14. Hegerl G, Zwiers F, Tebaldi C (2011) Patterns of change: Whose fingerprint is seen in
global warming? Environ Res Lett 6:044025.

15. Min SK, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense
precipitation extremes. Nature 470(7334):378–381.

16. Supit I, et al. (2010) Recent changes in the climatic yield potential of various crops in
Europe. Agric Syst 103(9):683–694.

17. Food and Agriculture Organization of the United Nations (2014) FAOSTAT, V. 3.
Available at faostat.fao.org. Accessed May 2, 2014.

18. Organisation for Economic Co-operation and Development (2013) Agricultural Policy
Monitoring and Evaluation 2013: OECD Countries and Emerging Economies (Orga-
nisation for Economic Co-operation and Development, Paris).

19. Finger R (2010) Evidence of slowing yield growth—the example of Swiss cereal yields.
Food Policy 35(2):175–182.

20. Mendelsohn R, Nordhaus WD, Shaw D (1994) The impact of global warming on ag-
riculture: A Ricardian analysis. Am Econ Rev 84(4):753–771.

21. Van Liedekerke M, Panagos P (2005) ESDBv2 Raster Archive—a Set of Rasters from the
European Soil Database, Version 2. Available at eusoils.jrc.ec.europa.eu/data.html.
Accessed August 22, 2012.

22. MacKinnon JG (2009) Handbook of Computational Econometrics, eds Belsley DA,
Kontoghiorghes J (Wiley, Chichester, UK), pp 183–213.

23. Cameron AC, Gelbach JB, Miller DL (2008) Bootstrap-based improvements for inter-
ence with clustered errors. Rev Econ Stat 90(3):414–427.

24. Sacks WJ, Deryng D, Foley JA, Ramankutty N (2010) Crop planting dates: An analysis
of global patterns. Glob Ecol Biogeogr 19:607–620.

25. European Union (2013) Farm Accountancy Data Network. Available at ec.europa.eu/
agriculture/rica/. Accessed July 5, 2013.

26. Davidson R, MacKinnon JG (2006) Palgrave Handbook of Econometrics: Vol. 1,
Econometric Theory, eds Mills TC, Patterson K (Palgrave MacMillan, New York).

27. Matsuura K, Willmott CJ (2009) Terrestrial Precipitation: 1900–2008 Gridded Monthly
Time Series, Version 2.01. Available at climate.geog.udel.edu/∼climate/. Accessed
August 13, 2012.

28. Matsuura K, Willmott CJ (2009) Terrestrial Temperature: 1900–2008 Gridded Monthly Time
Series, Version 2.01. Available at climate.geog.udel.edu/∼climate/. Accessed August 13, 2012.

Moore and Lobell PNAS | March 3, 2015 | vol. 112 | no. 9 | 2675

EN
V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S
SU

ST
A
IN
A
BI
LI
TY

SC
IE
N
CE

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1409606112/-/DCSupplemental/pnas.1409606112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1409606112/-/DCSupplemental/pnas.1409606112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1409606112/-/DCSupplemental/pnas.1409606112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1409606112/-/DCSupplemental/pnas.1409606112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1409606112/-/DCSupplemental/pnas.1409606112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1409606112/-/DCSupplemental/pnas.1409606112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1409606112/-/DCSupplemental/pnas.1409606112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1409606112/-/DCSupplemental/pnas.1409606112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1409606112/-/DCSupplemental/pnas.1409606112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1409606112/-/DCSupplemental/pnas.1409606112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1409606112/-/DCSupplemental/pnas.1409606112.sapp.pdf
http://faostat.fao.org
http://eusoils.jrc.ec.europa.eu/data.html
http://ec.europa.eu/agriculture/rica/
http://ec.europa.eu/agriculture/rica/
http://climate.geog.udel.edu/~climate/
http://climate.geog.udel.edu/~climate/

