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Abstract: Small angle solution X-ray and neutron scattering recently resurfaced as powerful tools to
address an array of biological problems including folding, intrinsic disorder, conformational transitions,

macromolecular crowding, and self or hetero-assembling of biomacromolecules. In addition, small

angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy,
and other structural methods to aid in the structure determinations of multidomain or multicomponent

proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation,

or X-ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for charac-
terizing the organizations of two-component systems such as a nucleoprotein or a lipid-protein assem-

bly. Time-resolved small and wide-angle solution scattering to study biological processes in real time,

and the use of localized heavy-atom labeling and anomalous solution scattering for applications as
FRET-like molecular rulers, are amongst promising newer developments. Despite the challenges in

data analysis and interpretation, these X-ray/neutron solution scattering based approaches hold great

promise for understanding a wide variety of complex processes prevalent in the biological milieu.
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solution structure determination

Introduction
Modern biological applications of small angle X-ray

and neutron solution scattering (SAXS/SANS)

include low-resolution shape modeling, and the char-

acterizations of protein/RNA folding, intrinsic disor-

der, conformational transitions, and protein-protein

or protein-nucleic acid assembling processes (Fig.

1).1–5 Even though small angle solution scattering

(SAS) typically requires very pure and mono-

disperse sample, no specialized sample treatments

like chemical fixation or crystallization are neces-

sary, making the use of a range of physiologically

relevant buffer conditions possible. Furthermore,

small sample volume at 1 to 10 mg/mL concentra-

tion, rapid data collection at the synchrotron sites

(0.5–5 s), practically no size-limitation (depending

upon the experimental setup), several dedicated

beam-lines at the synchrotron facilities including

those with options for automated high-throughput

data collection and the availability of user-friendly,

automated software for data analysis makes SAXS a
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very popular technique.5–9 Due to the immense pop-

ularity of SAXS, guidelines for publications are

actively discussed in the research community.10,11

For the theoretical basis and technical details of

small angle scattering, we refer the readers to an

excellent, recently published text-book.12 In this

review, we will focus our attention on the modern

applications of SAXS and SANS in a variety of prob-

lems in structural biology.

Size and shape of a macromolecule

Analysis of SAS data allows ready estimations of

mass, radius of gyration, and maximum diameter of

a monodisperse macromolecule in solution.1,2,13 In

addition, cross-sectional size and linear mass density

(mass per unit length) of a rod-shaped filament and

thickness of a disk-shaped particle can be estimated

from SAS data.13–15 These quantities and the pair-

wise distance distribution profile computed from

SAS data are useful for testing various structural

hypotheses and can be used as restraints for struc-

tural modeling. While small angle X-ray/neutron

scattering1–4 provides information about the global

size and shape of the macromolecule in solution,

wide-angle X-ray scattering (WAXS) data obtained

at higher scattering angles contains information

about its finer structural features.16 On the other

hand, SAXS at ultra-low scattering angles can aid in

the elucidation of large-scale, higher-order struc-

tures, such as the nucleosome fiber.17

When a crystal structure is not available, SAXS

provides a quick way to compute a low-resolution, aver-

age molecular shape of a mono-disperse, globular mac-

romolecule from its scattering profile.1,2,18–21

Impositions of anticipated point-group symmetry, con-

nectivity and compactness conditions, and multiple ab

initio shape computations with consistent results, aid in

obtaining an average, low-resolution shape model.22,23

Due to the inherent ambiguity of SAS-based shape mod-

eling, validations of the model using additional experi-

mental data that are “not seen by the model” are

endorsed.12 Comparisons of the SAS-derived shape

models with corresponding known structures indicated

excellent agreements for a number of cases.24 Recently,

methods were developed to model RNA structures using

experimental SAXS data in conjunction with the struc-

ture prediction algorithms.25,26

SAS as a complementary technique in structural
biology

While X-ray crystallography is a routine tool for the

atomic resolution structure determinations of bio-

molecules held in crystal lattices, SAS can readily

reveal their oligomeric states and domain organiza-

tions in solution.1,2 Solution scattering profiles are

computed from the atomic co-ordinates of available

crystal structures for comparisons with the experi-

mental SAXS/WAXS data.27–32 In addition to ab initio

shape modeling, SAS can be used in conjunction with

the existing substructures to model their overall terti-

ary or quaternary organizations.33–39 Furthermore,

SAS-based shape computations with known partial

structures can help to predict the location of a miss-

ing component within the structure.40

Despite the tremendous methodological advan-

ces in structure determination techniques, many

Figure 1. A schematic diagram showing various biological applications of small angle solution scattering technique.
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multicomponent or multidomain biological entities

continue to pose considerable challenge to structure

determination. An effective way to tackle this chal-

lenge is to combine information obtained from com-

plementary methods, such as crystallography,

nuclear magnetic resonance spectroscopy (NMR),

transmission electron microscopy, mass spectrometry

and SAS, to learn about the structural organizations

of proteins and their assemblies at data-dependent

levels of details.41–45 For example, Wang et al., used

information about overall shape, relative orienta-

tions of the components and the footprints of buried,

interface residues obtained from SAXS, NMR and

mass spectrometric data to learn about the oligo-

meric states of a chemokine CCL5.44 Hybrid meth-

ods are developed to integrate SAS data with other

experimental data for structural modeling.46–49 In

particular, NMR with SAS has emerged as a power-

ful approach to elucidate the structural organiza-

tions of various biological entities.44,49–52 Thus, SAS

in combination with other complementary techni-

ques can be an effective tool to address structural

problems that are not easily amenable to a single

technique.

Neutron and X-ray scattering with contrast
variation

Small angle neutron scattering or SANS contrast var-

iation experiments reveal the relative dispositions of

components within a multicomponent assem-

bly.4,13,53–56 A difference in the neutron scattering

length density of hydrogen (H) and deuterium (D) is

exploited in a SANS contrast variation experiment to

vary the excess scattering density or contrast of the

scattering macromolecule.53–57 A typical contrast var-

iation dataset is obtained by collecting SANS data at

a number of different H/D ratio, from which individ-

ual scattering profile for each component in the

assembly as well as the cross-term describing their

relative orientations in a two-component assembly

can be retrieved.57 In addition, distance between the

centers of mass of the two components can be esti-

mated from SANS contrast variation dataset.57 Thus,

SANS with H/D contrast variation is very well suited

for analyzing relative positioning of the components

within an assembly and an induced-fit or a mutual

induced fit mode of molecular recognition.

In an alternative contrast matching experiment,

neutron scattering contribution from one of the compo-

nents can be selectively “matched out” or abolished by

adjusting the H/D ratio of the buffer. The “matching

out” conditions for lipids, proteins, carbohydrates, and

DNA/RNA are at about 10 to 14%, 40 to 45%, 47%, and

65 to 72% D2O, respectively, which can be changed by

deuteration.1,4,13,57 Neutron scattering with contrast

matching is an exceptional tool for observing a selected

component in the presence of another “invisible” com-

ponent in a heteromeric assembly.

Scattering with contrast variation aided in elu-

cidating the organizations of many two-component

assemblies, such as nucleoprotein assemblies and

protein-protein assemblies with a deuterated protein

component.58–64 Owing to the differences in scatter-

ing densities between proteins and lipids as well as

proteins and detergents, SANS is useful for studying

membrane proteins.65,66 Recently, a hybrid strategy

to model membrane proteins in lipidic environment

by combining SAXS and SANS data was described.67

Thus, the feasibility of deuterium-labeling the mac-

romolecules for changing contrasts and the power of

H/D contrast variation allows SANS to characterize

a range of two-component assemblies, which is not

possible to achieve solely based on SAXS.

Due to a limited number of neutron scattering

facilities, a large amount of sample requirement

(150 mL or more at 5–10 mg/mL concentration),12

noisier data due to in-coherent scattering and long

data collection times (a few hours), resurgence of

neutron scattering is gradual. In comparison, SAXS

typically requires only 20 to 30 mL of sample and a

few seconds of exposure at a powerful synchrotron

source. Although less potent than SANS with H/D

contrast variation, SAXS with varying amounts of

sucrose provides another avenue to protein contrast

matching and a limited range of contrast varia-

tion.68–72 Moreover, sucrose can reduce the effect of

radiation damage at the powerful synchrotron sour-

ces.73 However, unaddressed issues such as

enhanced viscosity at higher sucrose concentration

may limit the utility of these SAXS-based contrast

variation experiments and care should be taken to

account for these effects.72 High salt conditions are

effective for SAXS-based contrast variation experi-

ments, but have limited applicability in biological

problems.1,72 Due to the relative ease of obtaining

SAXS data in comparison to SANS, a renewed

search for additional contrast variation agents for

SAXS that are suitable for biological samples will be

rewarding to the SAS research community.

Folding, conformational flexibility, and intrinsic

disorder
SAS is a powerful global sensor of the folding states

and conformational changes in proteins and nucleic

acids. A global indication of “folded-ness” of the bio-

molecule can be obtained from the Kratky plot (I.q2

vs. q, where I is the scattering intensity, and q is

the momentum transfer).74 Kratky plots, together

with the changes in sizes and pair-distribution func-

tion profiles, are used to track folding-unfolding

behaviors of biomolecules under varying experimen-

tal conditions.74 Furthermore, changes in sizes and

pair-distributions functions are model-free indicators

of large-scale conformational changes in folded, non-

aggregated proteins, which can be combined with

shape or structural modeling. Although the
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applications of SAXS are limited to detections of

large movements,75–79 WAXS can sense small ampli-

tude structural changes in proteins.80,81

A large number of naturally occurring proteins

are either disordered or contain long stretches of

unstructured regions, and are generally classified as

intrinsically disordered proteins (IDP).82,83 The dis-

ordered regions often fold in the presence of a bind-

ing partners(s) and play crucial role in molecular

recognition.82,83 Due to a lack of rigid, well-defined

structure, characterization of the IDPs pose a chal-

lenge to structural biologists. SAS is naturally suita-

ble for studying these IDPs, as the scattering profile

represents an ensemble of conformations of the IDP

in solution.82 An IDP or a flexible protein can be

identified from the global features in the SAS data,

such as the Kratky plot, a left-skewed pair-distribu-

tion function or a Porod-Debye plot.82,84,85

In addition to the global analysis, a number of

different computational methods were developed to

generate an ensemble of protein conformers from

the SAS data.86–89 These methods typically involve

computational generations of multiple conformers

followed by their selections based on their compati-

bility with the experimental SAS data.86–89 Ensem-

ble modeling with SAS data yielded structural

information on the spatial occupancy of glycans in

glycosylated proteins that are notoriously difficult to

crystallize.90 Thus, SAS in combination with suitable

computational methods can provide potentially unre-

stricted access to the conformational spaces of flexi-

ble proteins under different conditions, which is a

clear advantage over crystallography.

Due to the low information content of SAS and

a large number of parameters required for an

exhaustive description of an IDP, combining SAS

with additional complementary experimental data is

a sensible approach, when possible. SAS analysis of

IDPs is typically complemented with solution NMR,

circular dichroism, dynamic light scattering and

other hydrodynamic data analyses.91 Synergy

between NMR and SAS were exploited in numerous

studies of IDPs, which is recently reviewed else-

where.92 Bertini et al. used SAXS with NMR on

lanthanide-labeled proteins to determine the most

abundant conformers of highly flexible calmodulin,

which might be needed for a better explanation of

its function in solution.93 In a recent article, exhaus-

tive SAXS and NMR based ensemble analyses,

together with extensive cross-validations, were used

to predict conformations of IDPs relevant to neuro-

degenerative disorder.94 SAS, particularly in combi-

nation with NMR, will continue to play a pivotal

role in providing key structural descriptions of IDPs.

Macromolecular crowding
SAS provides an elegant way to examine the impor-

tant but often neglected effect of macromolecular

crowding on proteins.95 WAXS data suggested that

concentrated conditions inhibit breathing motions in

proteins.96 Furthermore, SAS was found to be a suit-

able tool to study the effects of crowding on RNA

folding.97,98 SAXS-based studies indicated that

crowding promotes compactions in the tertiary and

quaternary structures of certain modular enzymes

and their complexes.99,100 Quite significantly, this

compaction correlates with higher enzymatic activ-

ity.99,100 On the other hand, a recent, remarkable

SANS study on the intrinsically disordered,

deuterium-labeled protein N in the presence of two

different un-labeled proteins as crowding agents

under their “contrast matching” conditions indicated

minimal effect of crowding on the protein N.101 Valu-

able new insights on the effects of crowding on

nucleic acids and deuterated proteins, both folded

and intrinsically disordered, can be obtained from

SANS in the presence of these “invisible” contrast-

matched, unlabeled protein crowding agents that

realistically mimics the intracellular environment.

SAXS-based molecular ruler

SAS provides global information on size and shape

but no local structural information on a particular

site can be generally obtained. However, for certain

biological applications, such site-specific details can

be very instructive. One way to obtain local informa-

tion from SAXS is to label the protein with electron-

rich elements.102,103 DNA coupled to gold nanocrys-

tal as a probe was successfully used to measure the

length of DNA using scattering interference.104 In

another recent SAXS study, gold cluster-labeled

DNA was used to track conformational changes

induced by a DNA mismatch repair protein, leading

to new insights into the repair mechanism.105 Under

the experimental conditions of low concentrations,

scattering from the electron-dense gold-component

dominated the total scattering.105 Grishaev et al.

determined the structural organization of lead-

substituted calmodulin-peptide complex using a com-

bination of sucrose contrast matching, conventional

SAXS/WAXS and NMR residual dipolar coupling

measurements.70 Scattering contribution from the

protein parts was contrast matched by sucrose, lead-

ing to the heavy-atom dominated scattering profile,

which was critical for the correct positioning of

structural components.70 Unlike the F€orster reso-

nance energy transfer or FRET-based molecular rul-

ers that are restricted around the F€orster distance

of the available donor-acceptor pairs, SAXS-based

molecular rulers can be potentially used to measure

a much larger range of distances.104 Therefore, use

of labeled samples for SAXS analyses of localized

conformational changes, molecular recognition proc-

esses and multimeric organizations, especially

coupled with time-resolved SAXS experiments,104
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electron microscopy,104 and contrast matching,70 will

almost certainly become more common in future.

Anomalous solution X-ray scattering

Anomalous scattering properties of metal ions,

which are routinely exploited in multiwavelength

anomalous dispersion phasing methods in macromo-

lecular crystallography, has been used to a limited

extent in SAXS.106–109 Strong anomalous solution

X-ray scattering (ASAXS) of terbeium at the LIII

edge was exploited to measure the mean distance

between the terbiums substituting the calcium bind-

ing sites within parvalbumin and the center of mass

of the protein, which was consistent with the crys-

tallographic results.107 Makowski et al. recently

used anomalous contribution from iron in the solu-

tion scattering data at the Fe K edge to determine

the distance between centers of mass of hemoglobin/

myoglobin and the metal ion.109 Anomalous contri-

bution due to the metal label to the total scattering

is typically quite small, requiring very careful meas-

urements at a tunable-wavelength, powerful syn-

chrotron X-ray source. Although small anomalous

contribution due to the cross-term between the label

and the protein segment is usable, scattering contri-

bution due to the interference within the anomalous

scattering metal component itself is negligible.109

Theoretical calculations predict that the use of metal

clusters, such as a gold nanocrystal, may alleviate

this problem for ASAXS studies.110 With further

explorations of dissimilar anomalous scattering

atomic clusters as labels to measure specific distan-

ces, and concomitant development of theories,110

applications of ASAXS-based molecular rulers to

probe intricate conformational changes and molecu-

lar recognition processes may become routine.

Mixed systems
Sample heterogeneity pose challenges to routine

SAS data analysis that generally assumes stable

molecular species of one kind in dilute, noninteract-

ing solution state. However, many interesting biolog-

ical phenomena take place in a mixture of

interacting particles in solution, which might

include weak and transient interactions. SAXS is

one of the very few structural techniques available

to study these mixed systems.

For a separable mixture, such as a monomer with

a stable dimer, SAXS at a powerful synchrotron source

coupled with in-line size-exclusion column chromatog-

raphy (SAXS-SEC) allows an elegant way to study

individual entities while being eluted.111,112 In an

extension of this coupled approach, scattering from a

low-affinity complex of actin with a peptide ligand was

measured using SAXS-SEC in a buffer saturated with

this peptide ligand, while effectively excluding any

scattering from the higher aggregates.113,114 Sokolova

et al. modeled intermediate filament assembling path-

way from SAXS data by finding out conditions domi-

nated by each of the constituents.115 However,

separation of individual entities in a mixture may not

be possible or desirable in all cases.

Computational approaches were developed for

extracting individual scattering profiles of the con-

stituents from concentration-dependent SAXS data-

set obtained from mixed systems involving weak

homo- or hetero-oligomers co-existing with mono-

mers.116–118 These approaches are original in a sense

that they allow derivations of low-resolution shape

models as well as the association constants and

assembling pathway from the same experi-

ment.116–118 Petoukhov et al. recently published a

method for composition analysis and shape modeling

of oligomeric assemblies from condition-dependent

scattering curves for a variety of user-defined mixed

system scenarios.119 However, conformational

changes upon binding can make simple interpreta-

tions of SAS data obtained from mixed systems diffi-

cult. Above computational approaches involving

equilibrium mixtures can be potentially used in con-

junction with time series of SAXS to provide a rich

variety of information on the mixed system.116

Time-resolved SAS to track biological processes
Time-resolved SAXS, SANS, and WAXS studies can

provide direct mechanistic insights on the course of

a biological reaction/process in terms of its constitu-

ent components, including the pathway intermedi-

ates. Data collection capability up to about 100 ps

time resolution at the modern, powerful synchrotron

sources equipped with better detectors and better

methods to trigger an event make it possible to

observe the time progressions of SAXS/WAXS pro-

files of a variety of evolving systems.120–124 SANS

provides another avenue for time-resolved studies,

albeit at a longer time scale, which can be judi-

ciously combined with contrast matching for a two-

component system.125,126 The target biological pro-

cess can be initiated by a number of ways, such as

laser light for a light-initiated process (pump-probe)

or by using a mixing device or by quickly removing

one component from the mixture, depending upon

the nature and time-scale of the process under

investigation.120–124 Thus, time-resolved SAS is a

valuable tool for investigating a range of processes

including the slow assembling (second or longer

time-scale) as well as fast folding kinetics (second to

100 ms) and ultra-fast protein movements in the sub-

nanosecond region.12 In recent times, 10 to 100 fs X-

ray laser pulses are opening up the first-time possi-

bility to observe even faster, light-triggered proc-

esses, such as a “protein-quake.”124,127

Time-resolved SAS is suitable for probing many

biological processes, such as capsid maturation and

fibrillation pathways that are difficult to study by tra-

ditional means. Examples include movements in
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light-driven proton pumps,128 microtubule forma-

tion,129 allostery and structural dynamics in hemoglo-

bin,120,130 fibrillation pathway in insulin amyloid and

alpha-synuclein,131,132 viral capsid maturation,133–135

protein folding,136–138 and RNA folding.139,140 In a

seminal study by Vestergaard et al., insulin fibrillation

process was modeled using time-resolved SAXS data,

leading to an elongation pathway for amyloid fibril for-

mation from a helical nucleus.131 In another study,

global size information obtained from time-resolved

SAS was effectively complemented with local solvent

accessibility data from time-resolved hydroxyl radical

footprinting to provide unique insights into the RNA

folding pathway.141 Recently, Chen et al. performed

time-resolved SAXS under protein contrast matching

conditions to track salt-induced DNA unwrapping in

the nucleosome core particle.72 An ability to probe

unrestricted movements of label-free biomolecules in

near-physiological conditions at a wide range of tempo-

ral resolutions is a huge advantage of time-resolved

SAS. Furthermore, time-resolved SAXS/WAXS on pro-

teins with site-specific heavy atom labeling can be

used to track local changes, while simultaneously mon-

itoring the global changes in the protein.142

Concluding remarks

Advances in SAS methods opened up the exciting

opportunities to learn about size, shape, folding, rec-

ognition, flexibility and disorder of soluble single/

multidomain proteins, membrane proteins, glycopro-

teins, intrinsically disordered proteins, DNA/RNA,

and their assemblies (Fig. 1). Feasibility of time-

resolved SAXS/WAXS studies of biological processes,

contrast variation for multicomponent assemblies,

convenient applications of SAXS or ASAXS on

heavy-atom labeled samples as molecular rulers and

appropriate combinations of above are some of the

key advantages and future promises of SAS tech-

nique. Furthermore, grazing incidence solution scat-

tering and related reflectivity techniques are

suitable for studying membrane-associated proteins

in near-natural environment.143 Although SAS is

essentially a low-information technique, combining

SAS with complementary techniques can circumvent

this limitation in many cases.47–50 However, much

work remains in method developments for data

acquisition, analysis and model validation.144–146 In

the coming years, modern X-ray sources and meth-

odological advances will probably open up unprece-

dented ways to reconstruct solution structures of

biomacromolecules, and will conceivably reveal

unforeseen wealth of information on protein motion,

which will be a giant step forward.114,124,147,148
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