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ABSTRACT: Mitochondria import more than 1,000 different proteins from the cytosol. The pro-

teins are synthesized as precursors on cytosolic ribosomes and are translocated by protein
transport machineries of the mitochondrial membranes. Five main pathways for protein import

into mitochondria have been identified. Most pathways use the translocase of the outer mito-

chondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals
contained in the precursors, the proteins are subsequently transferred to different intramito-

chondrial translocases. In this article, we discuss the connection between protein import and

mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long-
standing question how contact sites between outer and inner membranes are formed and

which role the contact sites play in the translocation of precursor proteins. A major transloca-

tion contact site is formed between the TOM complex and the presequence translocase of the
inner membrane (TIM23 complex), promoting transfer of presequence-carrying preproteins to

the mitochondrial inner membrane and matrix. Recent findings led to the identification of con-
tact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of

the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane

cristae architecture and forms contacts sites to the outer membrane that promote transloca-
tion of precursor proteins into the intermembrane space and outer membrane of mitochondria.
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The view is emerging that the mitochondrial protein translocases do not function as independ-

ent units, but are embedded in a network of interactions with machineries that control mito-
chondrial activity and architecture.

Keywords: contact site; membrane architecture; MICOS; mitochondria; protein sorting; protein

translocase

Introduction

Mitochondria consist of four compartments: outer

membrane, intermembrane space, inner membrane,

and matrix (Fig. 1). Mitochondria are known best

for their central role in cellular energy metabolism,

resulting in the synthesis of ATP by oxidative phos-

phorylation. However, mitochondria play many more

crucial functions in eukaryotic cells, including the

metabolism of amino acids and lipids, the biosynthe-

sis of heme and iron-sulfur clusters, the involvement

in cellular stress responses and a central role in pro-

grammed cell death (apoptosis).1–10

Proteomic studies revealed that mitochondria

contain more than 1,000 different proteins.11–16

Although mitochondria carry a complete genetic sys-

tem in the matrix, only �1% of mitochondrial pro-

teins are encoded by the mitochondrial genome.

Most mitochondrial-encoded proteins are strongly

hydrophobic subunits of the oxidative phosphoryla-

tion machinery of the inner membrane. They are

synthesized on mitochondrial ribosomes and are typ-

ically exported into the inner membrane by the OXA

(cytochrome oxidase activity) translocase [Fig. 1,

pathway (vi)].17,18

The vast majority of mitochondrial proteins are

encoded by nuclear genes and synthesized on cyto-

solic ribosomes. The precursor proteins carry target-

ing signals that direct the precursors to receptors on

the mitochondrial surface, followed by translocation

into mitochondria. Experimental systems to study

mitochondrial protein import mostly use precursor

proteins that can be imported in a post-translational

manner. However, it has been shown that cytosolic

ribosomes associate with mitochondria and various

precursor proteins can initiate translocation into

mitochondria while part of the precursor is still

being synthesized on ribosomes (cotranslational

import).19–27 It is likely that both post-translational

and cotranslational mechanisms are important for

the biogenesis of mitochondrial proteins.

From electron micrographic pictures of mito-

chondria, sites of close contact between outer and

inner mitochondrial membranes have been known

for decades.19,28–34 The molecular nature and func-

tion of membrane contact sites for mitochondrial

activity and biogenesis are the subject of ongoing

research. In the current view, mitochondria do not

possess one defined, permanent contact site struc-

ture but contain multiple dynamic contact sites that

involve a variety of protein complexes from outer

and inner membranes. Here, we first provide an

overview on the five main protein import pathways

into mitochondria and then discuss how preprotein

translocases are involved in forming different types

of contact sites. Recent findings indicate that contact

sites are involved in at least three protein import

pathways and stimulate the import of different

classes of precursor proteins by promoting an effi-

cient cooperation of translocases.

Five Mitochondrial Protein Import Pathways—An

Overview
Depending on their intramitochondrial destination,

mitochondrial precursor proteins contain distinct

types of targeting and intramitochondrial sorting

signals. Currently, at least five major classes of pre-

cursor proteins can be distinguished that use differ-

ent pathways of translocation into mitochondria

(Fig. 1). The protein translocase of the outer mem-

brane (TOM) is the major mitochondrial entry site

used by the majority of import pathways.

i. The classical presequence pathway is used by

�60% of all mitochondrial precursor proteins.35

The preproteins are synthesized with amino-

terminal presequences that form positively

charged amphipathic a-helices.36 Upon recogni-

tion by Tom receptors, the preproteins are trans-

located through an outer membrane channel

formed by Tom40 and are transferred to the pre-

sequence translocase of the inner membrane

(TIM23 complex) [Fig. 1, pathway (i)].37–39

Hydrophilic preproteins are imported into the

matrix with the help of the presequence

translocase-associated motor (PAM).40–44 Prepro-

teins destined for the inner membrane contain a

hydrophobic sorting signal behind the positively

charged matrix targeting signal. These prepro-

teins are laterally released into the lipid phase of

the inner membrane.45,46 For both, matrix-

translocated and inner membrane-sorted prepro-

teins, the positively charged matrix targeting sig-

nal is proteolytically removed by the

mitochondrial processing peptidase (MPP).47–49

ii. The carrier pathway imports the precursors of

noncleavable multispanning inner membrane

proteins. The precursors contain internal target-

ing signals that are not removed during import

but remain part of the mature mitochondrial pro-

tein.50 The hydrophobic metabolite carriers of
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the inner membrane are the major substrates of

this pathway. The precursors are initially trans-

located by the TOM complex, yet do not use the

TIM23 complex, but bind to soluble TIM chaper-

ones of the intermembrane space that are formed

by small Tim proteins [Fig. 1, pathway (ii)].51

The small TIM chaperones guide the hydropho-

bic precursors to the carrier translocase of the

inner membrane (TIM22 complex) that mediates

membrane insertion of the proteins in a mem-

brane potential (Dw)-driven manner.52

iii. It had been assumed that the mitochondrial

intermembrane space is a reducing environment

and thus proteins are in a reduced state. The

identification of an oxidative protein import and

folding system in the intermembrane space

changed this view and led to the discovery of a

large number of oxidized, disulfide-containing

Figure 1. Biogenesis of mitochondrial proteins. Most mitochondrial proteins are synthesized on cytosolic ribosomes and

imported into mitochondria by the translocase of the outer membrane (TOM). (i) Presequence-carrying preproteins are trans-

ferred from TOM to the presequence translocase of the inner membrane (TIM23). Hydrophilic preproteins are transported into

the matrix with the help of the presequence translocase-associated motor (PAM). Preproteins with hydrophobic sorting signal

are arrested in the TIM23 complex and are laterally released into the inner membrane (IM). The presequences are proteolytically

removed by the mitochondrial processing peptidase (MPP). (ii) The precursors of multispanning inner membrane proteins like

the carrier proteins are imported via TOM, the small TIM chaperones of the intermembrane space (IMS) and the carrier translo-

case of the inner membrane (TIM22). (iii) IMS proteins with cysteine motifs are imported via TOM and the mitochondrial IMS

import and assembly (MIA) machinery. (iv) The precursors of outer membrane (OM) b-barrel proteins use TOM, small TIM chap-

erones and the sorting and assembly machinery (SAM) for insertion into the outer membrane. (v) For a-helical outer membrane

proteins, different pathways have been described. Shown is the import of a precursor protein via the mitochondrial import

(MIM) complex. (vi) A small number of hydrophobic proteins are encoded by mtDNA and synthesized in the matrix. These pro-

teins are typically exported into the inner membrane by the cytochrome oxidase activity (OXA) translocase. Dw, membrane

potential across the inner mitochondrial membrane (drives protein import via TIM23 and TIM22).

Horvath et al. PROTEIN SCIENCE VOL 24:277—297 279



intermembrane space proteins.53–60 We termed

the system the mitochondrial intermembrane

space import and assembly (MIA) machinery.

The MIA machinery accepts preproteins after

their translocation through TOM, recognizes a

cysteine-containing targeting signal and inserts

disulfide bonds into the proteins [Fig. 1, pathway

(iii)].61–66

iv. The mitochondrial outer membrane contains two

types of transmembrane proteins, proteins with a-

helical transmembrane segments and b-barrel pro-

teins. The precursors of b-barrel proteins are

initially recognized and translocated by the TOM

complex. The precursors are transferred to the

intermembrane space side and bind to the small

TIM chaperones [Fig. 1, pathway (iv)]. Insertion of

the proteins into the outer membrane is mediated

by the sorting and assembly machinery (SAM).67–70

v. The biogenesis of a-helical outer membrane pro-

teins involves several distinct pathways and is

only understood in part. The mitochondrial

import (MIM) complex promotes insertion of

some a-helical proteins into the outer membrane,

in particular proteins with amino-terminal mem-

brane anchor (termed signal-anchored proteins)

as well as multispanning outer membrane pro-

teins [Fig. 1, pathway (v)].71–75 Tom receptors

can be involved in the recognition of multispan-

ning proteins before their insertion by the MIM

complex. As discussed below, a special signal-

anchored protein uses the presequence pathway,

followed by MIM-dependent outer membrane

insertion.76,77 Various pathways have been dis-

cussed for proteins with carboxy-terminal mem-

brane anchor (tail-anchored proteins), including

a lipid-mediated insertion into the outer mem-

brane,78,79 and an involvement of the SAM com-

plex for some of the proteins.80,81

In this article, we will discuss that physical con-

tacts between protein complexes of mitochondrial

outer and inner membranes promote the translocation

of precursor proteins not only via the presequence

pathway, but also via the MIA and b-barrel pathways.

TOM-TIM Contact Sites and the Presequence

Pathway
The first evidence for import of mitochondrial pro-

teins via contact sites was obtained by the accumu-

lation of translocation intermediates of cleavable

preproteins across both mitochondrial membranes.82

The two-membrane spanning preproteins were pres-

ent in a hydrophilic membrane environment, sug-

gesting that they were accumulated in hydrophilic

transport channels.83 The copurification of TOM and

TIM23 complexes together with an accumulated pre-

protein directly demonstrated the existence of trans-

location contact sites.42,84–94 TOM and TIM23

complexes transiently interact in the absence of pre-

proteins,95–97 yet their interaction is strongly stabi-

lized by a preprotein in transit [Fig. 2(A)]. The

channels formed by the TOM and TIM23 translo-

cases are so narrow that folded proteins cannot

pass98–102 and thus preproteins have to be translo-

cated in an unfolded conformation.29,41,103–113

Several Tom and Tim proteins participate in the

formation of TOM-TIM23 translocation contact sites:

the intermembrane space domain of the receptor

Tom22, Tom40, and Tom7 of the outer membrane

translocase,88,96,114–116 as well as Tim50, Tim23, and

Tim21 of the inner membrane translo-

case85,86,89,95,97,117,118 [Fig. 2(A)]. Tim50 plays a cen-

tral role in the TOM-TIM23 reaction cycle. In the

absence of preproteins, the intermembrane space

domain of Tim50 keeps the translocation channel

formed by Tim23 in a closed state.119 Presequence-

carrying preproteins are initially recognized by the

receptors Tom20 and Tom22 on the cytosolic side of

the outer membrane.120–124 Upon passing through

the Tom40 channel of the outer membrane, the pre-

sequences bind to the intermembrane space domain

of Tom22.125–128 Tom7 may be involved at this

import stage. Tim50 promotes the efficient binding

of preproteins to Tom22 at the trans side of the

TOM complex,88,95,117,118 underscoring the close

cooperation between Tom and Tim proteins. Tim50

then functions as inner membrane receptor for pre-

proteins and in cooperation with the intermembrane

space domain of Tim23 transfers the preproteins to

the Tim23 channel.85,95,100,117,129–134 Tim21 plays a

regulatory role in preprotein transfer through the

intermembrane space.88,132 The membrane potential

(Dw) across the inner membrane activates the Tim23

channel and exerts an electrophoretic effect on the

positively charged presequences.100,135

The TIM23 complex functions in a dynamic

manner and distinct TIM23 forms have been identi-

fied [Fig. 2(A)].88,91,92,136 In an early stage of translo-

cation, the TIM23 core complex consisting of Tim50,

Tim23, and Tim17 is associated with Tim21 and the

recently identified subunit Mgr2.137,138 The motor

subunit Pam17 plays a regulatory role. Pam17

replaces Tim21 at the translocase and initiates

assembly of further motor subunits to the TIM23

complex.90,91,132,139,140 Tim44 functions as membrane

docking site for the central motor component, the

matrix heat shock protein 70 (mtHsp70).139,141–145

Two further membrane-bound cochaperones, the

J-protein Pam18 (also termed Tim14) and its part-

ner Pam16 (Tim16) regulate the ATP-driven activity

of mtHsp70.42–44,87,146–153 The nucleotide release fac-

tor Mge1 promotes the release of ADP from

mtHsp70 to initiate a new round of the mtHsp70

reaction cycle.154–157 The mtHsp70 motor drives the

ATP-dependent import of preproteins into the matrix

by a combination of pulling and trapping of the
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precursor polypeptide and thus promotes unfolding

of carboxy-terminal precursor domains on the mito-

chondrial surface.40,41,93,158–160

During preprotein import, both forms of the

TIM23 complex, TIM23-Tim21 and TIM23-PAM,

cooperate with TOM to form TOM-TIM23-preprotein

supercomplexes.92 TOM-TIM23-Tim21 is found in

translocation contact sites at early import stages

and TOM-TIM23-PAM preferentially at later stages.

The translocation of presequence-carrying prepro-

teins across the mitochondrial outer and inner mem-

branes thus involves a dynamic interaction between

TOM, different TIM23 states and the motor PAM

and is driven by presequence binding, Dw and ATP.

The presequences sequentially interact with binding

sites at multiple steps of their translocation path-

way, including receptors on the cytosolic side, the

channel protein Tom40, the intermembrane space

domain of Tom22, Tim50, Tim23, and chaper-

ones.40,122,123,128,130,132,161–166 During or after trans-

location into the matrix, the preproteins are cleaved

by MPP to remove the positively charged

presequences.

Imaging studies revealed that mitochondrial

import sites are not equally distributed across the

membranes, but cluster in microdomains,167,168 sug-

gesting that several TOM-TIM23-preprotein super-

complexes are organized into larger translocation

contact sites. Electron cryotomography shows that

the contact sites are connected via protein–protein

interactions, not via direct contact of the lipid

phases of the membranes.168 The high resolution

structures of various hydrophilic import components

and domains have been determined and provided

important information on the recognition of prese-

quences, function of cochaperones and processing of

preproteins.48,114,116,123,131,149,169–175 However, high

resolution structures of the membrane domains

(channels) of TOM and TIM complexes are lacking

so far. This is a major reason that despite a wealth

of knowledge on individual reaction steps, the exact

mechanisms of preprotein translocation and the

complete TOM-TIM23-PAM reaction cycle have not

been elucidated yet.

Lateral Escape from the Presequence Pathway

TOM-TIM23 supercomplexes efficiently guide pre-

proteins from the outer membrane to the inner

membrane. However, they do not form completely

sealed structures, but preproteins in transit are par-

tially exposed to the intermembrane space.176

At the level of the inner membrane, the import

of cleavable preproteins branches into the matrix

route and the inner membrane sorting route.45,46

Hydrophilic preproteins are fully translocated into

the matrix, whereas preproteins with a hydrophobic

sorting signal behind the positively charged matrix

targeting signal are typically arrested in the TIM23

complex and are laterally released into the inner

membrane (stop transfer pathway).45 The TIM23-

Tim21 complex functions as insertase that can insert

preproteins into the inner membrane without the

motor PAM136 [Fig. 2(B)] (whereas an association

with PAM is strictly required for preprotein translo-

cation into the matrix). The small hydrophobic

TIM23 subunit Mgr2 acts as lateral gatekeeper of

the translocase. Mgr2 is not required for the translo-

cation of preproteins into the matrix, but plays a

regulatory role by delaying the release of prepro-

teins into the lipid phase of the inner membrane.94

Mgr2 recognizes the inner membrane-sorting signal

and permits its lateral exit, whereas preproteins

without a functional sorting signal are prevented

from entering the inner membrane.

A direct connection between the TIM23 complex

and the respiratory chain complexes III (cytochrome

bc1 complex) and IV (cytochrome c oxidase) stimu-

lates the insertion of preproteins into the inner

membrane [Fig. 2(B)]. Tim21 provides the link

between preprotein translocase and respiratory

supercomplexes III-IV.137,177–179 The exact mecha-

nism of how the TIM23-respiratory chain connection

promotes preprotein import has not been identified.

TIM23 complexes in the direct vicinity of proton-

pumping respiratory complexes likely experience a

higher proton-motive force and thus preprotein

import is stimulated.180 The Tim21-respiratory chain

connection may also play a role in the assembly of

respiratory chain complexes. Human Tim21 was

Figure 2. Translocation contact sites as core of the presequence pathway of mitochondria. (A) Matrix-targeted precursor pro-

teins typically carry cleavable amino-terminal presequences. The presequences are recognized by receptors of the translocase

of the outer membrane (TOM). Upon translocation through the Tom40 channel, the preproteins are transferred to the prese-

quence translocase of the inner membrane (TIM23 complex). Several Tom and Tim proteins cooperate in the formation of

dynamic TOM-TIM23 translocation contact sites. Two forms of the TIM23 complex are in dynamic exchange with each other.

Both TIM23 forms are involved in the formation of TOM-TIM23 supercomplexes. In an early stage of translocation, Tim21 is

associated with TIM23, whereas in later stages, the presequence translocase-associated motor (PAM) is associated with

TIM23. The mitochondrial processing peptidase (MPP) removes the presequences. OM, outer membrane; IMS, intermembrane

space; IM, inner membrane. (B) Cleavable preproteins inserted into the inner membrane (IM) carry a hydrophobic sorting signal

behind the positively charged matrix targeting signal. Insertion of these preproteins into the inner membrane can be mediated

by the Tim21-containing TIM23 complex without PAM. Mgr2 functions as lateral gatekeeper of the TIM23 complex and controls

the proper sorting of preproteins into the inner membrane. The respiratory chain complexes III and IV interact with the Tim21-

containing TIM23 complex and stimulate the Dw-dependent preprotein insertion. (C) The outer membrane protein Om45 uses

an unusual biogenesis pathway that involves TOM, TIM23 and the mitochondrial import (MIM) complex.
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found to dynamically interact with the TIM23 com-

plex and with assembly intermediates of the respira-

tory chain, termed MITRAC (mitochondrial

translation regulation assembly intermediate of

cytochrome oxidase).181 Human Tim21 thus helps to

transfer preproteins from the presequence translo-

case to the respiratory chain. Additionally, a recent

study showed that the mitochondrial ADP/ATP car-

rier associates with the TIM23 complex and may

support preprotein import when the respiratory

activity is low.182 When oxidative phosphorylation is

inhibited, mitochondria do not export ATP, but can

import glycolysis-generated ATP in exchange for

ADP, thus generating a membrane potential and

providing ATP to drive the TIM23-PAM machinery.

It should be added that not all preproteins with

hydrophobic segments are arrested in the inner

membrane. Some hydrophobic proteins or protein

segments are transferred to the matrix via TIM23-

PAM and are exported into the inner membrane by

the OXA machinery that has been conserved from

bacteria (YidC) to mitochondria. This pathway has

been termed the conservative sorting pathway.183–188

A special case of conservative sorting represents the

biogenesis of the Rieske iron-sulfur protein of respi-

ratory complex III. After initial translocation of the

precursor into the matrix and proteolytic processing,

the folded iron-sulfur domain is exported to the

intermembrane space by the AAA-ATPase Bcs1.189

Currently, many more inner membrane proteins

sorted by a stop transfer mechanism are known

than proteins using conservative sorting. Further

work will be required to define the substrates of the

conservative sorting pathway.

Recent studies surprisingly showed that TOM-

TIM23 contact sites can even be used for protein

translocation into the outer membrane. The protein

Om45 is anchored in the outer membrane by an

amino-terminal anchor sequence and exposes a large

domain into the intermembrane space.76,77,190,191

The precursor of Om45 initially embarks on the pre-

sequence pathway using TOM and TIM23 complexes

and the Dw across the inner membrane [Fig. 2(C)].

However, the precursor is not translocated into

the matrix but escapes from the presequence route

and is inserted into the outer membrane.76,77 The

outer membrane MIM complex, which has been

known to insert various a-helical outer membrane

proteins arriving from the cytosolic side, is

involved in this final stage of Om45 biogenesis.76

MIM may mediate membrane insertion of Om45

from the intermembrane space side or promote the

assembly of Om45 in the outer membrane. Thus,

three translocases, TOM, TIM23 and MIM, cooper-

ate to form a new intramitochondrial sorting path-

way, revealing a high versatility of how contact

sites are used for protein import into

mitochondria.

In summary, the presequence translocase shows

a remarkable flexibility. It dynamically interacts

with TOM, PAM, ADP/ATP carrier, and respiratory

chain complexes and thus TOM-TIM23 translocation

contact sites undergo a multi-step reaction cycle and

control different intramitochondrial sorting routes.

Mitochondrial Contact Site and Cristae
Organizing System

The mitochondrial inner membrane displays a char-

acteristic architecture with extended membrane

invaginations, termed cristae. Two domains of the

inner membrane can be distinguished: the inner

boundary membrane that is closely opposed to the

outer membrane and the cristae membranes [Fig.

3(A)].192 The two membrane domains differ in their

protein distribution: preprotein translocases and

components of the fusion machinery are predomi-

nantly localized in the inner boundary membrane,

whereas the F1Fo-ATP synthase and respiratory

chain complexes are mainly found in the cristae

membranes.193–201 Both membrane domains are con-

nected through tubular openings, termed crista junc-

tions, which probably limit diffusion of molecules

and help to create a microenvironment in the intra-

cristal space enhancing the capacity of the oxidative

phosphorylation system of mitochondria.34,198,202–205

A large hetero-oligomeric protein complex of the

inner mitochondrial membrane is enriched at crista

junctions.206,207 The complex and its evolutionary

conserved components originally received several

different names,26,206–215 yet recently the nomencla-

ture was unified and the complex is termed MICOS

for mitochondrial contact site and cristae organizing

system.216 MICOS is composed of six subunits that

all expose domains to the intermembrane space [Fig.

3(A)]. The two core components, Mic10 and Mic60

(mitofilin/Fcj1), and three further subunits, Mic12,

Mic26, and Mic27, are integral inner membrane pro-

teins. The sixth subunit, Mic19, is a peripheral

membrane protein. In addition, the inner membrane

protein Aim24 is required for the integrity of

MICOS, but is not a structural component of the

mature complex.217 Cells lacking structural MICOS

subunits show a strongly altered morphology of the

inner membrane.26,206–208,213,218–220 Most crista junc-

tions are lost and the cristae membranes form large

internal membrane stacks that are detached from

the inner boundary membrane. MICOS is thus

required for maintaining the connections between

inner boundary membrane and cristae membranes.

MICOS plays a dual role. In addition to maintain-

ing crista junctions, multiple interactions of MICOS

with protein complexes of the outer membrane were

observed. MICOS was found to interact with TOM

and SAM complexes, with the abundant outer mem-

brane channel protein porin (VDAC) and with a com-

ponent of the mitochondrial fusion machinery, the
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outer membrane protein Ugo1.26,207–209,221–223 MICOS

is considered as an important element in the forma-

tion of outer–inner membrane contact sites.224 Super-

resolution microscopy indicated that MICOS com-

plexes are regularly distributed in the inner mem-

brane, forming MICOS arrays.225 MICOS is thus

involved in a network of interactions that are impor-

tant for maintaining inner membrane architecture

and formation of contact sites.

MICOS and Protein Import into Intermembrane
Space and Outer Membrane

Cells lacking the largest MICOS subunit, Mic60,

were found to import cysteine-rich intermembrane

space proteins with reduced efficiency.26,226 Mutant

mitochondria lacking other MICOS subunits

imported these proteins like wild-type mitochondria.

How does Mic60 influence import via the MIA path-

way, yet none of the other MICOS subunits does?

We propose that Mic60 can function in two modes, a

MICOS-dependent one and a MICOS-independent

one [Fig. 3(B)].

In the MICOS-dependent mode, Mic60 is of cen-

tral importance for inner membrane architecture. In

the MICOS-independent mode, Mic60 forms contact

sites with the TOM complex and transiently inter-

acts with Mia40, the core component of the oxidative

protein import and folding machinery of the inter-

membrane space [Fig. 3(B)]. The oxidoreductase

Mia40 functions as receptor for precursors upon

their passage through the TOM channel.53–55,227,228

Since Mia40 interacts with the cysteine-containing

targeting signals of the precursors as soon as they

emerge from the TOM channel,229–232 a close spa-

tial proximity of Mia40 to the TOM complex pro-

motes efficient protein import via the MIA

pathway.26 However, a direct interaction between

Mia40 and TOM has not been observed, but Mic60

performs an adapter-like function. By interacting

with both TOM and Mia40, Mic60 positions Mia40

close to the exit of the TOM channel. In cooperation

with the sulfhydryl oxidase Erv1, Mia40 oxidizes

the precursors, leading to formation of disulfides

and folding of the mature proteins.56–58,233–236

Thus, a close proximity to the TOM complex is

important for Mia40 to capture precursor sub-

strates directly at the entry gate.

Mitochondria deficient in Mic60 are not only

impaired in the import of intermembrane space pro-

teins, but also in the import of b-barrel proteins of

the outer membrane. b-barrel precursors engage

both TOM and SAM complexes on their biogenesis

pathway (Fig. 4, left half). The precursor proteins

are initially translocated through the TOM channel

to the intermembrane space, bind to small TIM

chaperones that shield hydrophobic regions of the

precursors, and are inserted into the outer mem-

brane by the SAM complex. TOM and SAM com-

plexes transiently interact to form a supercomplex

that promotes an efficient transfer of b-barrel pre-

cursors.237 In addition to the Mic60-TOM interac-

tion, MICOS also interacts with the SAM complex

(Fig. 4),207,209,221–223 and thus both interactions may

contribute to an efficient biogenesis of b-barrel pre-

cursors. However, by dissecting the translocation of

b-barrel precursors into distinct stages, Bohnert

et al.238 indicated that the early step of precursor

translocation through the TOM complex is promoted

by Mic60, whereas the subsequent precursor interac-

tion with SAM is not influenced by MICOS. Thus,

the Mic60-TOM interaction is critical for stimulating

b-barrel import. The molecular mechanism of

b-barrel biogenesis stimulation by Mic60 remains to

be elucidated.

Interestingly, for MIA substrates as well as for

b-barrel precursors, only Mic60 is needed to stimu-

late their biogenesis, not any other MICOS subunit.

Since the proper architecture of mitochondrial cris-

tae depends on an intact MICOS complex, it is evi-

dent that the promotion of protein import by Mic60

does not depend on the morphology of the inner

membrane. For example, in mitochondria lacking

Mic10, most crista junctions are lost and large inter-

nal membrane stacks are formed like in mitochon-

dria lacking Mic60.26,207,208,213 However, mic10D
mitochondria possess fully active MIA and b-barrel

pathways in contrast to mic60D mitochondria.26,238

We propose that the MICOS complex and in

particular Mic60 represent a multifunctional molec-

ular hub in the mitochondrial intermembrane space.

Mic60 is crucial for maintaining mitochondrial inner

membrane architecture and promotes biogenesis of

proteins of the intermembrane space and outer

membrane by forming contact sites with TOM. At

Figure 3. Mitochondrial contact site and cristae organizing system and protein import into intermembrane space. (A) The mito-

chondrial inner membrane consists of the inner boundary membrane (IBM), cristae membranes and the connecting crista junc-

tions. Protein translocases are enriched in the IBM, whereas respiratory complexes and the F1Fo-ATP synthase are enriched in

cristae membranes. The MICOS complex is enriched at crista junctions and exposes protein domains into the intermembrane

space (IMS). MICOS is crucial for maintenance of the cristae structure and forms multiple contact sites with outer membrane

(OM) protein complexes. Fzo1, Ugo1, and Mgm1, components of the mitochondrial membrane fusion machinery. (B) The precur-

sors of intermembrane space proteins with cysteine motifs are translocated through the Tom40 channel and are recognized by

the oxidoreductase Mia40 that functions as receptor in the intermembrane space. Mic60 interacts with TOM and Mia40 and thus

positions Mia40 close to the Tom40 channel. In cooperation with the sulfhydryl oxidase Erv1, Mia40 oxidizes the imported pro-

teins, leading to disulfide formation and folding of the proteins.
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present, two possibilities are conceivable to explain

the distinct functional modes of Mic60 in wild-type

mitochondria. (i) Mic60 molecules may be present in

two distinct physical pools, a MICOS-integrated

form and a form separated from MICOS, and thus

perform MICOS-dependent and MICOS-independent

functions (see model in Fig. 3). (ii) Alternatively,

Mic60 may be part of MICOS in both functional

modes (see model in Fig. 4). However, only the mor-

phology function depends on the presence and activ-

ity of the other MICOS subunits. Mutant

mitochondria show that Mic60 can interact with

TOM and stimulate protein import also when other

MICOS subunits are missing and MICOS is dissoci-

ated.26,238 Further studies will be required to define

the molecular organization and functional mecha-

nisms of Mic60.

Mitochondrial Organizing Network
We propose that translocation contact sites and

MICOS are important parts of a large network of

protein complexes that form an organizing center for

mitochondrial biogenesis and activity. Mitochondrial

outer and inner membranes are connected at sites

that apparently involve numerous transient interac-

tions. Probably none of the individual contact sites

is sufficient to maintain the close connection of the

inner boundary membrane with the outer mem-

brane, but multiple contact sites are required.

The TOM complex is one of the important play-

ers in mitochondrial contact sites since it interacts

with the TIM23 complex and the MICOS complex.

Imaging studies show that TOM-TIM23 supercom-

plexes are clustered in the vicinity of crista junctions

but not directly at the junctions,168 whereas MICOS

complexes are enriched at crista junctions.206,207

Thus, the TOM-TIM23 and TOM-MICOS supercom-

plexes are in spatial vicinity, but form distinct con-

tact sites that are part of a larger organizing

network. It is open if these two membrane-spanning

supercomplexes directly interact with each other. In

addition, the TOM complex forms a transient super-

complex with the SAM complex in the outer mem-

brane,237 and TOM is crucial for the import of

carrier proteins, which are transferred to the small

TIM chaperones but to our current knowledge do

not use translocation contact sites.239,240 TOM com-

plexes are thus engaged in several different

Figure 4. Biogenesis of mitochondrial outer membrane proteins and ER-mitochondria contact sites. Left half, b-barrel proteins

of the outer membrane (OM) are imported into mitochondria via TOM, the small TIM chaperones of the intermembrane space

(IMS) and the sorting and assembly machinery (SAM). MICOS interacts with TOM and SAM and stimulates b-barrel biogenesis.

The transient interaction of Mic60 with TOM promotes translocation of b-barrel precursors to the intermembrane space. Right

half, the SAM complex is in dynamic exchange with the ER-mitochondria encounter structure (ERMES) via the protein Mdm10.

Tom7 binds to the SAM-free form of Mdm10 that can associate with ERMES. ERMES is composed of Mdm10, Mdm34, the

adaptor protein Mdm12, the regulatory protein Gem1 and the ER localized protein Mmm1. MICOS and ERMES form genetic

interactions.
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pathways and interact with different partner com-

plexes. Since TOM complexes are more abundant

than the other mitochondrial protein translo-

cases,84,241 they may exist in separate pools dedi-

cated to different protein import pathways.

Alternatively, a large dynamic pool of TOM com-

plexes may be used to recruit TOM complexes to dif-

ferent partner complexes depending on the activity

of the import pathways. Since each of the TOM-

containing supercomplexes is of dynamic nature, we

prefer the second scenario that TOM complexes

engaged in formation of different supercomplexes

are in exchange with each other.

The SAM complexes can interact with TOM as

well as MICOS. In addition, SAM is in dynamic

exchange with the endoplasmic reticulum (ER)-mito-

chondria encounter structure (ERMES), a protein

complex that stably connects ER and the mitochon-

drial outer membrane.242–244 Though no evidence for

a direct physical contact between SAM and ERMES

has been reported so far, both complexes share a

subunit. The mitochondrial distribution and mor-

phology protein Mdm10 is a subunit of both com-

plexes (Fig. 4, right half). In the SAM complex,

Mdm10 promotes assembly of the TOM com-

plex,81,245,246 whereas its exact function in the

ERMES complex is unknown.247 Mdm10 can shuttle

between SAM and ERMES. Interestingly, Tom7, a

small subunit of the TOM complex, has a dual local-

ization as well. Tom7 is not only found in the TOM

complex, but also forms a complex with Mdm10.

Since Tom7 binds to the SAM-free form of Mdm10,

Tom7 promotes segregation of Mdm10 from the SAM

complex and may favor the assembly of Mdm10 with

the ERMES complex.248–250

Further ERMES subunits that are not in

exchange with SAM were also found to be involved

in the assembly of b-barrel proteins.251 This finding

links outer membrane biogenesis to contact sites

between mitochondria and ER. Such interorganellar

contacts sites have gained a lot of interest in recent

years since many vital cellular functions ranging

from calcium homeostasis to phospholipid synthesis

and mitochondrial fission have been associated with

these tethering structures.242,244,252–258 In addition

to yeast ERMES, further direct ER-mitochondria

connections have been described, including the ER

membrane protein complex (EMC) in yeast259 and

mitofusin 2 in mammals.260,261 Two recent studies

identified a molecular tether between vacuoles and

mitochondria, termed vCLAMP, that may have com-

plementary functions to ERMES in phospholipid

metabolism.262,263

Future studies will have to unravel the mecha-

nisms of molecular crosstalk between interorganellar

contact sites as well as their structural and func-

tional relationship with the mediators of mitochon-

drial biogenesis and membrane architecture, like

protein translocases and MICOS. The importance of

such wide-ranging connections is highlighted by the

fact that MICOS not only interacts with TOM and

SAM, but also shows strong genetic interactions

with ERMES components (Fig. 4).208 Thus, multiple

interactions involving TOM, SAM, MICOS, and

ERMES point to a large ER-mitochondria organizing

network, termed ERMIONE, which connects three

membranes and functions as organizing center for

mitochondrial architecture and biogenesis.224 The

network likely involves further components such as

mitochondrial fusion proteins, lipid synthesizing

enzymes, the prohibitin ring complexes and the pro-

teins Mdm31 and Mdm32 of the inner membrane

that expose domains to the intermembrane

space.211,217,256,264–274 ERMES, MICOS, and Mdm31/

32 are also involved in the organization of mtDNA

into nucleoids.220,247,265,275–277 Thus, ERMIONE

likely spans from the ER lumen to the mitochondrial

matrix and is also involved in the proper mainte-

nance of mtDNA.

It will be a major task of future research to

define the molecular functions of this mitochondrial

organizing network. We propose that ERMIONE

forms a central platform for coordinating mitochon-

drial biogenesis, architecture and activity, including

import and assembly of proteins, biosynthesis and

transfer of lipids, interorganellar and intraorganel-

lar contact sites and mtDNA organization. Elucida-

tion of the mechanisms that regulate these

machineries will be an important topic. It had been

assumed previously that mitochondrial protein

import works in a constitutive, non-regulated man-

ner. Recent studies, however, revealed that the TOM

complex is extensively regulated by at least four

cytosolic protein kinases that depending on the cel-

lular growth conditions, metabolic state and cell

cycle phases, stimulate or inhibit TOM biogenesis

and activity and thus control the main mitochon-

drial entry gate.9,278–281 The efficiency of protein

translocation into and across the inner membrane

depends on the magnitude of the membrane poten-

tial and thus the protein import machinery can

serve as a sensitive indicator for mitochondrial fit-

ness and dysfunction. A reduced protein import effi-

ciency has been found to trigger a mitochondrial

stress response or the degradation of dysfunctional

mitochondria by autophagy.282,283 Translocation con-

tact sites are thus not only crucial for the import of

proteins into mitochondria but also for the regula-

tion of mitochondria and their integration into cellu-

lar metabolism and signaling.
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Likić VA, Gooley PR, Lithgow T (2008) The transmem-
brane segment of Tom20 is recognized by Mim1 for
docking to the mitochondrial TOM complex. J Mol Biol
376:694–704.

74. Becker T, Wenz LS, Kr€uger V, Lehmann W, M€uller JM,
Goroncy L, Zufall N, Lithgow T, Guiard B, Chacinska
A, Wagner R, Meisinger C, Pfanner N (2011) The mito-
chondrial import protein Mim1 promotes biogenesis of
multispanning outer membrane proteins. J Cell Biol
194:387–395.

75. Papic D, Krumpe K, Dukanovic J, Dimmer KS,
Rapaport D (2011) Multispan mitochondrial outer
membrane protein Ugo1 follows a unique Mim1-
dependent import pathway. J Cell Biol 194:397–405.

76. Wenz LS, Opali�nski L, Schuler MH, Ellenrieder L,
Ieva R, B€ottinger L, Qiu J, van der Laan M,
Wiedemann N, Guiard B, Pfanner N, Becker T (2014)
The presequence pathway is involved in protein sorting
to the mitochondrial outer membrane. EMBO Rep 15:
678–685.

77. Song J, Tamura Y, Yoshihisa T, Endo T (2014) A novel
import route for an N-anchor mitochondrial outer
membrane protein aided by the TIM23 complex.
EMBO Rep 15:670–677.

78. Kemper C, Habib SJ, Engl G, Heckmeyer P, Dimmer
KS, Rapaport D (2008) Integration of tail-anchored
proteins into the mitochondrial outer membrane does
not require any known import components. J Cell Sci
121:1990–1998.

79. Krumpe K, Frumkin I, Herzig Y, Rimon N, €Ozbalci C,
Br€ugger B, Rapaport D, Schuldiner M (2012) Ergos-
terol content specifies targeting of tail-anchored pro-
teins to mitochondrial outer membranes. Mol Biol Cell
23:3927–3935.

80. Stojanovski D, Guiard B, Kozjak-Pavlovic V, Pfanner
N, Meisinger C (2007) Alternative function for the
mitochondrial SAM complex in biogenesis of a-helical
TOM proteins. J Cell Biol 179:881–893.

81. Thornton N, Stroud DA, Milenkovic D, Guiard B,
Pfanner N, Becker T (2010) Two modular forms of the
mitochondrial sorting and assembly machinery are
involved in biogenesis of a-helical outer membrane pro-
teins. J Mol Biol 396:540–549.

82. Schleyer M, Neupert W (1985) Transport of proteins
into mitochondria: translocational intermediates span-
ning contact sites between outer and inner membranes.
Cell 43:339–350.

83. Pfanner N, Hartl FU, Guiard B, Neupert W (1987)
Mitochondrial precursor proteins are imported through
a hydrophilic membrane environment. Eur J Biochem
169:289–293.

84. Dekker PJT, Martin F, Maarse AC, B€omer U, M€uller
H, Guiard B, Meijer M, Rassow J, Pfanner N (1997)
The Tim core complex defines the number of mitochon-
drial translocation contact sites and can hold arrested
preproteins in the absence of matrix Hsp70-Tim44.
EMBO J 16:5408–5419.

85. Geissler A, Chacinska A, Truscott KN, Wiedemann N,
Brandner K, Sickmann A, Meyer HE, Meisinger C,
Pfanner N, Rehling P (2002) The mitochondrial prese-
quence translocase: an essential role of Tim50 in
directing preproteins to the import channel. Cell 111:
507–518.

86. Chacinska A, Rehling P, Guiard B, Frazier AE,
Schulze-Specking A, Pfanner N, Voos W, Meisinger C
(2003) Mitochondrial translocation contact sites: sepa-

ration of dynamic and stabilizing elements in forma-
tion of a TOM-TIM-preprotein supercomplex. EMBO J
22:5370–5381.

87. Frazier AE, Dudek J, Guiard B, Voos W, Li Y, Lind M,
Meisinger C, Geissler A, Sickmann A, Meyer HE,
Bilanchone V, Cumsky MG, Truscott KN, Pfanner N,
Rehling P (2004) Pam16 has an essential role in the
mitochondrial protein import motor. Nat Struct Mol
Biol 11:226–233.

88. Chacinska A, Lind M, Frazier AE, Dudek J, Meisinger
C, Geissler A, Sickmann A, Meyer HE, Truscott KN,
Guiard B, Pfanner N, Rehling P (2005) Mitochondrial
presequence translocase: switching between TOM teth-
ering and motor recruitment involves Tim21 and
Tim17. Cell 120:817–829.

89. Mokranjac D, Popov-Celeketić D, Hell K, Neupert W
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