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Abstract

A nearest neighbor-based multiple imputation approach is proposed to recover missing covariate 

information using the predictive covariates while estimating the association between the outcome 

and the covariates. To conduct the imputation, two working models are fitted to define an 

imputing set. This approach is expected to be robust to the underlying distribution of the data. We 

show in simulation and demonstrate on a colorectal data set that the proposed approach can 

improve efficiency and reduce bias in a situation with missing at random compared to the 

complete case analysis and the modified inverse probability weighted method.
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1. INTRODUCTION

In regression analysis, sometimes some covariates are subject to missing data due to 

technical or financial issues, especially for nutritional studies. For example, while 

investigating whether vitamin D is associated with risk of cancers in order to develop 

prevention strategies, 25(OH)D, a metabolite of vitamin D commonly studied in 

epidemiological research, often is not available for all of the participants who have an 

observed clinical outcome due to, for example, limited financial resources for collecting the 

blood/tissue samples. In regression analysis, not only can missing covariate values result in a 
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loss of efficiency in estimation of regression coefficients, but there is also potential for bias 

if the missing data mechanism is nonignorable.

In addition to the covariate with missing data and the outcome, additional covariates are 

often collected for each study participant, which may be predictive of the missing covariate 

values or the probabilities of missingness. Hence, these covariates may be useful for 

recovering missing covariate information for the participants. There is an extensive body of 

literature on statistical methods that use covariates to predict either missing observations or 

the probabilities of missingness (Robins et al., 1994; Little and Wang, 1996; Scharstein et 

al., 1999, Little and Hyonggin, 2004). Most of these methods predict either the missing 

observations (Little and Wang, 1996) or the probabilities of missingness (Robins et al., 

1994; Scharfstein et al., 1999). Only a few predict the two simultaneously (Little and 

Hyonggin, 2004). Furthermore, these methods directly use the covariates to predict the 

missing observations or the probabilities of missingness. While such an approach is usually 

efficient when the prediction models are correctly specified, its performance can be sensitive 

to the misspecification of the prediction models. To overcome this limitation, we propose a 

nearest neighbor-based multiple imputation approach to handling missing observations that 

uses covariates to predict both the missing observations and the probabilities of missingness 

in an indirect way. For each missing covariate observation, our nearest neighbor-based 

multiple imputation does not directly incorporate the covariates into estimation but only uses 

the covariates to select a subset of observations that have a similar covariate profile as the 

observation with missing covariate information. As a result, our proposed approach is 

expected to be more robust to the misspecification of the assumptions underlying the 

working parametric models. Another important feature of the proposed approach is that it 

allows complex covariate structures.

Multiple imputation (Rubin, 1987) is a common tool used for handling missing data. It 

replaces each missing value with a set of plausible values that incorporates the uncertainty 

about the underlying value to be imputed. We previously proposed a multiple imputation 

approach to impute event times for censored observations in survival analysis (Hsu et al., 

2006) and to impute outcomes for subjects with missing outcomes in estimation of 

population mean (Long et al., 2012). We proposed using two predictive scores to define a 

neighborhood to impute event times for each censored case and to impute outcomes for each 

missing outcome case. This idea is similar to predictive mean matching (Rubin, 1986) and 

propensity score matching (Rosenbaum and Rubin, 1985) in the missing data literature. We 

derived the two predictive scores from two working regression models. We showed through 

simulations that the use of two working predictive scores induces a double robustness 

property (Robins et al., 2000). Specifically, if one of the two working models is correctly 

specified, the estimator based on the imputed data sets is consistent under some commonly 

imposed conditions. We also showed that incorporating the predictive variables into the 

multiple imputation method can both increase efficiency and reduce bias.

Building on our previous work in dealing with censored data in estimating survival function 

and missing outcomes in estimating population mean, we propose using predictive 

covariates to define a nearest neighborhood of similar observations for each missing 

covariate value and then generate imputes from this set of neighbors to estimate regression 
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coefficients when some covariate values are missing. Specifically, for each missing 

covariate observation, we will use two working models to define a set of similar 

observations called the imputing set. One model is a regression model for predicting the 

missing values. The other is a regression model for predicting the probabilities of 

missingness. For each missing observation, an observation is randomly drawn from the 

imputing set. Upon the completion of imputation, a regression model for the outcome can be 

developed based on the data set with imputed observations. We expect that this approach 

will induce a double robustness property under a missing at random (MAR) mechanism, that 

is, where missingness is only dependent upon the predictive covariates. The inverse 

probability weighting approach (Robins et al., 1994) is one of the popular existing 

approaches for dealing with regression with missing covariates and also has a double 

robustness property. We compare our multiple imputation approach with the inverse 

probability weighting approach.

This article is organized as follows. In the Methods section, we introduce notation used 

throughout the article, briefly review the inverse probability weighting approach, and 

describe the imputation procedures. In the Results section, we first study properties of the 

multiple imputation method for finite sample sizes through simulation and then demonstrate 

the imputation approach using baseline data from an ursodeoxycholic acid (UDCA) 

colorectal adenoma prevention study in which the serum 25(OH)D level was only available 

for some of the participants whose clinical outcomes were observed. We conclude with a 

discussion about the performance and potential generalizations and limitations of the 

proposed imputation approach.

2. METHODS

2.1. Notation

For simplicity, we consider a situation with a simple pattern of univariate nonresponse 

where only one covariate has missing values. Let Y denote the outcome, X1 denote the 

covariate with missing observations, M denote the missingness indicator, that is, M = 1 if X1 

is observed and M = 0 otherwise, X2 denotes the fully observed covariates that are predictive 

of X1, M, or both, and X = (1, X1, X2). Suppose there are n independent subjects in the study. 

We describe our proposed multiple imputation procedures for estimating the regression 

coefficients in the regression of Y on X in the following.

2.2. Inverse Probability Weighting (IPW) Approach

The idea behind the inverse probability weighting (IPW) approach is intuitive and attractive. 

For estimating the regression coefficients in the regression of Y on X, IPW requires solving 

weighted estimating equations, , where πi = Pr(Mi = 1) (i.e., 

the estimated probability of X1i being observed). The IPW approach only includes 

individuals who were fully observed and its estimation performance highly relies on how 

well πi is estimated. The IPW approach has been modified to include partially observed 

individuals into estimation as well (Robins et al., 1994). Specifically, there are two terms in 

the weighted estimating equation 
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. The first term 

(i.e., complete case analysis) is solely based on the fully observed individuals, and the 

second term (i.e., calibration term) is based on both fully and partially observed individuals 

conditional on the observed data, where a working model is fitted to predict the missing 

covariates. This modified IPW approach (denoted as IPWDR) has been shown to have a 

double robustness property (Robins et al., 2000). Specifically, if at least one of πi and 

E{Xi[Yi − E(Yi|Xi)]|Yi, X2i} is correctly specified, the regression coefficient estimates derived 

from the modified IPW will be consistent under defined conditions. In this article, we 

compare the proposed nonparametric multiple imputation approach with IPWDR in terms of 

robustness to misspecification of models on πi and/or E{Xi[Yi – E(Yi|Xi)]|Yi, X2i}.

2.3. Imputation Procedures

For each missing covariate observation, we seek an imputing set consisting of observations 

from participants without missing data who are similar to the participant with a missing 

covariate observation as defined in the following. Five steps are used for defining the 

imputing set and analyzing the imputed data sets.

Step 1: Identifying the covariates predictive of the missing covariate or 
missingness—Standard regression analysis of the observed X1, for example, simple linear 

regression when X1 is a continuous variable, can be performed to identify all of the potential 

covariates that are predictive of X1. Logistic regression of the missingness status, M, can be 

performed to identify all of the potential covariates that are predictive of the missingness of 

X1. A higher significance level, for example, 0.10, can be used to ensure a high likelihood of 

inclusion of all of the potential predictive covariates, that is, X2.

In the preceding procedures, we make an implicit assumption that all potential covariates 

that are predictive of X1 and/or the missingness of X1 are measured. When this assumption is 

not true, however, that is, when both working models might be misspecified, we also 

evaluate the robustness of the proposed procedures, in comparison to that of the existing 

approaches via simulations. In addition, when all relevant covariates are measured, the 

proposed variable selection procedure is expected to identify the correct working model(s) 

in large samples, provided that the proportion of the observed X1 is bounded away from 0, 

under an MAR mechanism for X1.

Step 2: Calculating predictive scores—Based on the idea behind the predictive mean 

matching (Rubin, 1986), we first create a scalar summary predictive score based on the fully 

observed variables including the predictive covariates, X2, and the outcome, Y, which 

provides a profile of an individual’s X1. To achieve that, we propose to exploit the 

associations between (Y, X2) and X1 by fitting a working regression model using cases with 

no missing values for X1. The working regression model can be a linear or generalized linear 

regression model depending on whether the variable X1 is continuous or categorical. We 

then derive the predictive scores for both the nonmissing and missing cases using the 

working regression model. When the regression model is correctly specified, an imputing set 

for each missing case can be defined based on the predictive scores; the resulting multiple 

imputation method for assessing the association between Y and X can lead to an 
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improvement in efficiency of the association estimator in the case of missing completely at 

random (MCAR) and a consistent estimator in the case of MAR. In the latter case, if the 

regression model is misspecified, bias may remain because conditional on the score derived 

from the working regression model alone, MCAR cannot be induced within an imputing set 

that is defined using the score. Hence, we also investigate a working regression model that 

calculates a missingness score to summarize the association between (Y, X2) and the missing 

status (M). One obvious choice of the working regression model is a logistic regression 

model, given that the missing status is a binary outcome. This idea is analogous to the 

propensity score matching (Rosenbaum and Rubin, 1985). Since both working models use 

the clinical endpoint (Y) and the predictive covariates (X2) as covariates, each score is a 

linear combination of Y and X2. Let Z* = (Y, X2) denote the covariates included in the 

working regression models. The two predictive scores can then be defined as Sx = a’Z* and 

Sm = b’Z*, where a denotes the vector of the estimates of the regression coefficients of Z* in 

the working regression model for X1 and b denotes the vector of the estimates of the 

regression coefficients of Z* in the working regression model for M. To fit these two 

working models, variable selection will be conducted to choose a subset of the fully 

observed variables that are associated with X1 and M, respectively, described earlier at Step 

1. This indicates that the two working regression models can include a different set of 

covariates in the models. The two scores are then centered and scaled (denoted as Scx and 

Scm, respectively). This strategy summarizes the multidimensional structure of the fully 

observed variables into a two-dimensional summary score. The hope is that this two-

dimensional summary score contains most, if not all, information about X1 and M.

Those two working models allow complex covariate structures in the sense that they could 

include interactions between Z*’s, transformation of each Z* or a different set of the 

covariates in each of the two models. Note that if Y is not included in these working models, 

the association between Y and X1 may be attenuated and a biased estimate of the association 

will result. This is because the noise added to the conditional means does not account for 

partial correlation of X1 and Y given X2 (Little, 1992).

Step 3: Defining the imputing set—We propose to calculate a distance to define 

similarity between subjects based on the two predictive scores, Scx and Scm. Specifically, the 

distance between subjects j and k is defined as 

 where w1 and w2 are 

nonnegative weights that sum to 1. For each subject j with a missing X1, this distance is then 

employed to define a set of, specifically, NN nearest neighbors. This neighborhood of j, 

denoted as R(j, NN, w1, w2), consists of NN subjects who have the smallest NN distances 

from subject j based on weights w1 and w2. For example, R(j, NN = 5, w1 = 0.8, w2 = 0.2) 

consists of five subjects with the five nearest distances from subject j based on weights w1 = 

0.8 and w2 = 0.2 among those who have an observed X1.

We have previously studied the combination of these two scores in survival analysis (Hsu et 

al., 2006) and estimation of population mean with missing outcomes (Long et al., 2011), and 

have shown that the use of the two working scores induces a double robustness property. We 

have also found that nonzero weights for w2 are useful in reducing the bias resulting from 
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misspecification of the working regression model for predicting X1, as long as the working 

regression model for missingness probability is not seriously misspecified. Specifically, a 

small weight w2 (e.g., 0.2) will result in incorporating the score from the missing probability 

model into the task of defining a set of nearest neighbors. Following similar arguments in 

these previous studies of ours, if one of these two working regression models is correctly 

specified, conditional on these two scores, the covariate with missing values is independent 

of the missing status. Hence, within an imputing set that is defined using these two scores, 

the missing data mechanism becomes missing completely at random (MCAR), and we 

expect the combination of these two scores will have the same properties in a regression 

setting with a missing covariate under an MAR mechanism. We study these properties and 

the effects of the size of the nearest neighborhood and weights through simulations to see to 

what extent a double robustness property for model misspecification can be established.

Step 4: Imputation schemes—For subject j who has a missing X1, after the imputing set 

R(j, NN, w1, w2) is defined, a multiple imputation scheme, denoted as NNMI(NN, w1, w2), 

can be described as follows: For each subject j who has a missing covariate observation of 

X1, an observation is drawn equally likely from the imputing set R(j, NN, w1, w2). After all 

missing observations of X1 are imputed, one fully imputed data set results. This procedure 

will be independently repeated K times to obtain K imputed data sets for use in estimation. 

In a linear regression setting, a small number of imputes, for example, three to five, is 

usually sufficient. In this article, we use K = 5.

Step 5: Analyzing imputed data sets—Suppose a standard regression model will be 

the final analysis model to study the association between Y and X for each fully imputed data 

set. For example, if the outcome Y is binary, a logistic regression model will be fitted to the 

imputed data sets. If the outcome Y is a continuous outcome, a linear regression model will 

be fitted to the imputed data sets. The methods for analyzing multiply imputed data sets 

have been well established (Rubin, 1987). Specifically, the final estimate of a regression 

coefficient is the average of the K regression coefficient estimates and the final variance is 

the sum of the sample variance (denoted as B) of the K regression coefficient estimates and 

the average (denoted as U) of the K variance estimates of the regression coefficient 

estimator. The final estimate follows a t distribution with a degree of freedom v = (K − 1)*[1 

+ {U*K/(K + 1)}/B]2, and can be used for testing the null hypothesis of no association 

between Y and X (Rubin, 1987).

The multiple imputation procedure by itself does not incorporate the full uncertainty in the 

imputed values, because it does not include a first stage of an initial parameter draw; in other 

words, it does not incorporate the uncertainty involved in estimating the regression 

coefficients a and b in the working models. Multiple imputation methods can be enhanced 

by including a bootstrap stage, which has been shown to improve their performance (Rubin 

and Schenker, 1991; Heitjan and Little, 1991). Specifically, a bootstrap sample is selected 

with replacement from the original data set. The preceding imputation procedures are then 

conducted on this bootstrap sample. The imputing set for subject j is the nearest 

neighborhood RB(j, NN, w1, w2) consisting of NN subjects with observed X1 with the NN 

nearest distances from subject j based on weights w1 and w2 among those in the Bootstrap 
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sample. The MI method incorporating the Bootstrapping, denoted as NNMIB(NN, w1, w2), 

randomly draws a value from RB(j, NN, w1, w2) to impute the missing value. Multiple 

imputations are done by repeating the bootstrap stage K times. Due to the general 

underestimation of the uncertainty for the multiple imputation method (see, e.g., Long et al., 

2011), in this article we only focus on exploring the performance of the NNMIB method.

3. RESULTS

3.1. Simulation Study

We performed a simulation study to investigate the finite sample properties of the NNMIB 

method in a regression setting. For each of 500 independent simulated data sets, X1 subject 

to missing was generated from N(2, 1) or Poisson(1), X2 fully observed was generated from 

N(2, 1), N(3 – 0.5X1, 1), or N(3 – 0.5X1, 0.5), Y fully observed was generated from N(b0 + 

b1X1 + b2X2, 4) or N(b0 + b1X1 + b2X2, 8), where b0 =10, b1 = 1.333, b2 = −1.333, and 

missing indicator for X1, that is, M, was generated from Pr(M = 1) = exp(r0 + r1X2 + r2Y)/[1 

+ exp(r0 + r1X2 + r2Y)], where r0 = −0.5, r1 = −1.5, r2 = 0.5 when X1 ~ N(2,1) and r0 = −0.3, 

r1 = −1.0, r2 = 0.5 when X1 ~ Poisson(1). Those parameters were chosen to control the 

missing rate at approximately 35%. A sample size of 100 and 200 was considered in this 

article. We mainly focused on comparing the estimates of the regression coefficients, b0, b1, 

b2, for Y with X1 and X2 as the covariates, across the fully observed (FO), which was treated 

as the gold standard since all X1 were fully observed, complete case (CC), which only 

included the observations without missing covariates in the analysis, double robust inverse 

probability weighting (IPWDR), and NNMIB methods. In addition, we were also interested 

in exploring the effects of NN, w1, w2, and misspecification of the underlying distribution of 

X1 conditional on Y and X2 for the NNMIB method.

For the FO method, a linear regression model with X1 and X2 as the covariates was fitted to 

the data (Y) before the missing indicator was applied to the data. For the CC method, a linear 

regression model was fitted using the complete cases only. Two working regression models 

need to be fitted to construct the weighted estimating equations and select imputing sets for 

IPWDR and NNMIB methods, respectively. One is a working linear regression model (M1) 

for predicting X1. The other is a working logistic regression model (M2) for predicting 

missingness probabilities. Three scenarios of the two working models were considered, that 

is, at least one of the two working models with both Y and X2 as the covariates in the model, 

including: (1) M1 with X2 as the covariate and M2 with both Y and X2 as the covariates 

(denoted as IPWDR12 and NNMIB12), (2) M1 with Y and X2 as the covariates and M2 with 

X2 as the covariate (denoted as IPWDR21 and NNMIB21), and (3) both models with both Y 

and X2 as the covariates (denoted as IPWDR22 and NNMIB22). M1 was considered as 

correctly specified if both Y and X2 were included in the model and X1 was normally 

distributed; otherwise, M1 was misspecified. This indicates that when X1 ~ Poissson(1), M1 

was misspecified even in a situation with both Y and X2 as the covariates in the model 

because X1 conditional on Y and X2 did not follow a normal distribution. M2 was considered 

as correctly specified if both Y and X2 were included in the model; otherwise, M2 was 

misspecified.
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The results are provided in Tables 1-4. When X1 was generated from a normal distribution 

(Tables 1 and 2), that is, the distributional assumption for the working regression model for 

predicting missing values was correct, the CC method had the largest bias in estimating the 

regression coefficients b1 and b2 compared to the IPWDR and NNMIB methods. The bias 

emerged because the CC method did not take into account the MAR mechanism when 

estimating the regression coefficients. The bias also resulted in lower coverage rates for CC. 

For IPWDR, the bias tended to be smaller when the working regression model for predicting 

missing values was correctly specified (i.e., IPWDR21 and IPWDR22). IPWDR estimates had 

much greater variation in terms of both SD and SE, especially for IPWDR22, compared to the 

other methods. Each of the NNMIB methods produced estimates comparable to FO and its 

counterpart of the IPW methods in terms of both bias and coverage rate when NN = 3. As 

expected, for NNMIB the bias increased and SD and SE decreased when NN increased. In 

addition, the bias increased with the weight on the predictive score for missingness when the 

working regression model for predicting missing values was correctly specified. As the 

sample size increased to 200 (Table 2), the bias decreased for all NNMIB estimators and 

sometimes was even smaller than its counterpart of IPWDR. For example, NNMIB12(3, 0.5, 

0.5) and NNMIB12(3, 0.2, 0.8) had smaller bias for all three regression coefficients 

compared to IPWDR12. NNMIB21(3,0.8,0.2) had smaller bias for b2 compared to IPWDR21.

When X1 was generated from a Poisson distribution (Tables 3 and 4), that is, the 

distributional assumption for the working regression model for predicting missing values 

was incorrect, we mainly focused on comparing NNMIB21 and NNMIB22 with IPWDR21 

and IPWDR22, respectively, to examine whether NNMIB is more robust to the distributional 

assumption compared to IPWDR. Based on Tables 3 and 4, NNMIB21 and NNMIB22 had a 

smaller bias and a coverage rate closer to FO than IPWDR21 and IPWDR22, respectively, 

when more weight was put on the predictive score for missing values and NN = 3. The 

coverage rate was slightly off from the nominal level (i.e., 95%) for IPWDR21 and IPWDR22 

due to the bias. The bias became larger when the correlation between X1 and X2 was 

stronger (Table 4).

In summary, the CC method tended to produce biased estimates, as expected. The IPWDR 

and NNMIB methods both could produce a reasonable estimate in a situation with MAR if 

one of the two working regression models was correctly specified. The NNMIB method, 

which used the predictive covariate to recover information for missing observations, may 

potentially gain efficiency compared to the IPWDR method and reduce bias due to MAR 

compared to the CC method and the IPWDR method through the selection of the weights on 

the two predictive scores and size of the nearest neighborhood. A potential reason 

underlying the performance of the inverse probability weighting method in our simulations 

is the unstable inverse weighting in finite samples. In addition, whether the NNMIB method 

is asymptotically more efficient compared to the inverse probability weighting method 

requires additional investigation that is beyond the scope of this article and will be studied in 

the future research. Finally, the NNMIB method was shown to be more robust to the 

distributional assumption compared to the IPWDR method.
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3.2. Application to UDCA Data

The UDCA data consist of 1,192 patients, who underwent removal of colorectal adenomas 

between January 1996 and January 2000, from a colorectal adenoma prevention trial 

conducted at the Arizona Cancer Center (Alberts et al., 2005). Demographic information, 

including age, gender, and body mass index (BMI), and dietary vitamin D intake 

information based on the Arizona Food Frequency Questionnaire (AFFQ) (Martinez et al.,

1999) were collected on all of the 1,192 participants. The vitamin D dietary intake based on 

the AFFQ was subject to measurement error, as vitamin D can be synthesized endogenously 

in the skin upon ultraviolet (UV) irradiation (Holick, 1999); therefore, a serum vitamin D 

metabolite was measured to obtain a more accurate measurement. However, due to a limited 

budget, of the 1,192 participants, only 598 (50.2%) participants were selected to perform an 

assay to measure the serum vitamin D level. The vitamin D metabolite employed in this 

study was 25(OH)D, which is the best overall marker of vitamin D status (Jacobs et al., 

2007; Jacobs et al., 2008). For those participants who were not selected for the assay, their 

serum 25(OH)D levels were regarded as missing data. We applied the proposed 

nonparametric multiple imputation method to estimate the association between the size of 

each participant’s largest baseline colorectal adenomas and serum 25(OH)D adjusting for 

age and gender.

Based on simple linear regression using the 598 complete cases, gender, BMI, and vitamin 

D intake derived from the AFFQ were significantly associated with the serum 25(OH)D 

level at a significance level of 0.10. On average, males tended to have a higher level of 

25(OH)D compared to females with a p-value of 0.03, participants with higher vitamin D 

intake derived from the AFFQ tended to have a higher level of 25(OH)D with a p-value of 

0.01, and participants with higher BMI tended to have a lower level of 25(OH)D with a p-

value < 0.01. Based on logistic regression, gender was associated with the probability of 

missingness at a significance level of 0.10. Females were more likely to have missing serum 

25(OH)D compared to males with a p-value of 0.05. Gender was associated with both the 

serum 25(OH)D level and the probability of missingness. These results implied a potential 

MAR mechanism for the outcome of the serum 25(OH)D levels. These variables, as well as 

age, were therefore used to define the predictive scores. The reason that age was also 

included was to assure congeniality (Meng, 1994). The proposed nearest neighbor-based 

multiple imputation procedure was then used to recover the information for missing serum 

25(OH)D observations.

We fitted a working linear regression model to predict the serum 25(OH)D level using data 

from the 598 participants with gender, BMI, the vitamin D intake from the AFFQ, and the 

size of the largest baseline colorectal adenoma as the predictive covariates. We also fitted a 

logistic regression model to predict the probability of missingness using data from all of the 

1,192 participants with gender and the size of the largest baseline colorectal adenoma as the 

predictive covariates. Two scores, as the linear combinations of the predictive covariates, 

were derived from the two working models. The Pearson’s correlation coefficient between 

the two scores was −0.34, which suggested some degree of the MAR mechanism for the 

outcome of the serum 25(OH)D level. Hence, we expected to see improvement in both bias 

and efficiency of estimation by using the two scores to define a nearest neighbor for 
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imputation for each missing observation with the number of imputes (K) set at 5. Upon 

completion of the imputation, a multiple linear regression model was fitted to the imputed 

data sets where size of the largest baseline colorectal adenoma was the outcome variable and 

the imputed serum 25(OH)D level, male indicator, and age were the covariates in the model. 

Several combinations of the size of nearest neighborhood (NN) and weights (w1, w2) were 

used to study the performance of the nonparametric imputation method (NNMIB) and to 

compare with the complete case analysis (CC) and the modified inverse probability 

weighting method (IPWDR).

The analysis results are provided in Table 5. The CC analysis showed no statistically 

significant association between size of the largest baseline colorectal adenoma and the 

serum 25(OH)D level and age with a p-value of 0.096 and 0.089, respectively, similar to 

what was reported for this population previously (Jacobs et al., 2008). The CC analysis also 

showed that male tended to have a smaller size of the largest baseline adenoma compared to 

female with a p-value of 0.032. Based on the findings from our simulation study and a 

suggested degree of MAR mechanism for the data, the CC analysis simply ignoring missing 

observations is expected to be biased and less efficient than the NNMIB approach. Based on 

Table 5, both IPWDR and NNMIB methods produced different estimates of the regression 

coefficients than the CC analysis, especially for age and male indicator. In addition, NNMIB 

had much smaller estimates of standard errors for male indicator and age compared to the 

CC analysis. NNMIB gained about 26% and 30% efficiency for male indicator and age, 

respectively, by incorporating the predictive covariates into imputation. IPWDR had much 

larger estimates of standard errors (SE) compared to the CC analysis (similar to the findings 

in our simulations). The changes in estimates of both regression coefficients and SE for both 

IPWDR and NNMIB resulted in different significance findings. For IPWDR, none of 

25(OH)D, male indicator, and age was significantly associated with the size of the largest 

baseline colorectal adenoma due to larger estimates of SE. For NNMIB, male had a 

significantly smaller size of the largest baseline colorectal adenoma than female had, and 

age was not significantly associated with the size of the largest baseline colorectal adenoma. 

When a weight of at least 0.5 was put on the predictive score for missingness, NNMIB 

indicated that the participants with higher 25(OH)D had a significantly smaller size of the 

largest baseline colorectal adenoma than the participants with lower 25(OH)D had. Overall, 

the NNMIB method using the predictive covariates in the estimation had potential to 

improve efficiency and reduce bias in estimating the association between the size of the 

largest baseline colorectal adenomas and the serum 25(OH)D concentration.

4. DISCUSSION

This article describes a nonparametric multiple imputation procedure for regression analysis 

with missing covariates, which uses predictive variables to recover information for missing 

covariate observations and is easy to implement. An attractive feature of the proposed 

nonparametric multiple imputation procedure is that its reliance on a correct specification of 

the working parametric models is weak, because the two working models are only used to 

identify a neighborhood of similar observations from which imputes are drawn for each 

missing covariate observation. After the imputation, the analysis is conducted on the original 

data, augmented by the imputed data. This indicates that this multiple imputation method 
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indirectly incorporates the information from the predictive covariates into estimation of the 

association. Therefore, the proposed approach is expected to be robust to misspecification of 

the underlying distribution of the covariate with missing observations. In contrast, most of 

the methods in the literature directly incorporate the information from the predictive 

covariates into estimation of the association, and therefore their performance will highly 

depend on the correctness of the model specification. Our simulation study shows that the 

use of this multiple imputation method has potential to lead to improved performance in 

estimation, in terms of both bias and efficiency. In general, the multiple imputation 

estimators were less variable than the estimates produced by analyzing the complete cases 

without using predictive covariates and the estimates derived from the double robust inverse 

probability weighting method. In addition, the multiple imputation estimators were more 

robust to the distributional assumptions on the covariate that has missing values than the 

double robust inverse probability weighting method.

In this article, we propose the imputation method in a linear regression setting where a 

covariate has missing values, and demonstrate the imputation method by analyzing a 

colorectal adenoma data set. The proposed imputation method can be applied to handle any 

data with a missing covariate and observed predictive variables of the missing covariate. 

The proposed imputation method can also be generalized to handle linear or generalized 

linear regression in which more than one covariate have missing values. In pharmaceutical 

studies, there are often missing data involved, especially for biomarker data. The proposed 

multiple imputation method can be used to recover biomarker information for the subjects 

with missing biomarker data.

The performance of the proposed imputation method in improving efficiency and reducing 

bias depends on how predictive the variables are for both the missing values and missing 

probabilities. In our simulations, we noticed that when the correct covariates were included 

in the working regression model for predicting missing values, the imputation method 

produced estimates with smaller bias even under a situation where the distribution of 

missing covariate was misspecified. This suggests that it may be more important to seek 

good models for predicting missing values than to find reasonable working models for both 

missing values and the probabilities of missingness. It is a similar case with survival analysis 

in that a correct specification of the working model for the failure time is more important 

(Hsu et al., 2006).

The adequacy of the imputation procedures will depend on the “nearness” of the imputing 

set. When the nearest neighborhood contains some observations that are not close enough to 

the missing observation, some remnant of the missing at random mechanism remains within 

the neighborhood, which could contribute to the bias in estimation. The “nearness” of the 

imputing set will depend on the correction of the specification of the working models, the 

quality of the parameter estimates from the two working models, especially the parameters 

from the working regression model for predicting missing values, the size of the nearest 

neighborhood, and the weights on the two predictive scores. In this article, we simply use 

linear regression to predict the covariate with missing observations. Potentially, when the 

covariate is not normal, a transformation of the covariate may be performed to better 

approximate a normal distribution, or a more general regression model such as the 
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generalized linear model may be fitted to predict the values of the missing covariate. The 

chosen size of the nearest neighborhood depends on both the sample size and missing rate. 

As for the weights on the two predictive scores, a small weight (e.g., 0.2) for the predictive 

score derived from the missing probability model is usually sufficient even under a MAR 

mechanism based on our previous study in survival analysis (Hsu et al., 2006). Sensitivity 

analysis can be performed to select the optimal size of the nearest neighborhood and the 

optimal weights (Long et al., 2011). In addition, future work of investigating the theoretical 

properties (i.e., double robustness and asymptotic efficiency) of the proposed nonparametric 

multiple imputation is required to decide whether the NNMIB method is asymptotically 

more efficient compared to the inverse probability weighting method.
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Table 5

UDCA study: Regression analysis for the size of the largest baseline adenoma

25(OH)D Male Age

Method Est
a
 (SE

b
) p 

c
Est (SE) p Est (SE) p

CC −0.042 (0.025) 0.096 −1.038 (0.483) 0.032 −0.046 (0.027) 0.089

IPWDR −0.046 (0.052) 0.376 −0.799 (0.893) 0.371 −0.018 (0.026) 0.489

NNMIB

(3,0.8,0.2) −0.046 (0.021) 0.028 −0.798 (0.352) 0.023 −0.018 (0.019) 0.343

(3,0.5,0.5) −0.045 (0.020) 0.024 −0.806 (0.352) 0.022 −0.018 (0.019) 0.343

(3,0.2,0.8) −0.039 (0.025) 0.119 −0.821 (0.355) 0.021 −0.018 (0.019) 0.343

(5,0.8,0.2) −0.044 (0.026) 0.091 −0.802 (0.352) 0.023 −0.017 (0.019) 0.371

(5,0.5,0.5) −0.043 (0.021) 0.041 −0.799 (0.350) 0.022 −0.018 (0.019) 0.343

(5,0.2,0.8) −0.037 (0.019) 0.051 −0.816 (0.351) 0.020 −0.017 (0.019) 0.371

a
Estimate of regression coefficient.

b
Estimate of standard error.

c
p-Value.

J Biopharm Stat. Author manuscript; available in PMC 2015 March 09.


