
A Deformable Atlas of the Laboratory Mouse

Hongkai Wang, David B. Stout, and Arion F. Chatziioannou
Crump Institute of Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, 
USA

Abstract

Purpose—This paper presents a deformable mouse atlas of the laboratory mouse anatomy. This 

atlas is fully articulated and can be positioned into arbitrary body poses. The atlas can also adapt 

body weight by changing body length and fat amount.

Procedures—A training set of 103 micro-CT images was used to construct the atlas. A cage-

based deformation method was applied to realize the articulated pose change. The weight-related 

body deformation was learned from the training set using a linear regression method. A 

conditional Gaussian model and thin-plate spline mapping were used to deform the internal organs 

following the changes of pose and weight.

Results—The atlas was deformed into different body poses and weights, and the deformation 

results were more realistic compared to the results achieved with other mouse atlases. The organ 

weights of this atlas matched well with the measurements of real mouse organ weights. This atlas 

can also be converted into voxelized images with labeled organs, pseudo CT images and 

tetrahedral mesh for phantom studies.

Conclusions—With the unique ability of articulated pose and weight changes, the deformable 

laboratory mouse atlas can become a valuable tool for preclinical image analysis.
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Introduction

In the last decade, digital atlases of the mouse anatomy have become useful tools for 

preclinical research and data analysis. Various types of mouse atlases have been developed 

focusing on different aspects of mouse studies. Some atlases aim at providing whole-body-

scale gross anatomy, such as the Digimouse atlas [1], the MOBY phantom [2], the MR 

visible mouse [3], and the Virtual Population mouse models [4]. Some atlases focus more on 

specific organs like the skeleton [5], heart [6], liver [7], skull [8], limbs [9], and trunk organs 
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[10]. Among all the organs, the brain attracted the most attention, and many atlases have 

been constructed for the mouse brain based on different imaging modalities, such as MR 

[11–14], histological gene expression images [15–20], light microscopy tomography [21], 

and fused MR/histology images [22, 23]. In the research field of mouse embryonic 

development, atlases of different embryo stages were also developed, for example the 

Edinburgh mouse embryo atlas [24] which incorporates gene expression database [25], the 

Caltech μMR atlas of mouse development [26], and the embryo atlas based on micro-CT 

[27].

The atlas proposed in this paper belongs to the whole-body category. Whole-body atlases 

are generally used as anatomical references to be registered with preclinical images [28–33] 

or as digital phantoms for computerized simulation [34–37]. However, most of the existing 

whole-body atlases are based on a single reference subject positioned in a static body pose. 

It is challenging to use such atlases to register/simulate real word subjects with posture and 

anatomic variations. Efforts have been made to compensate for such limitations. The MOBY 

phantom was scaled to simulate different body weights [36], but simple scaling does not 

account for the nonlinear anatomical changes caused by weight differences. The Virtual 

Population mouse models have incorporated body articulation [38] for pose-related thermal 

or electromagnetic simulations; however, such articulation is not designed for atlas 

registration. The articulated skeleton atlas [5, 28, 30, 39, 40] was specially designed to be 

registered with articulated subjects, but this atlas only contains the skeleton without soft 

organs and thus is not suitable for simulation usage or data analysis. Overall, the problem of 

whole-body-scale posture and anatomic variance has not been fully resolved, leaving a 

major obstacle in automated analysis of preclinical images [41].

To tackle the above problem, a deformable mouse atlas is proposed in this work. Compared 

to the existing mouse atlases, this new atlas is fully articulated and can be freely deformed 

into arbitrary body poses. It can also adapt its organ anatomy according to changes of body 

weight. The atlas is constructed based on multiple training subjects. Cage-based deformation 

and statistical learning methods were used to realize body articulation and weight change. 

Fig. 1a demonstrates 3D rendering of the deformable mouse atlas. Details of atlas 

construction and test results are described in the following sections.

Materials and Methods

Preparation of Training Subjects

To construct the deformable mouse atlas, 103 mouse micro-CT images (including 94 

contrast-enhanced and 9 non-contrast images) were used as the training set. These images 

were selected from the preclinical image database of the Crump Institute for Molecular 

Imaging, University of California, Los Angeles (UCLA) [42]. The contrast agents were 

Fenestra™ LC (liver contrast agent) for 93 of the images and Fenestra™ VC (vascular 

contrast agent) for one image. For all the training images, healthy subjects of different 

strains, weights, sex, and postures were acquired in vivo. Three of the most frequently used 

strains in preclinical studies (nude, C57, and severe-combined immunodeficient (SCID)) 

were included. The body weights ranged from 15 to 45 g. The subjects were imaged at prone 

positions inside a multimodality chamber that provided anesthesia and heating [43]. Postures 
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of the subjects were not strictly regularized; random body bending towards left, right, and 

back directions was acquired. The imaging system was a microCAT II small animal CT 

(Siemens Preclinical Solutions, Knoxville, TN, USA). The exposure settings were 70 kVp, 

0.5 mA, 0.5 s, and 360 ° rotation in 1 ° steps with 2.0-mm aluminum filtration. Images were 

reconstructed using a modified Feldkamp process to isotropic voxel size 0.20 mm and 

matrix size 256×256×496.

From the training set, an 18-g C57 mouse with Fenestra™ LC contrast was selected as the 

reference subject of the atlas (as shown in Fig. 1b). The criteria of selection are that the 

reference subject should have an average body pose and the least amount of fat, so that it 

can be used as a starting shape of the pose and weight change.

Organ structures were segmented from the training micro-CT images by a human expert. 

For all the 103 images, skin, skeleton, and lungs were segmented. From the 93 Fenestra™ 

LC-enhanced images, the pericardium, liver, spleen, and kidneys were segmented. From the 

Fenestra™ VC-enhanced image, detailed cardiac vascular structures including the left and 

right ventricles and atria, aorta, and vena cava were segmented. The neck brown adipose 

tissue, stomach, intestine, bladder, and abdominal cavity were segmented from the image of 

the reference subject. Labels of skull, limbs, and thoracic bones were obtained by registering 

the articulated mouse skeleton atlas [28] to the reference subject. This articulated skeleton 

atlas was constructed by Baiker et al.[28, 40] based on the skeleton of the Digimouse atlas. 

However, the spinal structures, scapulas, and clavicles were not labeled in Baiker's 

articulated atlas. We added the missing labels of 35 vertebrae, the spinal cord, scapulas, and 

clavicles by segmenting them from the original CT image of the Digimouse atlas. Brain 

structures, eyes, masseter muscles, and lachrymal glands were directly adopted from the 

Digimouse atlas [1]. All structures taken from the Digimouse atlas were mapped into the 

reference subject using the thin-plate spline (TPS) transform. Overall, 89 organ labels were 

included in the atlas, as listed in Table 1.

All the segmented organs were converted to triangular surface meshes. The vertex 

correspondences between the training subjects were obtained by registering the organ 

meshes of the reference subject to other subjects using the point set registration method [44]. 

For the skeleton, the point set registration method does not work well due to the skeleton's 

articulated nature; therefore, the articulated skeleton atlas [28] was used and registered to 

each training subject to obtain skeleton vertex correspondences. After the vertex 

correspondences of the soft organs and the bones were established, the cardiac vascular 

structures taken from the Fenestra™ VC-enhanced image were mapped into the reference 

subject via TPS transform, using the corresponding vertices of the pericardium and spine as 

TPS control landmarks.

Articulated Deformation of Skeleton and Skin

Articulated deformation of the atlas is driven by a skeleton graph defined on the reference 

subject, as shown in Fig. 2a. In total, 30 graph vertices were manually located at the skeleton 

joints. To simplify spine articulation, only 11 graph vertices were defined at the vertebrae 

where significant spine bending occurs. The graph serves as a kinematics chain controlling 
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the articulated skeleton deformation based on the skeletal subspace deformation (SSD) 

method [45]

(1)

where pi is the four-element homogeneous coordinate (xi, yi, zi, and 1) of the ith skeleton 

vertex, and  is the homogeneous coordinate after deformation. Tj is a 4×4 matrix of the jth 

graph edge, representing the rigid transform starting from the reference pose. ωi,j is the 

weighting coefficient (also named the rigging factor) of graph edge j on skeleton vertex i, 

and ωi,j is defined as

(2)

where Di,j is the closest distance from vertex i to graph edge j. Si is the set of graph edges 

that have an anatomical control of vertex i. If vertex i belongs to the skull, limbs, paws, or 

sternum, Si is a single graph edge of the bone that vertex i belongs to; otherwise, if vertex i 

belongs to the spine, ribs, scapulas, or clavicles, Si contains multiple graph edges with 

ωi,j>0. To satisfy the normalization constraint, the weighting coefficient ωi,j is further 

normalized as , so that .

For the skeleton, SSD is fast and effective for modeling articulated motion. However, for the 

skin, this method generates skin folding artifacts near the joints, namely the “joint collapse” 

and “candy-wrapper” defects [46]. This problem has been solved for human skin via various 

approaches [47–49] but was not well addressed for small mammals like mice. Specifically, 

in small-sized mammals, significant skin sliding happens at the shoulder and waist area 

during large rotations of the humerus and femur. One successful approach to model this 

sliding effect is to construct a spring mesh of the skin and conduct physical simulation based 

on spring tension and mesh collision [50]. This solution sacrifices computation speed, and is 

time-consuming for atlas registration applications. To efficiently model the smooth skin 

deformation caused by this sliding effect, we developed a cage-based skin deformation 

method based on the harmonic coordinate technique [51]. An enclosing cage was manually 

constructed, surrounding the reference subject (Fig. 2b, c). The cage is a closed triangular 

mesh with only 52 vertices depicting the rough mouse shape. The cage vertices are used as 

control landmarks to deform any point inside the cage, i.e.,

(3)

where  is the 3D displacement vector of the jth cage vertex, and  is the displacement 

vector of the ith skin vertex. hi,j is the harmonic coordinates serving as the control weight of 

the jth cage vertex to the ith skin vertex. hi,j can be calculated using the harmonic coordinate 

method [51].
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Equation (3) implies that the sparseness of the cage vertices determines the smoothness of 

the skin deformation, i.e., sparser cage will yield smoother skin deformation. Therefore, the 

cage is designed to be sparse at the shoulder and waist areas. The effect of this design is that 

when large bone rotations happen at the shoulder or hip, the skin mesh will smoothly deform 

without folding, mimicking the sliding of the skin over the underlying bones.

To synchronize the cage deformation with the skeleton articulation, the automatic rigging 

method [52] is applied to calculate the rigging factors (ωi,j in Eq. (1)) between the cage 

vertices and the skeleton graph. As a result, the skeleton graph drives the cage movement 

and then the cage movement leads to skin deformation. However, since the skeleton and the 

skin are deformed via different approaches, they might intersect with each other when large 

limb rotations occur. To overcome this problem, we only use the cage for the skin 

deformations caused by shoulder and hip joints. For other joints, the skin is still deformed 

using the SSD method, and the rigging factors between the skin vertices and the skeleton 

graph are also calculated with the automatic rigging method [52].

Weight-Related Deformation of the Skin and Skeleton

For mice, there are two major factors that contribute to body weight change: body size and 

fat amount. These two factors are decoupled for the deformable mouse atlas, based on the 

assumption that the change of fat amount does not significantly alter the anatomy of other 

organs [53, 54]. The change of body size is simplified as linear scaling of the skin and 

skeleton,

(4)

where P is a 3×n array representing the vertex coordinates of the deformed atlas, and n is the 

total number of vertices. P0 are the vertex coordinates of the reference subject. O is a 3×n 

array where every column is the same 3×1 vector of the centroid of P0. l0 is the spine length 

of the reference subject, and l is the spine length of the target body size. The spine length is 

defined as the curved length of the spinal cord center line, starting from the neck top to the 

middle of pelvis.

The change of fat amount is modeled as a 3D deformation of the skin. Fig. 3 demonstrates 

the modeling process. As a prenormalization step, intersubject differences of body pose and 

bone sizes are removed from the training set. This is achieved by applying the Laplacian 

mesh deformation method [55] to the bones and skins of each subject, so that the body size 

and pose of the whole training set is uniform. After the prenormalization, the remaining skin 

shape differences are primarily caused by fat amount differences.

Based on the normalized training set, the linear regression method [49] is applied to extract 

the skin deformation vectors corresponding to fat amount change. The inputs to the linear 

regression are the skin vertices and the body weight of each normalized subject, while the 

output is the skin deformation vector Vf corresponding to unit weight difference. Since the 

training subjects are normalized, the input weight should be the normalized value, i.e., 
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, where wk and lk are body weight and spine length of the kth training subject. Based 

on Vf, the skin vertices of body weight w are calculated as

(5)

where w0 is the body weight of the reference subject. Equation (5) assumes P and P0 have 

the same spine length. To account for spine length difference, Eqs. (4) and (5) are combined 

as

(6)

In Eq. (6), l and w are decoupled as two separated inputs. However, for normal mice housed 

in typical conditions, the body weight and spine length always change simultaneously by 

aging. To model this combined changing, we fit a polygonal function l= g(w) based on the 

training set and use g(w) to calculate the spine length for any given body weight; thus, Eq. 

(6) can be modified as

(7)

To distinguish the two different ways of weight changing, we call Eq. (6) the decoupled 

mode and Eq. (7) the combined mode.

Deformation of the Entire Atlas

Based on the above pose and weight changing models, the entire atlas is deformed as 

follows. First, Eq. (6) or (7) is applied to deform the skin and skeleton into the required body 

weight. The choice of Eq. (6) or (7) is subject to the user, i.e., depending on whether the user 

wants to change the fat amount and body length separately or simultaneously. Next, internal 

organs are mapped based on the conditional Gaussian model (CGM) [10] and TPS 

interpolation. Finally, articulated deformation is applied to all the organs to obtain the final 

deformation result.

For internal organ mapping, two different methods (CGM and TPS) are used. CGM is a 

mathematical tool for modeling the conditional distribution between two multivariate 

Gaussian variables. In our case, it is used to estimate the shapes and positions of internal 

organs, given the known skin and skeleton. As revealed by our previous studies [10, 56], 

CGM is more accurate than TPS for estimating the organs that have near-Gaussian shape 

distributions across the population, such as the heart, lungs, liver, spleen, and kidneys. For 

the organs that have near-random shape distributions (such as the intestines, bladder, and 

stomach) and the organs that do not have enough training samples (such as the detailed brain 

structures, cardiovascular structures, spinal cord, and testis), the TPS interpolation is used.

For details of the CGM, we refer the readers to our previous work [10]. Briefly, the CGM is 

constructed based on the 93 Fenestra™ LC-enhanced training subjects. The organs of the 

training subjects are divided into two groups: one for the skin and skeleton and the other for 
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the heart, lungs, liver, spleen, and kidneys. The conditional distribution of organ vertices 

between the two groups is learned from the training set. When the vertices of one group are 

known, the vertices of the other group can be estimated based on the conditional 

distribution. After the CGM-based mapping, the rest of the internal organs (the intestines, 

bladder, stomach, detailed brain structures, cardiovascular structures, spinal cord, and testis) 

are all mapped via the TPS interpolation, using the control points from nearby organs.

The final step is to apply the pose deformation to all the atlas organs, based on the same 

articulated deformation method that was used for the skin. As a prerequisite, harmonic 

coordinates (hi,j in Eq. (3)) and rigging factors (ωi,j in Eq. (1)) need to be computed for all 

the organs. The harmonic coordinates are computed using the same method for the skin, and 

the rigging factors are computed by diffusing the rigging factors of the skin and skeleton to 

all the other organs using the Laplacian diffusion method [51].

Results

To test the deformation performance, the atlas was deformed into different body poses and 

weights. The deformation algorithm was programmed using IDL 7.1 (ITT Visual 

Information Solutions, Boulder, CO, USA). For the decoupled mode, the required inputs of 

the program were body weight, spine length, and spatial transform matrices of skeleton 

graph edges (as defined in Eq. (1)). For the combined mode, only the body weight and 

transform matrices were required. On a laptop PC with 1.7 GHz CPU and 4 GB RAM, the 

entire run time for combined pose and weight deformation was 0.98 s, divided in 0.05 s for 

weight deformation, 0.12 s for CGM-based organ mapping, 0.61 s for TPS-based organ 

mapping, and 0.2 s for pose deformation. A user interface was constructed for a manual 

control of the atlas deformation. The user can adjust the slide bars to change body weight 

and spine length. To adjust body pose, the keyboard was used to rotate each bone about its 

root joint, and the rotations were converted to transform matrices as the inputs of the 

deformation program. The operation based on the user interface is demonstrated in the 

supplementary video. More detailed results of the pose and weight changes are presented in 

the following sections.

Pose Change

The results of pose changes are shown in Fig. 4a. In results 1~3, the limbs, head, and spine 

were rotated in different directions, showing the full range of articulation possible with the 

atlas. The two CT images in the middle were acquired for the same test subject with 

different femur positions in order to illustrate the skin sliding effect at the waist area. Note 

the smooth skin and lack of folding artifacts when the underlying femurs are rotated almost 

90 °. Results 4 and 5 demonstrate that the atlas can realistically simulate this skin sliding 

effect, thanks to the cage-based deformation method. In comparison, Savinaud et al. [57] 

used the SSD method to realize mouse skin articulation, and we demonstrate by result 6 that 

this method can generate skin folding with large limb rotations. Finally, result 7 has the 

same pose but a different fat amount from result 5, showing that the atlas can make 

superimposed pose and weight changes.
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Weight Change

As mentioned in the “Materials and Methods” section, the atlas has two modes of weight 

change: one for decoupled changes of size and fat and the other for combined changes of 

size and fat. Both these modes are tested in this experiment. The results of the decoupled 

mode are shown in Fig. 4b, c, where Fig. 4b demonstrates changing spine length while 

maintaining the fat ratio, and Fig. 4c demonstrates changing the fat ratio while maintaining 

the spine length. For Fig. 4c, the spine length was kept at 74.0 mm, while the body weight 

was increased evenly from 18 to 26 g. It is clear that the linear regression strategy results in 

skin deformation pattern related to subcutaneous fat accumulation, whereas most of the 

deformation happens at the lateral sides of the abdomen and thorax. It is worth noting that 

when the skin deforms, the internal organs remain relatively stable, because the CGM 

realistically captures the shape relationship between the skin and the internal organs for 

various body weights.

The results of the combined mode described by Eq. (7) are shown in Fig. 4d. For this mode, 

the body weight is the only input to the model. The results show that when the body weight 

increases, the body size and fat ratio increase simultaneously. It is interesting to see that 

below a certain growth point (~38 g in the figure), weight increases mainly by growth in 

length, while above this point, weight increases primarily by fat accumulation. This finding 

coincides with the fact that when mice get old, their musculoskeletal growth slows down, 

and they start to accumulate fat [58]. Finally, as a comparison, Xie and Zaidi [36] uses 

simple linear scaling of the MOBY phantom to simulate different body weights, which is 

similar to what we do for decoupled body size changing (Fig. 4b). It is expected that our 

combined size and fat change are more realistic than simple scaling.

Organ Weight Validation

Although Fig. 4 shows realistic results of pose and weight changes, it is not clear how well 

the atlas quantitatively matches with real world subjects. Therefore, we compared the organ 

weights from the atlas with the organ weights of real mouse subjects. The organs involved in 

this test were the heart, lungs, liver, spleen, kidneys, and fat. The atlas was set into 

combined mode and deformed into eight different body weights ranging from 15 to 50 g 

with an interval of 5 g. The weights of atlas organs were calculated by multiplying the organ 

volume with the mouse organ densities from Xie and Zaide [36]. For experimental mouse 

data, organ dissections were conducted for 36 mice between 16 and 45 g at the UCLA 

Crump Institute for Molecular Imaging. Before dissection, as much as possible, the blood 

was removed by cardiac puncture. The organs were harvested right after euthanasia and 

measured using an electronic scale with a precision of 0.001 g. For fat tissue, it is impossible 

to extract whole-body fat via dissection; thus, we borrowed reference data from the literature 

[59] where the fat mass of different body weights were obtained using chemical analysis for 

790 mice of 40 strains.

Fig. 5 demonstrates the comparison between the atlas organ weights (pink curve) and the 

experimentally measured real organ weights (blue dots). Each chart is for one organ, the 

abscissa axis is for body weight, and the vertical axis is for organ weight. The relative error 

(RE) between the atlas curve and the measured data is defined as (wa−wm)/wm, where wa 
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and wm are the organ weights of the atlas and the measured data for the same body weight, 

respectively. For each organ, the mean and standard deviation of RE across all the 36 

subjects are computed and shown in Fig. 5. It can be seen for both the atlas and the 

measured data that the organ weights increase as the body weight grows, and the atlas 

curves of all the organs fall into the distribution range of the measured data. The mean RE 

for all the organs is within the range of ±0.3, and the standard deviation is between 0.17 and 

0.47. The best fit is for the liver (RE, −0.06±0.17), which is the largest soft organ. Note that 

there are four outliers of the spleen (red triangles) between 20 and 25 g body weights. These 

four outliers are from tumor-bearing mice with shoulder xenografts, and the presence of 

tumor stimulated the immune response, making the spleen much larger than normal [60]. 

This result implies that the atlas does not match well with diseased subjects, and that is 

expected because the training set was composed of healthy subjects. The RE of the spleen 

was calculated excluding these diseased outliers.

For fat tissue, according to statistics obtained from reference data [59], mice between 

10.1±0.9 and 46.8± 0.9 g have body fat between 2.0±0.5 and 20.1±0.5 g. For comparison, 

the atlas was also deformed into 10.1 and 46.8 g, and the resultant fat weights were 0.90 and 

19.49 g, respectively. It seems that the atlas fat is slightly lighter than the reference data, but 

the difference is within 0.6~1.6 g, which can be considered as a reasonably good match.

Atlas Voxelization and Tetrahedralization

In this paper, all organs of the atlas are represented by triangular meshes. However, there are 

many applications that require voxelized or tetrahedralized atlases, such as phantom-based 

simulations, image registration, volume rendering, etc. To meet these requirements, we 

filled the triangular meshes into a voxelized image and labeled the 89 organs with different 

voxel values. Theoretically, the atlas can be filled with arbitrarily small voxels; however, 

smaller voxels than those of the training CT images do not offer any additional anatomical 

detail. Therefore, the smallest meaningful voxel size is 0.2 mm. Fig. 6a shows the filled 

label image with a voxel size of 0.2 mm. Based on the labeled image, we can also assign 

different organs with appropriate Hounsfield values to generate pseudo CT images, as 

shown in Fig. 6b. The voxelized label image can be further converted into tetrahedral mesh 

(Fig. 6c) using the iso2mesh software [61], enabling finite element analysis based on the 

atlas. Of course, the atlas can also be deformed into arbitrary pose and weight and then 

voxelized into a labeled image, as shown in Fig. 6d.

Discussion and Conclusions

As revealed by the experimental results, the deformable atlas demonstrates more realistic 

body deformation than could be achieved with other mouse atlases, thanks to the use of 

state-of-art techniques like cage-based harmonic coordinates, linear shape regression, and 

conditional Gaussian model. Besides the deformation ability, there are several other features 

that distinguish this atlas from existing whole-body mouse atlases. First, this atlas is 

constructed based on multiple training subjects rather than only one reference subject. It is 

the training set size that enables the extraction of anatomical variability related to weight 

change. By learning from the training set, the atlas gains the ability to deform into any 

feasible pose and weight. The key advantage of the deformable atlas is that it is not a simple 
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collection of the training subjects, it is a deformation model learned from them. Second, all 

the training subjects of this atlas were imaged in vivo, in contrast to atlases obtained via 

cryosectioning or ex vivo imaging. The use of in vivo data avoids deformities inherent with 

ex vivo imaging. Last but not least, this atlas includes more detailed anatomical structures 

than the existing mouse atlases, such as individual vertebrae, spinal cord, and neck brown 

fat, and therefore provides more anatomical details for atlas-based simulation.

For the first time, we use multiple training subjects to construct a whole-body-scale mouse 

atlas. However, the concept of multiple training subjects is not novel for mouse brain 

atlases. Multiple brain MR images were used to calculate the average, variance, and label 

probability of the image voxels [12]. Unlike the brain atlases, we represent the organs as 

surface meshes and learn surface deformation patterns from the training set. As the training 

subjects and the test subjects all belong to the weight range of 15~45 g, the atlas is not 

designed to match with a subject far beyond this range, for example a body weight of 70 g. 

Nevertheless, the weight modeling method in this paper can be directly applied to much 

heavier training sets. Given a proper training set of extremely heavy subjects, a deformable 

atlas of obese subjects can be similarly constructed.

The training subjects of this atlas were all imaged in the prone positions inside an animal 

chamber specially developed for multimodality imaging [43]; therefore, the atlas best 

mimics the subject acquired using prone positions, which is the most common position used 

when imaging small animals. It is unclear how well the atlas can match subjects in supine or 

other positions; however, with the ability to freely change the pose within the atlas, 

potentially reasonable results can be obtained for any position. For subjects positioned in 

narrow holders that squeeze the animals, such as conical tubes, the atlas does not have the 

ability to compensate for the deformation caused by soft tissue squeezing; thus, more 

complicated tissue deformation schemes would need to be investigated to evaluate and 

match this type of data.

It is worthwhile to compare this deformable mouse atlas with other mouse atlases that also 

have deformation ability. The well-known articulated mouse skeleton atlas [5] was the first 

one to incorporate pose change function. It has been successfully used for the automated 

analysis of preclinical images with posture differences [28–30, 39, 40] and is also used for 

the construction of our atlas. However, the articulation ability of this atlas is limited to the 

bones, not including soft organs. This atlas is mainly designed for registration purposes; 

thus, the soft organs can only be mapped during the registration. The Virtual Population 

mice models [38] are also posable, but no special treatment was applied to deal with the skin 

sliding effect, and the deformation speed is not fast enough for practical registration use. 

The MOBY phantom is not articulated, although it includes unique features of respiratory 

and cardiac motions. Moreover, none of the existing whole-body mouse atlases have 

incorporated the weight changing function, which is a novel contribution of our atlas.

With the weight changing ability, the atlas realistically models the body deformation pattern 

caused by differences in fat content. However, according to Fig. 5, the organ weights 

generated by the atlas only roughly match with the real measurements. There are several 

potential reasons for the imperfect matching accuracy. First, the atlas is constructed based on 
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different genders and strains which have inherent variations of organ weights [54, 59]; it 

might be helpful to construct specialized atlas for each gender and strain to improve the 

modeling accuracy. Second, our decoupled weight modeling scheme assumes the organ size 

scales linearly with body size (spine length), but this assumption only roughly holds since 

the organs do not strictly grow in proportion with each other [54]. Third, the organ densities 

used for calculating atlas organ weights were taken from the literature and thus may be 

inconsistent with the real subjects of our measurements. Last, the precision of the measured 

data could also be affected by subjective operational factors during organ dissection. Despite 

these possible influencing factors, this atlas has demonstrated an improved method for 

matching real subjects in many positions and is also illustrating where future development 

can make further improvements.

Like all existing mouse atlases, this deformable atlas is constructed based on healthy 

subjects. No disease model was specifically included in the atlas. As a result, this work only 

represents healthy anatomy and does not match well with diseased subjects. This has been 

revealed by the results of Fig. 5, where the atlas spleen weights do not agree well with the 

diseased subjects. There are two main reasons for not including disease models: firstly, that 

the atlas is considered as a reference of normal anatomy, and secondly, disease types are too 

various to model. However, for future investigation, it is rather important to model 

anatomical changes caused by diseases. A dedicated study is required to survey the disease-

induced anatomical abnormalities, and special techniques must be developed to model organ 

deformations caused by the presence of tumors.

With the unique features of pose and weight change, this atlas will have potential 

applications in the field of preclinical imaging and phantom simulation. For example, it can 

be registered with preclinical mouse images of different poses and weights. The subsecond 

deformation speed enables fast atlas registration, and the deformation speed can be further 

accelerated by converting the IDL codes into C language or using parallel programming. 

The atlas can also be registered with a video sequence of freely moving mice, offering a 

useful tool for studying animal motion. Moreover, when used as a digital phantom, the 

atlas's ability of changing fat amount without altering body length is ideal for diabetes or 

obesity research, and the pseudo CT image generated from the atlas could be registered to 

individual PET images to provide attenuation correction. In future research, we will focus on 

investigating these applications. The atlas will also be published to the research community, 

so that worldwide researchers can use this new tool.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
a The 3D surface rendering of the deformable mouse atlas, viewed from four different 

angles. b The reference subject of the atlas, shown as the CT image (left) and the surface 

rendering of the skin and skeleton (right).
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Fig. 2. 
a Definition of the skeleton graph. b The deformation cage enclosing the mouse body. c 
Overlaid display of the skeleton graph, deformation cage, skeleton, and skin meshes.
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Fig. 3. 
Modeling body weight change. The selected training subjects of different weights are first 

normalized into the same pose and size, and then, a linear regression method is used to 

calculate the deformation vectors related to fat amount changing. The deformation vectors 

are shown at the right end of this figure. The red color intensity of the skin represents the 

magnitude of the vectors.
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Fig. 4. 
Test results of the pose and weight changes. a Results 1~3 are atlases of different poses. The 

two CT images in the middle show the skin sliding effect at the waist area when large femur 

rotation happens. The arrows point to the area where the muscles slide under the skin, and 

different arrow colors are used for different body sides. Results 4 and 5 show that the atlas 

realistically replicates the skin sliding effect. In comparison, the SSD method yields a skin 

folding artifact, as shown by result 6. Result 7 shows that the atlas can perform 

superimposed pose and weight change. b Results of only changing the body size. c Results 

of only changing the fat amount. d Results of combined body size and fat amount changes. 

For c and d, the body weight is marked on top of each image.
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Fig. 5. 
Comparison between atlas organ weights and measured organ weights from subjects. Each 

chart stands for one organ. For each chart, the abscissa axis is for the body weight and the 

vertical axis is for the organ weight. The pink curve fits the organ weights generated by the 

atlas, the blue dots are the measurements of the real organs, and the red triangles in the 

spleen chart are the four tumor-baring subjects with enlarged spleen. The mean value

±standard deviation of the relative error (RE) is also shown for each organ.
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Fig. 6. 
Voxelization and tetrahedralization of the atlas. a The atlas is voxelized into a labeled image 

with a 0.2-mm resolution. The labeled image is shown in sagittal and coronal slices with 

pseudo color. b The labeled image is converted into pseudo CT by assigning different 

organs with appropriate Hounsfield values. c The labeled image is converted into tetrahedral 

mesh. d A voxelized label image of an arbitrary body pose and weight.
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Table 1

List of organ structures included in the atlas

Organ system Included structures/organs

Nervous Brain structures (medulla, cerebellum, olfactory bulbs, external cerebrum, striatum, lachrymal glands); spinal cord

Musculoskeletal Skin, muscle surface, masseter muscles; individual bones (skull, 35 vertebrae, ribs, clavicles, scapulas, sternum, pelvis, 
forepaws, distal forelimbs, proximal forelimbs, proximal hindlimbs, distal hindlimbs, hindpaws)

Cardiovascular Heart (pericardium, left and right ventricles, left and right atriums); main aorta and vena cava

Respiratory Lungs; nasal cavity

Digestive Liver, gallbladder, stomach, and intestines

Immune Spleen, thymus

Renal/urinary Kidneys and bladder

Reproductive Testis

Vision Eyes

Adipose Neck brown fat, subcutaneous fat, abdominal fat
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