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Elementary flux modes (EFMs) are non-decomposable steady-state pathways in metabolic networks. They
characterize phenotypes, quantify robustness or identify engineering targets. An EFM analysis (EFMA) is
currently restricted to medium-scale models, as the number of EFMs explodes with the network’s size.
However, many topologically feasible EFMs are biologically irrelevant. We present thermodynamic EFMA
(tEFMA), which calculates only the small(er) subset of thermodynamically feasible EFMs. We integrate
network embedded thermodynamics into EFMA and show that we can use the metabolome to identify and
remove thermodynamically infeasible EFMs during an EFMA without losing biologically relevant EFMs.
Calculating only the thermodynamically feasible EFMs strongly reduces memory consumption and
program runtime, allowing the analysis of larger networks. We apply tEFMA to study the central carbon
metabolism of E. coli and find that up to 80% of its EFMs are thermodynamically infeasible. Moreover, we
identify glutamate dehydrogenase as a bottleneck, when E. coli is grown on glucose and explain its inactivity
as a consequence of network embedded thermodynamics. We implemented tEFMA as a Java package which
is available for download at https://github.com/mpgerstl/tEFMA.

C
onstraint-based reconstruction and analysis methods have been proven to be valuable tools in gaining
system wide understanding of cellular metabolism1–3. These methods use mathematical reconstructions of
metabolism together with (physiochemical, thermodynamical, environmental, etc.) constraints to derive

their predictions. Based on a steady-state analysis of a stoichiometric matrix (i.e. an ordered collection of the
stoichiometric coefficients of all contributing biochemical reactions) these methods allow for phenotypic pre-
dictions from genotype data4. Here we focus on a method called elementary flux mode (EFM) analysis (EFMA).

EFMA decomposes the stoichiometric matrix into non-decomposable, non-zero steady-state pathways, called
EFMs5. EFMs are an important structural concept as any metabolic steadystate can be expressed as a non-
negative, linear superposition of EFMs. Thus, the complete set of EFMs fully characterizes the available metabolic
space. This comes at the price of a dramatically increased computational effort which goes beyond current
capabilities for large, genome scale metabolic models6. A pessimistic upper bound for the number of EFMs in
a network was derived7, but the exact computational complexity is not yet known8.

Regardless of the theoretical challenges, several software tools are available and allow the calculation of the full
set of EFMs at least in small or medium scale (metabolic) models6. Very recently, a massively parallelized
approach to completely enumerate EFMs in large-scale networks was presented9. For large genome-scale net-
works particular EFMs, but not all can be calculated. Various strategies ranging from calculating the shortest
EFMs10 to different sampling approaches11,12 have been proposed. Recently, Pey and Planes13 identified a small
subset of biologically interesting EFMs in a genome-scale model. Similarly, Kelk et al.14 search for all EFMs, which
span the optimal solution space as defined by a flux balance analysis. Despite all these advances a full enumeration
of EFMs in large genome-scale models is as yet out of reach.

EFMA utilizes stoichiometric information only. Yet, many of the topologically feasible EFMs are infeasible in
vivo as they are in opposition to other constraints that have not been accounted for, like known regulatory
mechanisms15,16 or thermodynamic properties of biochemical reactions17. Incorporating thermodynamic con-
straints allows us to draw conclusions on the directionality and feasibility of reactions and whole pathways. A
single biochemical reaction occurs spontaneously only if its change in Gibbs energy is negative. To derive
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thermodynamic constraints for the whole network, metabolite data
are particularly useful as they determine the Gibbs energy surface.

Here we present a novel computational tool – thermodynamic
EFMA (tEFMA) – which integrates the cellular metabolome into
the EFMA. This allows us to verify the thermodynamic feasibility
of EFMs already during the runtime of the EFMA and curbs the
explosion of the number of EFMs without losing any biologically
relevant EFMs. Computationally, our new approach successfully
tackles the major bottleneck of double description based EFMA by
strongly reducing computational costs, both in terms of runtime and
resource consumption. Biologically, tEFMA allows the identification
of infeasible pathways based on an unbiased analysis derived from
first principles. More specifically, tEFMA correctly predicts the inac-
tivity of the glutamate dehydrogenase (GDH) in E. coli under glucose
saturated conditions.

Methods
Theory. The stoichiometry of a metabolic network with m (internal) metabolites and
r reactions can be represented by an m 3 r matrix, S. At steady-state all flux
distributions, v, obey Sv 5 0 and virrev $ 0, where virrev is a sub-vector of v containing
only irreversible reactions. We assume that the network contains only irreversible
reactions, as any reversible reaction can be split into an irreversible forward reaction
and an irreversible backward reaction. Of particular interest are so called EFMs, ei

5.
These are steady-state flux distributions of minimal support fulfilling all
irreversibility constraints. Minimal support means that if any of the contributing, i.e.
supporting reactions (vi . 0) is omitted, the remaining reactions can no longer carry a
steady-state flux. Geometrically, the EFMs (in a network of irreversible reactions) can
be regarded as extreme rays, i.e. edges, in a convex polyhedral cone18. Several EFM-
enumeration strategies are known6. Here we utilized the binary null-space
algorithm19, which we will briefly outline below.

The binary (null-space) approach represents EFMs as binary bit vectors of the
supporting reactions. These bit patterns are generated iteratively. Starting from an
initial solution matrix (typically the kernel of S) each row of this matrix is processed
and converted to binary form. For each row (i.e. reaction) intermediate EFMs (that
are the columns of the matrix) are combined such that their fluxes are nonnegative
and therefore convertible to a bit representation and added to the matrix. New
intermediates are added to the quickly growing list of intermediate EFMs if they are
not a superset of any other intermediate EFMs. The iteration stops if all reactions are
processed and the intermediate EFMs are fully converted into binary format. The
remaining intermediate EFMs are then, in fact the EFMs. A step by step example can
be found in the supplementary material, section ‘‘Proof of safe removal of thermo-
dynamically infeasible EFMs’’ on page S-14.

An important feature of the binary approach is the inheritance of flux activity.
When a reaction is converted to binary form and found to be active in an intermediate
EFM, all progenies of this EFM will have an active flux in that reaction too19. This
property is key to our approach. Based on metabolomics data we identify thermo-
dynamically infeasible flux patterns and drop the associated modes from the list of
intermediate EFMs, as all their possible offspring will be supersets of these infeasible
flux patterns, and therefore will remain infeasible too. Thus, removing thermody-
namically infeasible modes has no impact on any feasible (intermediate) EFM. Here,
network embedded thermodynamic (NET) analysis20 is used to identify thermody-
namically infeasible EFMs. NET analysis is briefly reviewed below.

The second law of thermodynamics states that at constant pressure any bio-
chemical reaction, i, proceeds spontaneously only in the direction of the negative
Gibbs free energy of reaction DrGi. As our network contains only irreversible reac-
tions this translates into

DrGiƒ0uvi§0, and DrGi§0[vi~0: ð1Þ

DrGi can be estimated from the Gibbs free energy of formation, DfGj, of the con-
tributing reactants, j:

DrGi~
Xm

j~1

SjiDf G’j, ð2Þ

Df G’j~Df G’0j zRT ln cj
�

c0
� �

, c0~1 M, ð3Þ

where Sji represents the stoichiometric coefficient of metabolite j in reaction i and
Df G’j is used to denote the transformed Gibbs free energy of formation for metabolite
j, corrected for its actual, non-standard metabolite concentration, cj. R is the molar gas
constant, and T the absolute temperature. Df G’0j represents the transformed standard
Gibbs free energy of formation, which we corrected for ionic strength and pH21. See
the supplementary materials, section ‘‘Calculation of the transformed standard Gibbs
free energy of formation’’ on page S-26 for details and the supplementary materials,
file 2 for actual Df G’0 -values.

Eqs. (1) and (2) identify isolated, thermodynamically infeasible reactions based on
(measured) metabolite concentrations. However, NET analysis does not only study a

reaction in isolation, but rather considers a reaction’s feasibility in the context of
pathways. NET analysis utilizes the thermodynamic interdependencies between
reactions and verifies if a given network structure is consistent with a (measured)
metabolome. To this end NET analysis is solved by the linear program (LP) given by22

min 0 ð4Þ

s:t: DrGiƒ0, Vi [ supp ekð Þ ð5Þ

DrGi~
Xm

j~1

SjiDf G’j ð6Þ

Df G’j~Df G’0jzRT ln cj
�

c0
� �

, c0~1 M ð7Þ

ln cmin
j

.
c0

� �
ƒln cj

.
c0

� �
ƒln cmax

j

.
c0

� �
: ð8Þ

The program above is linear in ln(cj/c0). That is why the limits in Eq. (8) were
expressed in terms of logarithms. The LP checks whether all reactions contributing to
an EFM, ek, are simultaneously feasible [Eq. (5)] and consistent with a metabolome
within the given error bounds cmin

j and cmax
j , respectively [Eq. (8)]. The remaining

equations [Eqs. (6) and (7)] account for mapping the metabolome to the Gibbs free
energy surface. Note that in the original NET analysis20 Eqs. (4-8) are optimized for
DrGi, while we are only interested in the feasibility of Eqs. (4-8). Therefore, any (non-
optimal) solution suffices, which poses a computationally less challenging problem.

The basic feature of NET analysis is illustrated in Figure 1. In isolation, each
reaction (FBA, GAPD, and PGK) is feasible in both directions. Also the reaction pairs
(FBA, GAPD and GAPD, PGK) are feasible in both directions. However, if the
reaction triple (FBA, GAPD, PGK) is considered, we find only the forward direction
to be consistent with the metabolite concentrations.

In tEFMA every intermediate EFM is checked at the beginning of each iteration
against a given metabolome according to Eqs. (4-8) and immediately removed if
infeasible. Figure 2 illustrates the basic work flow. For example, in iteration i we may
find that 18, 41, and 12 intermediate EFMs have positive, zero, and negative flux
values in reaction i. This gives rise to 18 3 12 5 216 potentially new intermediate
EFMs of which only 22 EFMs are actually added to the list of new intermediates as
only these pass the (tree-based) adjacency and superset testing of the EFM enu-
meration procedure. In tEFMA we check the feasibility of the original 18 1 12
intermediate EFMs and remove infeasible EFMs there. Suppose that 8 out of the 18
positive intermediate EFMs are infeasible and can be removed instantly. Rather than
216 potentially new intermediates we now just get 10 3 12 5 120 potentially new
intermediates of which only 17 EFMs are actually added to the list of new inter-
mediate EFMs as these pass the (tree-based) adjacency and superset testing. (The
numbers for this example were taken from line i 5 10 in Table S5.) Note that the
combination of two intermediate EFMs may create new infeasibilities. If these new
intermediates have non-zero flux values in any of the so far unprocessed reactions,
they will be checked in a later step of the iteration procedure. In case a new inter-
mediate EFM has only zero flux in the remaining reactions, it will be detected at the
end of the iteration phase, where we run a final feasibility check on all remaining
EFMs (see Figure 2).

The efficiency of this approach is illustrated in Table S5, Table S6, and Table S7,
where we show that the total number of LPs is always smaller than the total number of
newly generated intermediate EFMs in the non-thermodynamic EFMA. We found
heuristically that it is more efficient to check the feasibility of intermediate EFMs first
and then do the tree-based adjacency and superset testing, rather than the other way
round (data not shown).

In the remainder we assume that T 5 310.15 K (37uC).

Implementation. We implemented tEFMA as an extension of the open source
software efmtool, which was originally developed by Terzer and Stelling23. We added
three new Java packages with 21 new Java classes to efmtool. The new classes are
responsible for reading the additional information, call CPLEX (a powerful
commercial solver by IBM, for which academic licenses are available on request) and
handle infeasible EFMs. To invoke the new functionality we modified two already
existing Java classes and the XML file that handles command line arguments (see the
README-file in the accompanying software package24 for details). The extended
version was compiled by JDK 1.7.11.

Metabolic reconstructions. We used the E. coli core model published by Orth et al.25.
We refer to it as model M1. M1 contained 73 metabolites and 155 irreversible
reactions (after splitting each of the 59 reversible reactions into two irreversible
forward and backward reactions). The core reconstruction, M1, does not model
glycerol uptake, so we added the glycerol uptake pathway from the E. coli model
iJR90426. This augmented model is referred as model M2. Specifically, we included
glycerol kinase (R GLYK), glycerol-3-phosphate dehydrogenase (R G3PD2, R
G3PD5), glycerol transport (R GLYCt) and glycerol exchange (R EX glyc e). The
resulting stoichiometric matrix consisted of 76 metabolites and 163 reactions (62 of
them were initially reversible). The rank of this matrix was 71. We used M2 to derive
three condition specific sub-models, M2-glc, M2-glyc, and M2-ac, to model growth
on minimal medium (containing ammonia, oxygen, phosphate, protons, and water)
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with glucose, glycerol or acetate as the sole carbon source, respectively. In these
models all uptake reactions for nutrients which were not included in the growth
media, were removed. If a nutrient transport was reversible we only disabled the
nutrient’s uptake but not its secretion into the extracellular environment.

Except for glutamate and glutamine, neither M1 nor M2 model the biosynthesis of
the other amino acids. Thus we augmented M2 by adding the amino acid pathways
extracted from the E. coli model iJE660a27. This model is referred to as M3. Its
stoichiometric matrix consisted of 178 metabolites and 303 irreversible reactions (94
of them were initially reversible). The rank of this matrix was 171. SBML files for M2
and M3 are available in the supplementary materials. M1 can easily be obtained by
removing R GLYK, R G3PD2, R G3PD5, R GLYCt, and R_EX_glyc_e from recon-
struction M2.

We summarized the main topological properties of all models in the supple-
mentary material, Table S4.

Functionality test. We tested tEFMA for specificity, sensitivity and performance. For
the thermodynamic feasibility checks we used previously published metabolite
concentration data for E. coli when grown on glucose, glycerol or acetate28. In
comparison to published concentration ranges29, we used very conservative
minimum (cmin

j ~10{7M) and maximum (cmax
j ~1M) default values for unmeasured

metabolites to avoid false identification of infeasible EFMs. The necessary DfG0 data
were taken from the online version of eQuilibrator30. Independently, we performed a
conventional EFMA on the same model using efmtool and separately tested each EFM
for thermodynamic feasibility using NET analysis.

Stability analysis. We tested the stability of tEFMA against perturbations in the
metabolome and the thermodynamic data. We randomly changed all concentrations
up to 65%, 610%, 615%, and 620%. This change was on top of the error bounds
given by Ref. 27. That is, all lower and upper bounds (cmin

j and cmax
j , respectively) were

independently changed within the intervals given above. Additionally we required
that cmax

j {cmin
j §0:05cj , where we used cj to denote the mean concentration of

metabolite j. The perturbed concentrations were then used in the tEFMA. The whole
procedure was repeated 100 times. Similarly, all Df G’j-values were perturbed by
randomly and independently changing each value by up to 60.3 kJ/mol, 61 kJ/mol,
63 kJ/mol, and 69 kJ/mol. Again, this procedure was repeated 100 times.

Results
We calculated thermodynamically feasible EFMs in medium scale
metabolic models of E. coli (models M1 to M3) based on experi-
mental metabolite concentrations measured by Bennett et al.28. In
the smallest reconstruction (model M1), the experimental data
accounted for 56% of the model’s internal metabolites. All unmeas-
ured metabolites were assumed to be within conservative concentra-
tion bounds (see method section for details). 15 out of 155
irreversible reactions in M1 were thermodynamically fully charac-
terized by measurements. 56 reactions were at least partially char-
acterized by experimental data. The overlap between the model M1

and the experimental data is illustrated in the supplementary mater-
ial, Figure S1.

Computational, tEFMA identifies thermodynamically feasible EFMs
accurately and economically.
tEFMA removes all infeasible EFMs. We compared tEFMA against an
ordinary EFMA followed by NET analysis. The sets of thermody-
namically feasible EFMs were identical in both analyses. Figure 3
illustrates a comparison between an EFMA and a tEFMA.

For growth on glucose about one third of all EFMs were thermo-
dynamically feasible. The reduction in the number of feasible EFMs
is highly condition specific as on glycerol and acetate the numbers of
feasible EFMs are roughly cut in half. These comparisons were based
on the full metabolic model, M1, without any other adaptations, i.e.
also unused uptake reactions were subject to the analysis. If all
unused uptake reactions were removed from the models, then the
changes in the number of feasible EFMs was even more pronounced.

On glucose minimal medium only 19% of the EFMs were thermo-
dynamically feasible, while on acetate minimal media 76% were feas-
ible (using model M2). However, in the case of glucose 19%
corresponded to more than 30,000 feasible EFMs, while on acetate
roughly 900 EFMs remained feasible. Thus, growth on glucose still
opened dramatically more metabolic possibilities (counted by the
number of feasible EFMs) than growth on any other carbon source.

tEFMA is stable against fluctuations in the metabolome and the ther-
modynamic data. We verified the stability of the feasible EFMs by
randomly perturbing the metabolite concentrations (see methods
section for details). For all tested perturbations (0, …, 620%) the
median number of feasible EFMs remained constant (see the sup-
plementary material, Figure S3). Moreover, all EFMs identified to be
feasible without perturbations where re-identified to be feasible in
the perturbed runs as well (except for statistical outliers in the case of
glycerol and acetate growth at 620%). Note, that the perturbations
were added on top of the experimental error (see the supplementary
material, Figure S4 for details.)

We repeated the analysis to also check tEFMA against variations in
DfG9-values (see methods section for details). Up to a perturbation
magnitude of 1 kJ/mol our results stayed essentially constant (see the
supplementary material, Figure S2 and supplementary file 3), i.e. in
all these cases we found the same set of EFMs to be thermodynami-
cally feasible. For stronger perturbations large deviations were found.

Figure 1 | Thermodynamically feasible concentration regions for 1,3-bisphosphoglycerate (13dpg) and glyceraldehyde-3-phosphate (g3p) at glycolysis
(left) or gluconeogenesis (right) for E. coli when growing on minimal media with glucose. Dashed lines indicate the concentration bounds of the

metabolites and chain dotted lines the bound of negative Gibbs energy, i.e. the line where DrGGAPD 5 0. Blue areas show regions of negative Gibbs energy

for the combination of FBA (fructose-bisphosphate aldolase) and GAPD (glyceraldehyde-3-phosphate dehydrogenase) and red areas for the combination

of GAPD and PGK (phosphoglycerate kinase). At glycolysis all three reactions are simultaneously thermodynamically feasible indicated by the

overlapping red and blue area. At gluconeogenesis such an overlap within the error bounds of the metabolites cannot be found. To find the feasible regions

we analyzed the admissible concentrations of the shared metabolites 13dpg and g3p. The minimum and maximum concentration of g3p as function of

13dpg was calculated so that DrGi # 0 held for all reactions.
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tEFMA strongly reduces runtime and memory usage. Our novel soft-
ware extended efmtool originally developed by Terzer and Stelling23,
which uses a variant of the double description method (DDM)31 to
enumerate EFMs. The method requires to repeatedly solve intermedi-
ate EFM enumeration problems, which gives rise to a huge number of
intermediate EFMs. Although most of these intermediate EFMs will
eventually be rejected, they have to be readily available throughout
the calculation. This places high demands on a computer’s storage
capacity [specifically on the size of the random access memory
(RAM)]. Figure 3 illustrates the decrease in the number of feasible
EFMs for an ordinary EFMA and a tEFMA. The decrease is even
stronger in the total number of adjacency candidates, which relaxed
the hardware requirements for tEFMA. In fact, RAM consumption in
tEFMA is at least cut in halve but can in optimal cases shrink to only
25% compared to the RAM consumption of an ordinary EFMA.

Similarly, tEFMA also reduces the runtime of the algorithm and
needs only 25% in the best case and 49% in the worst case as com-
pared to an ordinary EFMA (see Figure 3).

Biological, tEFMA identifies known infeasible pathways. For the
following biological interpretation of the calculated EFMs and
infeasible pattern we used the model M2.

It is textbook knowledge that under aerobic conditions malate
dehydrogenase (Mdh) oxidizes malate to generate oxaloacetate as
part of the tricarboxylic acid cycle. tEFMA correctly identified the
reverse reaction to be infeasible. Similarly acetaldehyde dehydrogen-
ase (AdhE), which catalyzes the reduction of acetyl coenzyme A to
acetaldehyde, was identified to be infeasible under the three tested
growth conditions in accordance with well established knowledge.
Both conclusions could have been made without the help of tEFMA,

Figure 2 | Basic work flow of tEFMA. Dashed lines mark the original efmtool and chain dotted lines the integration of NET analysis into tEFMA. (A) In

the initialization phase the stoichiometric matrix is compressed and the kernel matrix created. (B) As long as a reaction is not converted from numeric to

binary a new iteration is started. (C) Intermediate EFMs with positive or negative values on next numeric position are checked for thermodynamic

feasibility, based on given input values. Infeasible EFMs are removed here. (D) Adjacency trees are built with EFM intermediates. (E) New intermediate

EFMs are created by combining adjacent EFMs from positive and negative trees. They are added to the list of intermediate EFMs unless they are supersets

of other intermediates. (F) In the post-processing phase calculated EFMs are finally checked to be thermodynamic feasible. In the last step (G) efmtool

removes futile-2-cycles, decompresses EFMs and calculates the flux values resulting in the enumerated set of EFMs. For an example see the supplementary

material, section ‘‘Proof of safe removal of thermodynamically infeasible EFMs’’ on page S-15.
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as evaluating Eqs. (2) and (3) for Mdh and AdhE unambiguously
identified the reactions’ directions without considering the network
structure of metabolism.

tEFMA correctly distinguished between glycolysis and gluconeogen-
esis. tEFMA correctly classified gluconeogenesis to be infeasible in E.
coli grown on glucose. The latter could not have been concluded
without a NET analysis or tEFMA. For example, within the error
bounds of the measured metabolite concentrations the reactions phos-
phoglycerate kinase (Pgk), glyceraldehyde 3-phosphate dehydrogen-
ase (Gapd), and fructose bisphosphate aldolase (Fba) were found to be
reversible if analyzed individually. Only together tEFMA identified
them to be infeasible in direction of gluconeogenesis (see Figure 1).
The lower part of gluconeogenesis (from pyruvate to glyceraldehyde-
3-phosphate) was also predicted to be infeasible for growth on glycerol
while feasible for growth on acetate. Interestingly, gluconeogenesis via
succinyl coenzyme A synthetase (SucCD) was inaccessible in the latter
(see below and Table S3 for further details). Note that Pgk, Gapd, and
Fba build a linear, consecutive chain of reactions. In general, however,
tEFMA is able to identify thermodynamic inconsistencies between
non-consecutive reactions, too (see Table S1 to Table S3).

tEFMA correctly predicted the inactivity of glutamate dehydrogenase
(GDH) during growth on glucose. Two pathways for glutamate syn-
thesis are known in E. coli. GDH catalyzes the reductive amination of
a-ketoglutarate to form glutamate. Alternatively the glutamine oxo-
glutarate aminotransferase (GOGAT) pathway produces glutamate
in two steps: (i) glutamate is used to produce glutamine by the energy
dependent glutamine synthase and (ii) the amide group is then

transferred reductively from glutamine to a-ketoglutarate to form
glutamate. Both pathways were identified in an ordinary EFMA and
produce 1 mole of glutamate net. For growth on glucose, however,
tEFMA identified inconsistencies between GDH and the lower part
of the glycolysis as well as between reactions GDH and aconitate
hydratase (ACONTb). We found that on glucose no thermodyna-
mically feasible EFM was supported by an active GDH (see Figure 4).
This is consistent with experimental evidence that under glucose
saturated conditions the alternative GOGAT pathway is active,
and not GDH32. On the other hand, we identified thermodynami-
cally feasible, GDH supported EFMs when E. coli was grown on
acetate or glycerol. Again, this is consistent with experiments, as
GDH, but not GOGAT, is energy neutral and therefore favored
under energy-stressed conditions33. Our analysis revealed that under
glucose saturated conditions both reactions are potential ther-
modynamic bottlenecks as they operate close to DrG 5 029.
However, GDH was found to be more sensitive than glutamate
synthase (see Figure 4). Note that in this analysis it is essential to
consider the network structure of metabolism. Within tEFMs GDH
is inactive, but by analyzing GDH and glutamate synthase in isola-
tion the inactivity of GDH cannot be determined. In fact a naive
interpretation might lead to the erroneous assumption that glutam-
ate synthase rather than GDH is a thermodynamic bottleneck (see
Figure 4 for an illustration).

tEFMA did not predict false positives. For a given metabolome
tEFMA found combinations of reactions that could not operate
simultaneously (see Table S1–Table S3). We were able to understand
all of these combinations of reactions in terms of the (infeasible)

Figure 3 | Performance analysis of tEFMA with and without thermodynamic feasibility checks using three different metabolomes. Results of an

ordinary EFMA (none) were compared against tEFMA using metabolome data27 for growth on minimal medium (MM, contained ammonia, oxygen,

phosphate, protons, and water) and glucose (glc 1 MM), glycerol (glyc 1 MM), and acetate (ac 1 MM). The analysis was performed (A) on the E. coli

model M1 and (B–D) on condition specific model M2, where all inactive uptake reactions were removed. Using glucose (B) 32,374 EFMs out of 169,916

are feasible, whereas for glycerol (C) 21,642 out of 60,495 and for acetate (D) 925 out of 1,299 EFMs are thermodynamically feasible. In panel A numbers

on the top indicate the absolute values. In panel B to C the circle areas are scaled as to represent the total number of topological feasible EFMs in the

models.
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pathways described above. In the three test cases tEFMA did not
erroneously identify a thermodynamically feasible pathway to be
infeasible.

tEFMA is scaleable to larger systems. We repeated a tEFMA using
the same experimental data as above together with a more detailed E.
coli reconstruction, M3. This model did not only contain the core
carbon metabolism but was augmented with biosynthesis routes for
amino acid production. Compared to its parent model, M3 contained
roughly twice as many reactions and also twice as many internal
metabolites. The overlap between this model and the experimental
data is shown in Figure S1. In this model tEFMA identified 1,197,839
thermodynamically feasible EFMs, 37 times more feasible EFMs than
in the smaller parent model M1.

In addition, tEFMA identified 15 infeasible flux patterns, i.e. reac-
tions which together must not carry flux (see the supplementary
material, Table S9 for a listing). The six infeasible flux patterns
detected earlier, in the smaller parent model M2, were also found
now in the larger reconstruction. The remaining infeasible patterns
could not have been detected in the smaller parent model M2, as they
all contained reactions which were unique to the larger M3-model.

Discussion
We developed and applied tEFMA to study the metabolic capabilities
of E. coli. tEFMA integrates experimentally determined metabo-
lomes into an ordinary EFMA to avoid the calculation of thermo-
dynamically infeasible EFMs. Recently this strategy was successfully
applied to analyze the metabolic capabilities in yeast grown on glu-
cose22. The authors first constrained the metabolic network as tightly
as possible and then performed an ordinary EFMA followed by a
NET analysis on the EFMs. In contrast to this sequential approach,
tEFMA efficiently performs both analyses simultaneously, yielding
in huge computational savings. Harvesting these savings is the major
achievement of this work.

We exploited the fact that any combination of infeasible EFMs
with other (in)feasible EFMs is again infeasible22 and can be removed
from the analysis without impacting biologically relevant EFMs. By

doing so, we tackled the major bottleneck in the DDM31, i.e., the
exploding number of (intermediate) EFMs during the calculation15.

Currently DDM is the most common approach for calculating
EFMs9,34. It solves the enumeration problem iteratively by adding
one constraint at a time and (re-)enumerating the problem. This is
done by a pairwise combination of positive and negative intermedi-
ate EFMs. Of the huge number of potential candidates only those
intermediate EFMs are used to generate offspring, if they are adja-
cent. Each newly created intermediate EFM undergoes a superset test
which prevents further processing of a new intermediate EFM if it is
a superset of any already existing intermediate EFM. Performing the
adjacent and superset test, as well, as creating and maintaining this
large list of intermediate EFMs is computationally expensive. While
Terzer and Stelling23 efficiently perform adjacency and superset
checks using binary bit pattern trees, we also shorten the overall
length of of intermediate EFMs. By running a NET analysis at every
iteration on all (positive and negative) intermediate EFMs we
identify infeasible ones and remove them at the moment of birth
even before the bit pattern trees are created and adjacency tests are
performed. Therefore, infeasible EFMs were unable to proliferate
and to inflate the list of (intermediate) EFMs with irrelevant off-
spring. This dramatically reduced the memory requirements. In fact,
if we only used the measured glucose metabolome and the M1-model
for tEFMA, a current, high-end personal computer (typically 32GB
RAM) would suffice to perform the analysis in a single working day
and eliminate the need for a dedicated high performance computing
environment. Conversely, tEFMA allowed us to analyse larger sys-
tems, which were inaccessible to an ordinary EFMA on our computer
infrastructure.

To curb the explosion of the number of (intermediate) EFMs, we
solved many LPs to determine their feasibility. In our application LPs
are uncritical in terms of memory consumption. Overall we saved
memory by removing infeasible EFMs at the price of an increased
computational load to evaluate the LPs. Fewer (intermediate) EFMs
meant a shorter list of (intermediate) EFMs, too. This reduced the
time to perform the adjacency and superset tests on the EFMs. In the
tested cases, the overall runtime decreased at least by 50%. Note that
the scaling and efficiency of the DDM critically depends on the order

Figure 4 | Minimum lower and maximum upper bounds of DrG for the reactions glutamate dehydrogenase (RGLUDy) and glutamate synthase (RGLUSy)
for various conditions in model M2. For each single EFM, which was enumerated by efmtool (without the tEFMA extension), the minimum and

maximumDrG of both reactions were calculated in isolation (open pattern) and within a NET analysis (solid pattern). Note, that only negativeDrG ranges

are thermodynamically feasible. Therefore RGLUDy is never feasible, when grown on glucose and analysed by a NET method (red solid pattern).
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in which constraints are processed31,34. This remains also true for
tEFMA (data not shown).

It is known that out of all EFMs in large networks few are physio-
logically significant35. Ideally only those will also be calculated. tEFMA
(partly) reaches this aim. By adding constraints derived from meta-
bolomics data we reduced the solution space, leading to a substantial
reduction in the number of EFMs without loosing any biologically
relevant EFMs. However, tEFMA only identifies thermodynamically
infeasible EFMs. For instance, during growth under high glucose con-
ditions the glyoxylate shunt is inactive due to regulatory interactions.
This is not detected by tEFMA. Therefore tEFMA alone does not allow
for an EFMA of a (large) genome scale model. In fact, we were unable
to complete a tEFMA on a current genome scale model of E. coli on
our computer infrastructure. More (omics-)data, like regulatory con-
straints15, need to be included to tighten the solution space and get rid
of irrelevant EFMs. Recently, gene expression data was used to cal-
culate a small subset of characteristic EFMs36 in genome-scale net-
works. In contrast to their method, however, tEFMA is comprehensive
and builds on first principles, rather than statistical heuristics.
Nevertheless a combination of their method with tEFMA is required
to fully enumerate EFMs in genome-scale models, which is the scope
of further work.

Although tEFMA utilizes an optimization principle to fit the meta-
bolic profile, it still retains the ability to unbiasedly characterize all
metabolic capabilities of an organism. However, tEFMA cannot predict
individual metabolic fluxes. In fact, even the combination of two ther-
modynamically feasible EFMs might result in an infeasible flux distri-
bution22. This is in contrast to thermodynamic-based metabolic flux
analysis, where an optimization principle is used to determine a par-
ticular thermodynamically feasible flux distribution29,37,38. Predicting
intracellular flux distribution from an EFM-spectrum is an active field
of research39. In fact, metabolite data have increasingly been utilized
together with EFMA in order to gain more reliable flux estimates40–43.
However, in all these studies an EFMA was carried out first (on a small-
scale metabolic model), while the thermodynamic feasibility was only
checked a posteriori. tEFMA will aid such studies in providing better
computational performance and allowing larger systems to be analyzed.

The success of tEFMA is dependent on the availability of a mea-
sured metabolome. Measurement errors in the concentrations were
taken into account, and tEFMA was found to be robust against
further perturbations. More critical for tEFMA is the requirement
for accurate data on the Gibbs free energy of formation, DfG, for each
metabolite. Our analysis showed that an error in DfG of up to 1 kJ/
mol did not cause alterations. Such accuracy is achievable with cur-
rent (reactant contribution) methods for the estimation of the Gibbs
energy44. However, these data cover less then one tenth of the reac-
tions in a typical genome scale model. Yet they are sufficient for the
kind of medium-scale models accessible to tEFMA. Thus even if only
a small fraction of the metabolome were available, tEFMA will still
provide a computational advantage. Moreover, missing data do not
lead to the identification of false positives. Uncharacterized reactions
can simply be omitted in NET analysis. Consequently some thermo-
dynamically infeasible EFMs will not be detected and the overall
efficiency of the algorithm will be reduced.

tEFMA is inherently condition specific and in principle has to be
repeated upon any change in the environment. In practice, however,
that might not be necessary as Ishii et al.45 observed that metabolite
levels were remarkably stable against perturbations.

tEFMA’s condition specificity is in strong contrast to the approach
taken by Hunt et al.9. Those authors pinned their approach on mas-
sive parallelization by recursively splitting the network in appropri-
ately selected subnetworks and performing an EFMA there. As the
authors did not utilize any additional information, their enumeration
is complete and has to be run only once. However,they found close to
two billion EFMs in a large-scale model of P. tricornutum9. The sheer
scale makes an interpretation of the EFMs difficult and computa-

tionally challenging. Extrapolating our results onto their model, we
expect that many EFMs will be infeasible and therefore biologically
irrelevant. This could be easily checked by running a NET analysis on
their set of EFMs, if experimental data were available. As both
approaches are DDM based, it should be possible to integrate
tEFMA into the approach of Hunt et al.9.

tEFMA retains the ability to allow for a fully unbiased analysis of
metabolism. In fact, the predicted inactivity of GDH under growth
on glucose was completely derived from first principles. This allows
to draw very general statements of biological relevance without rely-
ing on optimality criteria or particular flux distributions. The inac-
tivity of GDH for instance, allows glutamate synthesis only via the
ATP consuming GOGAT pathway. The increased energy demand
for glutamate synthesis might cause problems during recombinant
protein production, which induces additional energy requirements
in the host. Thus by activating GDH rather than GOGAT the meta-
bolic burden is reduced.

Currently an assumption-free tEFMA can only be performed on
prokaryotes. tEFMA on eukaryotes would require compartment spe-
cific concentration data. A theory to describe the thermodynamics of
inter-compartmental transport is available46, yet current experi-
mental methods do not allow for a compartment specific resolution
of the metabolome. In order to apply tEFMA also to compartmenta-
lised organisms ad hoc assumptions are required to estimate the
missing compartment specific concentration data22.

In summary, we developed tEFMA, a tool that presents an import-
ant step forward to the analysis of genome-scale metabolic networks.
tEFMA integrates NET analysis into EFMA and succeeds in calculat-
ing only EFMs, that are thermodynamically consistent with a given
metabolome. By doing so, it dramatically reduces the hardware
requirements for such an analysis to be carried out and paves the
way to enumerate EFMs in large-scale metabolic networks. This is
possible as the calculated set of EFMs is reduced by the large number
of thermodynamically infeasible EFMs. To show the accuracy of the
tool we presented the correct identification of several infeasible path-
ways without making wrong predictions. Furthermore, we pointed
out that tEFMA correctly distinguishes between the GDH and
GOGAT pathways to produce glutamate. Additionally, we verified
that the patterns, and therefore pathways, which were found to be
infeasible in the smaller model remained infeasible in the larger
model.
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