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Stress inoculation modeled in mice
J Brockhurst1,2, C Cheleuitte-Nieves1,2, CL Buckmaster1, AF Schatzberg1 and DM Lyons1

Stress inoculation entails intermittent exposure to mildly stressful situations that present opportunities to learn, practice and
improve coping in the context of exposure psychotherapies and resiliency training. Here we investigate behavioral and hormonal
aspects of stress inoculation modeled in mice. Mice randomized to stress inoculation or a control treatment condition were
assessed for corticosterone stress hormone responses and behavior during open-field, object-exploration and tail-suspension tests.
Stress inoculation training sessions that acutely increased plasma levels of corticosterone diminished subsequent immobility as a
measure of behavioral despair on tail-suspension tests. Stress inoculation also decreased subsequent freezing in the open field
despite comparable levels of thigmotaxis in mice from both treatment conditions. Stress inoculation subsequently decreased novel-
object exploration latencies and reduced corticosterone responses to repeated restraint. These results demonstrate that stress
inoculation acutely stimulates glucocorticoid signaling and then enhances subsequent indications of active coping behavior in
mice. Unlike mouse models that screen for the absence of vulnerability to stress or presence of traits that occur in resilient
individuals, stress inoculation training reflects an experience-dependent learning-like process that resembles interventions
designed to build resilience in humans. Mouse models of stress inoculation may provide novel insights for new preventive
strategies or therapeutic treatments of human psychiatric disorders that are triggered and exacerbated by stressful life events.
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INTRODUCTION
Stress inoculation is a form of cognitive behavioral therapy that
involves intermittent exposure to mildly stressful situations for
people who work in conditions where performance in the face of
adversity is required, for example, medical and military personnel,
police, firefighters and rescue workers.1–3 Exposure psychothera-
pies likewise train patients to imagine a graded series of stress-
inducing situations and encourage interaction with stressors
in vivo.4 These procedures promote learning5 and provide
opportunities to practice acquired coping skills.6

Stress inoculation training sessions and exposure psychothera-
pies are generally administered by psychologists and psychiatrists,
but these interventions build on conditions that appear to
spontaneously occur without instruction or guidance.7–9 Mild
stress exposure in childhood has been linked to lower subsequent
levels of state anxiety10 and smaller increases in salivary cortisol
responses to laboratory-based psychological stressors.11,12 Prior
mildly stressful experiences diminish emotional distress in work-
place conditions13 and decrease cardiovascular responses to
stressful laboratory tests.14 These results indicate that mild but
not minimal nor severe stress exposure promotes subsequent
coping and emotion regulation as described by U-shaped
functions.15–17

Previously, we showed that stress inoculation training sessions
modeled by brief intermittent social separations acutely increase
cortisol and enhance subsequent indications of resilience in
juvenile monkeys.9,18 More recently, we found that stress
inoculation is not restricted to critical or sensitive periods in
development and protects adult monkeys against subsequent
stress-induced anhedonia measured by sucrose preference tests.19

On the basis of these findings and the availability of tools for

dissecting causal mechanisms that mediate experience-
dependent links between behavior and brain, here we turn our
attention from studies of monkeys to mice. Specifically, we test
the hypothesis that stress inoculation training acutely stimulates
glucocorticoid signaling and then enhances subsequent indica-
tions of resilience in mice.

MATERIALS AND METHODS
C57BL/6 male mice weighing ~ 25 g (range 22–28 g) were purchased from
Charles River (Hollister, CA, USA) and maintained in groups of two to three
per cage in climate-controlled rooms with an ambient temperature of 26 °C
and lights on from 0700 to 1900 h. Food and drinking water were provided
ad libitum. After 2 weeks of acclimation, mice were randomized to stress
inoculation training sessions (n= 20) or a control treatment condition
(n=20). For the control condition, mice remained undisturbed except for
intermittent human handling during ordinary animal facility care. Age-
matched mice maintained in the same conditions but randomized to stress
inoculation training sessions were exposed to a standard social stress
protocol developed by other investigators20 and modified as follows. Every
other day for 21 days, mice randomized to the stress inoculation condition
were removed from the home cage and individually placed for 15min
behind a mesh-screen barrier in the cage of a retired Swiss Webster male
mouse breeder. Each subject was repeatedly exposed to the same resident
with different residents used for different subjects to avoid idiosyncratic
effects from any particular resident. The mesh-screen barrier prevented
fighting and wounding during all 11 stress inoculation sessions but
allowed non-contact interaction. After each session, mice were immedi-
ately returned to the home cage.
Plasma levels of the stress hormone corticosterone were assessed in

undisturbed home cage baseline conditions and immediately after the
first, third, seventh and eleventh stress inoculation training sessions.
Corticosterone levels were also assessed after subsequent restraint stress
test sessions conducted 2, 6 and 13 days following completion of the
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treatment conditions. Restraint stress tests consisted of confinement for
15min every other day for seven total sessions in plastic conical 50-ml
tubes perforated with ventilation holes. Tail vein blood samples were
collected as described elsewhere (http://www.nc3rs.org.uk/mouse-tail-
vessel-microsampling-non-surgical) between 0900 and 1030 h to control
for circadian variation. Plasma extracted from blood samples was assayed
in duplicate for corticosterone with a radioimmunoassay from MP
Biomedicals (Santa Ana, CA, USA) without knowledge of the treatment
conditions. Assay sensitivity was 7 ngml− 1 and the intra- and inter-assay
coefficients of variation were 2.8 and 4.5%.
Blood samples for hormone measures were collected from 16 mice with

n= 8 in each treatment condition. Behavioral tests were conducted using
24 different mice with n=12 in each treatment condition to control for
potential blood sampling effects. Sample sizes were powered to detect
mean differences 80% greater than pooled variances with type I error risk
of 5% and type II error probability equivalent to 80% power. Mean and
variance estimates for statistical power calculations were taken from earlier
monkey research.7,9,18,19

Tail suspension tests of behavior were counterbalanced with open-field
and object-exploration tests to control for test order. All behavioral tests
occurred 2–13 days after completion of the treatment conditions between
0900 and 1000 h. The inter-test interval between tail-suspension and open-
field tests was 5–7 days, and object-exploration tests were conducted 1
and 2 days after acclimation to the open field. Videotape records were
scored by a trained observer using Noldus (Wageningen, The Netherlands)
Observer XT without knowledge of the treatment conditions.
Tail suspension tests followed a protocol described by Cryan et al.21

Total time spent immobile during the 6-min test was analyzed as a
standard measure of behavioral despair. Open-field tests were conducted
on two consecutive days following modifications of a protocol by Gould
et al.22 The mice were individually placed in a white plastic open-field box
(40× 40 × 42 cm) for each daily 10-min session. The box was cleaned after
every test session. Time spent freezing was scored as the absence of all
movement except respiration and is considered a measure of anxiety-like
behavior in mice.23 Time spent within 10 cm of the walls of the box was
analyzed for thigmotaxis as an additional measure of anxiety-like
behavior.24 After acclimation to the open-field, object-exploration tests
were conducted in the same box with a familiar white plastic cap from the
home cage and a novel black plastic pipe. Objects were attached to the
floor of the open field for each 10-min test session. The next day,
exploration tests were repeated with the location of objects reversed to
control for place preferences. The open-field box and objects were cleaned
after each test session. Time spent exploring and latencies to explore either
object were scored when an animal’s head was within 1 cm from the
familiar or novel object.
Data were analyzed with mixed factor analyses of variance in SYSTAT.

Treatment condition was considered a between-subjects factor with test
day, hormone sample condition, location within the open field and object
type (novel versus familiar) considered within-subjects repeated measures.
Test order was included as a statistical covariate for analyses of the
behavioral measures. Relationships between measures were assessed with

Pearson correlation coefficients, and all test statistics were evaluated with
two-tailed probabilities (Po0.05).

RESULTS
Stress inoculation training sessions consistently elicited robust
corticosterone responses (Figure 1) as discerned by analysis of
variance (F(4,28) = 13.19, Po0.001). Stress inoculation subse-
quently diminished corticosterone responses to restraint
(Figure 2) as indicated by a treatment main effect (F
(1,14) = 15.57, P= 0.001), sample condition main effect (F
(3,42) = 91.33, Po0.001) and treatment-by-sample condition
interaction (F(3,42) = 5.33, P= 0.003). During restraint, we infor-
mally noted that struggling behavior appeared to occur more
often in stress-inoculated mice compared with controls. We tested
this hypothesis in a different sample of mice using tail-
suspension tests.
Stress-inoculated mice spent significantly less time immobile as

a measure of behavioral despair on tail-suspension tests
compared with controls (F(1,21) = 6.38, P= 0.021; Figure 3a).
Anxiety-like behavior indexed by mean freezing scores from two
open-field tests was also diminished by prior stress inoculation
compared with controls (F(1,21) = 5.98, P= 0.023; Figure 3b). Open-
field test results for freezing were consistent over repeated days
(data not shown) as the test day main effect (P= 0.104) and test
day-by-treatment interaction (P= 0.765) were not significant.
Significant treatment differences in freezing were evident despite
evidence that open-field tests evoked thigmotaxis as a measure of
anxiety-like behavior in both treatment conditions (data not
shown). Time spent close to the walls was nearly eightfold greater
than time spent in the center of the open field, and the treatment
main effect (P= 0.760) and treatment-by-test day interaction
(P= 0.455) were not significant for the measure of thigmotaxis.
During object-exploration tests, object type and treatment main

effects were discerned for latency scores as depicted in Figure 4.
Shorter latencies were evident for exploration of the familiar
compared with novel object (F(1,21) = 9.02, P= 0.007) and stress-
inoculated mice explored objects faster than non-inoculated
controls (F(1,21) = 6.06, P= 0.023). The object type-by-treatment
interaction was not significant (P= 0.121), but stress-inoculated
mice explored the novel object faster than non-inoculated
controls (F(1,21) = 6.76, P= 0.017). Treatment differences were
not significant (P= 0.695) for latencies to explore the familiar
object (Figure 4). Shorter exploration latencies were noted on the
first compared with the second test day (F(1,21) = 5.06, P= 0.035;
data not shown) but the test day-by-treatment (P= 0.124) and test
day-by-treatment-by-object type interactions (P= 0.308) were not
significant.

Figure 1. Repeated tail vein plasma corticosterone levels in
undisturbed home cage baseline conditions (base) and immediately
after the first, third, seventh and eleventh stress inoculation (SI)
training session (mean± s.e.m., n= 8, *Po0.01, Fisher's protected t-
tests relative to base following a repeated measures analysis of
variance described in the text).

Figure 2. Repeated tail vein plasma corticosterone levels in
undisturbed home cage baseline conditions (base) and immediately
after the first, third and seventh repeated restraint stress session
(mean± s.e.m., n= 8, *Po0.01, Fisher's protected t-tests following a
treatment-by-sample condition interaction described in the text).
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Time spent exploring the novel object was, on average, 22%
greater in stress-inoculated mice compared with non-inoculated
controls (data not shown) but the treatment main effect
(P= 0.452) and treatment-by-test day interaction (P= 0.429) were
not significant. Mice from both treatment conditions that spent
more time exploring the novel object across repeated test days
tended to show shorter novel-object exploration latencies, but the
correlation was not quite significant (r=− 0.34, df 22, P= 0.10).

DISCUSSION
Stress inoculation training sessions acutely increased plasma levels
of corticosterone in mice and then diminished subsequent
immobility on tail-suspension tests. Stress inoculation also
decreased subsequent freezing in the open field despite compar-
able levels of thigmotaxis as a measure of anxiety-like behavior in
mice from both treatment conditions. Stress inoculation subse-
quently decreased latencies for novel-object exploration consis-
tent with earlier studies of monkeys,25 and reduced corticosterone
responses to repeated restraint. These results demonstrate that
stress inoculation training acutely stimulates glucocorticoid
signaling and then enhances subsequent indications of active
coping behavior in mice.
Stress inoculation training sessions for mice were designed on

the basis of evidence that mild but not minimal nor severe stress
exposure provides opportunities to learn, practice and improve
coping as described by U-shaped functions.15–17 We modified a
standard social stress protocol20 to generate a mildly stressful
experience without fighting, wounding or direct forms of contact
aggression. Instead of daily exposure and continuously living in
the presence of an aggressive resident, stress inoculation training
sessions were conducted every other day with subjects returned

to the home cage immediately after completion of each training
session. These modifications allowed ample time for recovery and
consolidation of memory in undisturbed home cage conditions.
Studies of human handling, transportation and other routine
procedures in rodent research facilities are needed to delineate
specific conditions for producing mildly stressful experiences with
inoculation effects in mice.
Mildly stressful experiences are a key feature of stress

inoculation training for humans1–3 and monkeys.9,18,19 Primate
models are important because the behavior and neurobiology of
monkeys more closely resemble humans than do models based
exclusively on rodents.26,27 Nevertheless, the availability of tools
for dissecting causal mechanisms that mediate experience-
dependent links between behavior and brain is far greater in
mice than monkeys.28,29 In this regard, mouse models offer
uniquely important translational opportunities to bridge the gap
between basic and clinical psychiatry research.
Future studies of mice may provide novel insights on

neuroplasticity and stress inoculation-induced aspects of behavior
change. Stress inoculation training in monkeys enhances adult
hippocampal neurogenesis and alters the expression of genes
involved in cell proliferation and survival.7 Antidepressant
medications likewise increase hippocampal neurogenesis in
humans30 and decrease immobility on tail-suspension tests in
mice.21 Optogenetic manipulations of adult hippocampal
neurogenesis31,32 may uncover causal connections between this
aspect of neuroplasticity and active coping behavior induced by
stress inoculation in mice.
Glucocorticoid signaling during stress inoculation training

suggests additional opportunities for translational research on
the basis of evidence that glucocorticoid administration enhances
the efficacy of exposure psychotherapies for human anxiety
disorders.33 Stress inoculation also acutely elevates endogenous
glucocorticoid (that is, corticosterone) levels without habituation
in mice. Although repeated exposure to homotypic stressors
generally elicits habituation of the corticosterone response,34

repeated non-contact exposure to fighting between same-sex
conspecifics does not result in habituation over 10 successive
sessions.35 Moreover, we found no published evidence that brief
non-contact exposure to an individual social stranger increases
corticosterone without habituation as observed here in mice.
Previously, we reported that stress inoculation enhances gluco-
corticoid receptor expression in monkey anterior cingulate cortex
but not neurogenic regions of adult hippocampus.19 Glucocorti-
coid receptors are ligand-activated transcription factors that
translate circulating glucocorticoid levels into genomic outputs
by binding DNA and regulating the expression of numerous genes
involved in neuroplasticity and behavior change.36–39 Genetically
engineered mice with altered glucocorticoid receptors in anterior
cingulate cortex may help to identify causal roles for glucocorti-
coid signaling in stress inoculation and related exposure
psychotherapies.
These suggestions reflect a new strategy for translational

psychiatry. In addition to investigating how the effects of severe
stress damage behavior and brain,40–42 we propose a comple-
mentary approach focused on stress inoculation. Mechanisms that
mediate stress inoculation in animals may provide novel targets
for the development of new preventive or therapeutic interven-
tions for humans. Pharmacological mimicry of stress inoculation is
a novel approach that shifts attention from neuropathology to
consider the mechanisms that mediate experience-dependent
coping as new targets for interventions.
Our results should be interpreted in the context of potential

limitations. Findings from males may or may not hold true for
females. Sex differences in emotionality and stress hormone
responses have been reported for rats43,44 and sex differences
may warrant attention in mice. Stress inoculation training sessions
and subsequent test procedures both required transfer of mice

Figure 3. Stress inoculation training subsequently decreased (a)
immobility on tail-suspension tests and (b) freezing in the open field
(mean± s.e.m., n= 12, *Po0.05, Fisher's protected t-tests following
analyses of variance described in the text). Note: different y axis time
scales for each graph.

Figure 4. Stress inoculation training subsequently decreased novel-
object exploration latencies (mean± s.e.m., n= 12, *P= 0.017, Fish-
er's protected t-test following analyses of variance described in the
text). Note: different y axis time scales for each graph.
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into new environments. Studies of habituation or extinction of fear
from repeated transfers alone are needed but the contextual
differences between training and our test procedures generally
increase emotional responses34,45 instead of producing the
observed stress inoculation effects. Correlations between hor-
mones and behavior are not provided because these measures
were collected from different animals to control for potential
blood sampling effects. Moreover, the statistical power to detect
correlations between behavioral measures was limited by
standard sample sizes used in this research.
In summary, we found that stress inoculation training sessions

acutely increase plasma levels of corticosterone and then protect
against subsequent immobility on tail-suspension tests. Stress
inoculation also decreases subsequent freezing in the open field,
decreases latencies for novel-object exploration and reduces
corticosterone responses to repeated restraint. Unlike mouse
models that screen for the absence of vulnerability to stress or
presence of traits that occur in resilient individuals,17,46 stress
inoculation training in mice is an experience-dependent learning-
like process that resembles interventions designed to build
resilience in humans. Mouse models of stress inoculation may
provide novel insights for new preventive strategies or therapeutic
treatments of human disorders that are triggered and exacerbated
by stressful life events.
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