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Objective: Carotid—femoral pulse-wave velocity (PWV) is a
measure of aortic stiffness that is strongly associated with
increased risk of cardiovascular morbidity and mortality.
The aim of the current study was to identify the molecular
markers and the pathways involved in differences in PWV
in women, in order to further understand the regulation of
arterial stiffening.

Methods: A total of 280 known metabolites were
measured in 1797 female twins (age range: 18—84 years)
not on any antihypertensive medication. Metabolites
associated with PWV (after adjustment for age, BMI,
metabolite batch, and family relatedness) were entered
into a backward linear regression. Transcriptomic analyses
were further performed on the top compounds identified.

Results: Twelve metabolites were associated with PWV
(P< 1.8 x107%). One of the most strongly associated
metabolites was uridine, which was not associated with
blood pressure (BP) and traditional risk factors but
correlated significantly with the gene-expression levels of
the purinergic receptor P2RY2 (Beta=—0.010, SE=0.003,
P=0.007), suggesting that it may play a role in regulating
endothelial nitric oxide synthase phosphorylation. On the
other hand, phenylacetylglutamine was strongly associated
with both PWV and BP.

Conclusion: Circulating levels of uridine,
phenylacetylglutamine, and serine appear strongly
correlated with PWV in women.
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Abbreviations: BP, blood pressure; CIDEC, cell death
activator CIDE; CSTL1, cystatin-like 1; eNOS, endothelial
nitric oxide synthase; MAP, mean arterial pressure; PWYV,
pulse-wave velocity; SE, standard error; UTP, uridine
triphosphate

INTRODUCTION
C arotid—femoral pulse-wave velocity (PWV), a

measure of large artery stiffness, is a well known
independent predictor of cardiovascular morbidity
and mortality [1-4], and it is considered an integrative
measure of the impact of cardiovascular risk factors [S].
Though arterial stiffening has been associated with ageing
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(6], hypertension [7], diabetes mellitus [8], hypercholester-
olaemia [9,10], and chronic kidney diseases [11], its physio-
pathology is still not fully understood.

Recent advances in metabolomics have allowed for high-
throughput assay of an extensive set of small molecules in a
number of biological fluids. Low-molecular weight meta-
bolites represent the intermediates and end-products of
metabolic pathways that reflect physiological functions
and, thus, may mirror the early stages of a pathological
state [12].

A small study followed longitudinally 174 individuals
and found that plasma fatty acid composition (assessing
levels of 10 fatty acids) correlates with both PWV and
mortality [13]. Full metabolomic profiling regarding PWV
has not yet been attempted.

In this study, we performed metabolomic screening in a
large cohort of women from TwinsUK to identify the novel
metabolites that associate with PWV. We further explored
the relationship between metabolites associated with PWV
and gene-expression data to further understand the mol-
ecular mechanisms underlying arterial stiffening. We also
explored the association of the identified metabolites with
the Framingham 10-year cardiovascular risk assessment

[14].

MATERIALS AND METHODS
Study population

The study participants were twins enrolled in the TwinsUK
Registry, a national register of adult twins recruited as
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volunteers without selecting for any particular disease or
trait [15]. All recruited twins were of the same sex. In this
study, we analysed data from 1797 female twins who had
complete data for body composition and metabolomics
profiling.

The study was approved by the St. Thomas’ Hospital
Research Ethics Committee, and all twins provided informed
written consent.

Pulse-wave velocity measurement
Carotid—femoral PWV was calculated from the sequential
recordings of carotid and femoral artery pressure wave-
forms using the same SphygmoCor device and applanation
tonometry. Difference in the time of pulse arrival from the
R-wave of the electrocardiogram between the two sites was
taken as the transit time, and the difference in path length
was estimated using surface measurements with a flexible
tape measure between the sternal notch and the point of
applanation at the femoral artery as previously described.
PWYV is determined by dividing the distance by transit time.
Coefficient of variation between operators was less than
10% [5]. Measurements were made in triplicate, and mean
values were used for analysis. PWV measurements were
available in 1797 women.

Metabolomics measurements

Nontargeted metabolite detection and quantification was
conducted by the metabolomics provider Metabolon, Inc.
(Durham, North Carolina, USA) on fasting blood samples,
as described previously [106]. In this study, we analysed 280
structurally named biochemicals (known metabolites) cate-
gorized into the following broad categories — amino acids,
acylcarnitines, lysophospholipids, carbohydrates, vitamins,
lipids, nucleotides, peptides, xenobiotics, and steroids.

Muther expression data

The Muther gene-expression dataset consists of 825
abdominal fat samples. Gene expression was analysed with
the Tllumina Human HT-12 V3 (Illumina Inc., San Diego,
California, USA) [17], 586 individuals entered the metabolite
association analysis.

Statistical analysis

Statistical analysis was carried out using Stata version 11
(Stata Corp., College Station, Texas, USA). We inverse
normalized the metabolite data, as the metabolite concen-
trations were not normally distributed. To avoid spurious
false-positive associations because of small sample size, we
excluded metabolic traits with more than 20% missing
values. We imputed the missing values using the minimum
run day measures.

We looked for the metabolites associated with PWV by
running random intercept linear regression adjusting for
age, BMI, metabolite batch, and family relatedness. We
corrected for multiple comparisons using Bonferroni cor-
rection, thus giving a significant threshold of P=1.8 x 10 %
(0.05/280 metabolites). We then used a stepwise backward
regression model to identify a set of metabolites that were
significantly associated with each phenotype using P less
than 0.01 as cut-off threshold. As metabolites in their nature
can be affected by many factors, in particular dietary factors
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[18], we run random intercept linear regressions to test the
effect of fruit and vegetable intake and alcohol intake on the
association between the metabolites and PWV.

Associations of metabolites with gene-expression levels
in fat were tested using random intercept linear regression
after adjusting for age, BMI, metabolite batch, expression
batch, and family relatedness.

Finally, we explored the association of selected meta-
bolites with Framingham 10-year cardiovascular risk [14] by
running random intercept logistic regression adjusting for
age, BMI, metabolite batch, and family relatedness.

RESULTS

The descriptive characteristics of the study participants are
shown in Table 1. After adjustment for covariates, we
identified 12 metabolites, whose levels significantly corre-
lated with PWV (Table 2). We then proceeded to analyse, in
a multivariate model, which of these metabolites contrib-
uted independently and identified only three metabolites:
phenylacetylglutamine, serine, and uridine (Table 3). The
proportion of the variance explained by the circulating
levels of these three compounds is R* = 30%. Of the three
metabolites, only phenylacetylglutamine was associated
with both SBP and DBP [SBP: —1.6 (—2.36; —0.84),
P=4.1x10" DBP: —0.88 (—1.33; —0.44), P=8.8 x 10"},
10~°]; however, the metabolite—PWV association remained
significant even after adjusting for mean arterial pressure
(MAP) in the linear model and after adjusting for dietary
factors (fruit and vegetable intake and alcohol intake).
Published studies have shown that PWV can predict cardio-
vascular risk that is not accounted by the traditional factors
included in the Framingham risk score [19]. We therefore
proceeded to assess whether these three metabolites were
associated with the Framingham risk score. We find that
phenylacetylglutamine is associated with the Framingham
cardiovascular risk score [Beta=—0.04, standard error
(SE)=0.01, P=0.004]. However, there was no association
with both uridine and serine and the Framingham cardio-
vascular risk score (uridine: Beta=—0.003, SE=0.01,
P=0.8; serine: Beta=—0.002, SE=0.01, P=0.85). Also,
none of the three metabolites were associated with either
total or HDL cholesterol. This suggests that some of the
molecular pathways contributing to PWV are independent
of the traditional cardiovascular disease risk factors
measured by the Framingham score (Fig. 1).

TABLE 1. Demographic characteristics of the study population

Phenotype TwinsUK
n 1797
Male: female 0:1797
Monozygotic twin: 812:860:125
dizygotic twin:singletons

Age (years) 57.93 (9.17)
BMI (kg/m?) 26.33 (4.80)
DBP (mmHg) 78.39 (9.48)
PWV (m/s) 9.33 (1.95)
SBP (mmHg) 127.03 (16.13)

Values are given as mean (SD). PWV, pulse-wave velocity.
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TABLE 2. List of metabolites significantly associated with pulse-wave velocity after adjusting for age, BMI, experimental batch, family

relatedness, and multiple testing

Metabolite Super-p Sub-p Beta (95% ClI) P

Methionine a-a Cysteine, methionine, SAM, taurine metabolism —0.24 (—0.34; —0.15) 1.33x10°°
Glutamine a-a Glutamate metabolism —0.22 (-0.32; —0.11) 6.47 x 10~°
Glycine a-a Glycine, serine and threonine metabolism —0.23 (—0.33; —0.14) 2.62x107°
Serine a-a Glycine, serine and threonine metabolism —0.26 (—-0.36; —0.16) 1.86x 1077
3-Phenylpropionate (hydrocinnamate) a-a Phenylalanine and tyrosine metabolism —0.18 (—0.27; —0.09) 6.69x 107>
Phenylacetylglutamine a-a Phenylalanine and tyrosine metabolism —0.17 (—0.26; —0.08) 1.37x 1074
Indolepropionate a-a Tryptophan metabolism —0.18 (-0.27; —0.09) 1.64x 1074
Trans-4-hydroxyproline a-a Urea cycle; arginine and proline metabolism —0.19 (-0.28; -0.1) 6.66 x 107>
Urea a-a Urea cycle; arginine and proline metabolism —0.21 (=0.31; —=0.11) 8.47 x 107°
Glycerate ch Glycolysis, gluconeogenesis, pyruvate metabolism —0.19 (-0.29; —0.09) 1.28x 1074
Threonate candv Ascorbate and aldarate metabolism —0.26 (—0.35; —0.16) 1.17 x 10~/
Uridine n Pyrimidine metabolism, uracil containing —0.26 (—0.34; —0.17) 9.03x107?

a-a, amino-acid; ¢ and v, cofactor and vitamin; ch, carbohydrate; Cl, confidence interval; n, nucleotide; sub-p, sub pathway; super-p, super pathway.

Uridine

Uridine is associated with lower PWV in our data (Table 2).
When we tested for correlations between uridine and gene
expression, we found that none of the expression probes
passed Bonferroni correction for uridine. However, circu-
lating uridine levels were nominally associated with the
gene-expression levels in fat of P2RY2 (Beta=—0.010,
SE=0.003, P=0.007), suggesting that it may play a role
in regulating endothelial nitric oxide synthase (eNOS)
phosphorylation which may in turn influence arterial stiff-
ness. This association may be mediated through an effect on
endothelial function independent of the classical risk fac-
tors. Uridine is known to be an agonist of P2 receptors,
particularly the P2Y subclass which consists of eight known
human P2Y receptors (1, 2, 4, 6, and 11—14). This is relevant
as P2Y1, P2Y2, and possibly P2Y4 are the purinergic
receptors involved in eNOS phosphorylation during endo-
thelial activation [20].

Uridine is a nucleotide base used as a dietary supplement
for increasing the synthesis of cellular membranes and for
other neurological properties. Uridine is able to exert an
acute cardioprotective effect against myocardial ischaemia
when preloaded, which is abolished by blocking potassium
channels on the mitochondria (with 5-hydroxydecanoate);
it appears that uridine preloading preserves the levels of
energy metabolites (ATP, creatine phosphate, and uridine)
and subsequently reduced lipid peroxidation [21]. The
nominal association with expression levels of a purinergic
receptor suggests that uridine may exert its role on PWV via
endothelial dysfunction [22].

Serine

Serine is one of the naturally occurring amino acids and it is
synthesized in the body from other metabolites. It partici-
pates in the biosynthesis of purines and pyrimidines, and is

also the precursor to numerous other metabolites, including
sphingolipids and folate, the principal donor of one-carbon
fragments in biosynthesis. In our data, we find that circu-
lating levels of serine are significantly associated with lower
PWYV and with expression levels of a probe on the cystatin-
like 1 (CSTL1) gene on chromosome 20 (Beta=0.09,
SE=0.02, P=4.26 x 10™®). The cystatin locus on chromo-
some 20 contains the majority of the type 2 cystatin genes
and pseudogenes, and has been associated with cerebral
haemorrhage and cerebritis [23].

Phenylacetylglutamine
Phenylacetylglutamine is a major nitrogenous metabolite
that accumulates in uraemia [24]. Tt is the glutamine con-
jugate of phenylacetic acid produced in humans and is also
a well known gut microbial cometabolite whose levels are
significantly different between Asian and North American
individuals [25]. Although Holmes et al. [25] did not measure
the correlation between phenylacetylglutamine and blood
pressure (BP), they did test that between BP and hippurate
(another microbial cometabolite significantly different
between Asians and Caucasians, positively correlated with
phenylacetylglutamine) and reported a negative correlation
with DBP. Such published results are consistent with our
findings, that is, a negative correlation between phenyl-
acetylglutamine and SBP, cardiovascular risk and PWV. In
our data, we also find a weak negative correlation between
hippurate and SBP (Beta= —0.97, SE=0.39, P<0.012).
Phenylacetylglutamine levels in our data are corre-
lated with adipocyte gene-expression levels of the cell
death activator CIDE (CIDEC: Beta=0.05, SE=0.01,
P=06.97 x 10®). This gene is regulated by insulin and its
expression is positively correlated with insulin sensitivity
[26]. Mutations in this gene may contribute to insulin-resistant
diabetes [27]. CIDEC plays an important role in energy

TABLE 3. List of metabolites significantly associated with pulse-wave velocity in the stepwise backward regression

Metabolite Super-p Sub-p Beta (95% Cl) P
Phenylacetylglutamine a-a Phenylalanine and tyrosine metabolism —0.13 (=0.22-0.05) 220x1073
Serine a-a Glycine, serine and threonine metabolism —0.17 (-0.28-0.07) 1.20x 1073
Uridine n Pyrimidine metabolism, uracil containing —0.18 (—0.28-0.09) 1.00 x 10~*
a-a, amino-acid; Cl, confidence interval; n, nucleotide; sub-p, sub pathway; super-p, super pathway.
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FIGURE 1 Metabolite associations with PWV and cardiovascular risk as measured by the Framingham risk scores. Mean PWV and log Framingham risk scores (adjusted for
age, BMI and batch) are shown by tertiles of selected metabolites. PWV, pulse-wave velocity.

metabolism and lipid droplet formation [28], and its hepatic
expression is increased in obese humans and is downregu-
lated by marked weight loss [29].

DISCUSSION

Using metabolomic profiling, we searched for the molecu-
lar markers and the mechanisms involved in differences in
PWV in women in order to investigate the regulation of
arterial stiffening. We identified 12 blood metabolites,
mainly amino acids, with high statistical significance associ-
ated with PWV. We also report three metabolites amongst
those identified to be independently associated with PWV:
uridine, serine, and phenylacetylglutamine achieving an R*
of 30%. Of the three metabolites identified, the one showing
the strongest association is uridine. Uridine triphosphate
(UTP, which unfortunately is not measured by the current
metabolomic panel) stimulates vasodilatation, automaticity
in ventricular myocytes, and release of tissue-plasminogen
activator, indicating that UTP may be important in cardiac
regulation [30]. Uridine levels may be reflecting lower UTP
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levels or they may be cardioprotective via some other
mechanism. Interestingly, however, uridine levels are not
correlated with Framingham risk. We also report that
circulating levels of serine are associated with PWV but
not with Framingham risk. Our data indicate that the
mechanisms underlying the association of PWV with
uridine and serine are likely to be independent of the
traditional CVD risk factors. Recent studies have shown
that PWV improves cardiovascular event prediction [31,32].
Our data are, therefore, consistent and suggest that there
are molecular mechanisms related to arterial stiffening and
cardiovascular mortality that are not fully encompassed by
the traditional cardiovascular risk factors.

We also report a novel association between phenyl-
acetylglutamine and both Framingham risk scores and
PWYV. The negative correlation with phenylacetylglutamine
is consistent with the previous reports on gut-microbiome-
derived metabolites [25] and BP. We find that this metab-
olite is strongly associated with the gene-expression levels
of CIDEC, a gene related to insulin resistance, suggesting
that this metabolite may be related to this pathway.
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Phenylacetylglutamine is related to the gut microbiome
composition and a number of reports have linked the
function of gut bacteria to insulin resistance. Therefore, it
is possible that CIDEC may be linking these two pathways
and suggests a new mechanism linking insulin resistance
and gut microbiome in BP regulation.

Our study, therefore, on one hand is consistent with the
current knowledge of insulin resistance and endothelial
activation mechanisms in determining arterial stiffening. On
the other hand, our data suggest that some of these mech-
anisms may be related to the mechanisms that deserve
further exploration, for example, those that link with the
gut microbiome. These data also suggest that serine and
uridine levels are linked to arterial stiffening, possibly via
endothelial dysfunction but in a way that is not reflected
directly on the traditional CVD risk factors.

The current study has several strengths. It used a non-
targeted metabolomic approach that identifies a wide range
of biochemicals in addition to lipids. TwinsUK is a very
large and accurately phenotyped population, and this
allowed us to explore the potential confounders (e.g. diet
and MAP). The availability of expression and genetic data
enabled us to explore some of the biological implications of
the three metabolites identified.

We note some study limitations. Our study sample con-
sisted of women only, and some metabolites could be
influenced by sex-specific hormones. In addition, previous
studies suggested that traditional risk factors [33] are less
reliable in predicting risk in women than in men. We have
only tested individuals of European descent, and the levels
of one of the metabolites identified (phenylacetylglut-
amine) are known to vary between Asians and Caucasians.
More importantly, because of the novelty of the pheno-
types, we could not validate our results in an independent
cohort. The cross-sectional nature of our data does not
allow us to draw conclusions as to whether the metabolites
identified are causative of arterial stiffness or merely corre-
lated with it. However, our results highlight the relevance of
investigating the molecular pathways related to PWV as this
may lead to the identification of molecular mechanisms
involved in cardiovascular diseases, in particular linked to
endothelial activation, that act through other pathways. The
identification of key metabolites related to PWV should
encourage further research into this field.
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