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Abstract: We demonstrate diffraction limited multiphoton imaging in a 

massively parallel, fully addressable time-resolved multi-beam multiphoton 

microscope capable of producing fluorescence lifetime images with sub-

50ps temporal resolution. This imaging platform offers a significant 

improvement in acquisition speed over single-beam laser scanning FLIM by 

a factor of 64 without compromising in either the temporal or spatial 

resolutions of the system. We demonstrate FLIM acquisition at 500 ms with 

live cells expressing green fluorescent protein. The applicability of the 

technique to imaging protein-protein interactions in live cells is exemplified 

by observation of time-dependent FRET between the epidermal growth 

factor receptor (EGFR) and the adapter protein Grb2 following stimulation 

with the receptor ligand. Furthermore, ligand-dependent association of 

HER2-HER3 receptor tyrosine kinases was observed on a similar timescale 

and involved the internalisation and accumulation or receptor heterodimers 

within endosomes. These data demonstrate the broad applicability of this 

novel FLIM technique to the spatio-temporal dynamics of protein-protein 

interaction. 

©2015 Optical Society of America 
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1. Introduction 

Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique for high resolution 

imaging of functional spatio-temporal dynamics in situ. Förster resonance energy transfer 

(FRET) is, by far, the most extensively studied technique for observation of protein-protein 

homo- and hetero-dimer interactions in intact cells [1, 2]. For intermolecular FRET, a key 

benefit of performing donor FLIM (when compared to intensity based ratiometric 

techniques), is that fluorescence-lifetime measurements of donor emission are independent of 

acceptor concentration and is therefore suited to imaging studies in intact cells [3–5]. 

Multiphoton microscopy confers additional advantages in terms of inherent optical sectioning 

and enhanced depth penetration for in vivo imaging [6–9]. However, the data acquisition rate 

for FLIM is a significant limitation in current implementations of laser scanning microscopy. 

There are a number of techniques currently available in multifocal multiphoton 

microscopy to generate multiple scanning points. These include the use of Nipkow spinning 

disks [10], cascaded beamsplitter arrays [11], microlens arrays [12] and diffractive patterned 

illumination approaches [13]. These approaches restrict flexibility in relation to light 

efficiency (number of beams) or the use of patterned illumination. One technique utilizing a 

holographic pattern projected onto a diffractive spatial light modulator (SLM), (developed 

originally for use in optical tweezing applications [14]) is gaining a wider acceptance in 

multifocal multiphoton beam scanning implementations [15]. 

For high precision multiphoton FLIM, time-correlated single photon counting (TCSPC) is 

unparalleled in its measurement accuracy [16, 17]. In terms of imaging speed, TCSPC is 

fundamentally limited with respect to photon counting rate, since the stochastic nature of the 

emission process requires that the detection rate is much less than one photon per excitation 

event to prevent inaccuracies in lifetime determination [18]. Consequently, acquisition times 

for laser scanning FLIM are in the order of minutes, whereas many dynamic biological events 

occur on significantly faster timescales [19]. In order to overcome this limitation, parallel 

signal acquisition using arrays of laser beams with either photomultiplier arrays [20–22] or 

time-gated camera detection systems [23, 24] have been employed. However, in 

implementations to date, accurate determination of fluorescence lifetime with large numbers 

of channels in parallel is limited either due to cross-talk in multi-anode PMT’s [25] or subject 

to systematic error due to measurement methodology in camera systems [21, 26]. For a single 

beam scanning system, count rate limitations can be abrogated by parallel detection in a 

multi-anode PMT [21]. Whilst, significantly increasing frame rates, this is at the cost of 

significant pulse pile-up [18], leading to count rate dependent errors in the observed 

fluorescence lifetime. Furthermore, the count rates reported for in vivo imaging with a low 

axial and lateral resolution are unobtainable in high NA lenses without excitation saturation 

and significant phototoxicity and photobleaching. Thus, the ability to quantitatively measure 

complex biological events with high temporal resolution remains a significant challenge. 

Single-photon avalanche photodiodes (SPAD) array cameras developed for microscopy 

and spectroscopy techniques have been designed utilizing either custom or standard CMOS 

technologies [27, 28]. Whilst recent studies have shown the use of custom CMOS in a 

parallelized 8 × 1 SPAD array for use in single molecule fluorescence correlation 

spectroscopy [29], there are issues in scalability due to electrical power requirements (6 W for 

8 SPADs) [30]. Standard CMOS SPAD arrays are better suited for creating large, power 

efficient (100mW for 1024 SPADs) and affordable SPAD array cameras while maintaining 

good (50ps) timing resolution. In previous studies, the 32 × 32 Megaframe SPAD array has 

been presented where each individual pixel contained separate timing circuitry [31]. Due to 

the relative size of the timing circuitry and associated logic, the active region of each pixel is 

~1% of the total device area. Hence, when operated as a 32 × 32 pixel widefield camera, due 

to the low fill factor there is a low collection efficiency [32]. 
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In this paper, we demonstrate a novel multifocal multiphoton FLIM microscope (MM-

FLIM) which dramatically improves the acquisition rate of high resolution fluorescence 

lifetime imaging by parallelizing the excitation and detection process. The system consists of 

a two dimensional array of ultrafast beams (generated holographically via an SLM) which is 

optically conjugate and precisely aligned to a SPAD array camera. By reimaging the collected 

fluorescence beamlets directly onto the active region of the SPADs, we optically amplify the 

fill factor to 100%. With each individual SPAD operating in TCSPC mode, the microscope 

system effectively consists of 64 individual multiphoton FLIM microscopes operating in 

parallel to enable high data acquisition rates. The Megaframe SPAD array acquires time-

resolved data from single-photon events on 32 × 32 pixels at up to 500 kcts/sec/pixel [31] 

leading to a frame rate which scales linearly with detector number. Such high count rates 

generate too much data to transfer via a USB2.0 interface (effective throughput up to 35 MB/s 

or 280 Mbit/s) and in this paper we optimize data transfer by limiting acquisition to 64 

detectors and achieve a maximum data acquisition rate of 16 Mcts/sec. This is 20 times faster 

than a typical TCSPC acquisition speed with a single detector (assuming photon counting 

rates of 1% for an 80MHz laser repetition rate). The FLIM system presented here, represents 

a paradigm shift in acquisition of fluorescence lifetime data, whereby there is no longer a 

need to make a compromise between accuracy, speed and spatial resolution. We perform a 

number of live cell imaging experiments to highlight the capabilities of the system. 

2. Methods 

2.1 Optical set-up 

The MM-FLIM microscopy system is shown schematically in Fig. 1. For multifocal beam 

generation, a phase-domain spatial light modulator based, arbitrary pattern holographic 

projection system was implemented, using techniques originally developed for optical 

tweezing [14, 24] and single molecule imaging with fluorescent correlation spectroscopy 

[29]. 

 

Fig. 1. Operational schematic of the multifocal multiphoton system. 

Horizontally polarized laser light from a Ti:Sapphire Chameleon Ultra II laser was 

expanded and collimated to overfill a near-IR (NIR) optimized SLM (Boulder Non-linear 

Systems Inc.). Using a doubly weighted Gerchberg-Saxton (DWGS) iterative phase retrieval 

algorithm [33], the appropriate holographic phase pattern was calculated and projected onto 

an SLM, which was positioned in the Fourier plane. Coupled with the incident laser light, the 

required laser beamlets were generated experimentally at the focal plane. A blazed grating 
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phase pattern was convolved with the beamlet phase pattern to efficiently project the beamlet 

pattern into the first order diffraction pattern. The patterned NIR light was then optically 

relayed through a set of x-y galvanometer scanners and transmitted through a long-pass 

dichroic filter onto the back aperture of a x40 1.3N.A. Plan Fluor oil immersion microscope 

objective [Nikon Instruments Ltd] such that the back focal plane was conjugate to the SLM. 

Due to issues associated with projecting a square pattern onto a circular aperture, the beam 

size was set so that it slightly under-filled the pupil plane of the objective. Therefore the 

multifocal microscope system functioned with an effective excitation N.A. of 1.2. Since the 

focal plane was conjugate with the image plane of the SLM, the 2D beamlet array was re-

created at the focal plane and was raster scanned across the sample in beam scanning mode 

(using the galvanometer scanners). Two photon excited fluorescence was then collected from 

the focal plane by the objective, de-scanned by the galvanometer scanners and re-imaged via 

a dichroic mirror onto the back aperture of a x10 0.3N.A. Plan Fluor objective [Nikon] and 

focused onto the Megaframe SPAD array. 

The SLM based beamlet generation technique offers significant flexibility in terms of 

near-field resolution as well as having complete programmable control of the number and 

positioning of each beamlet. The excitation beamlet array generated fluorescence in the 

microscope focal plane via a two photon absorption process and was back-projected through 

the system to the detection plane. For parallelized TCSPC detection, each fluorescence image 

of the beamlet array was focused onto a single SPAD of a detector array (Fig. 2). 

 

Fig. 2. A flow chart detailing the Megaframe camera internal architecture, consisting of the 
motherboard PCB holding the Megaframe camera and programmable logic (FPGA). The 

FPGA controls the Megaframe camera readout and forwards the data to PC via USB2.0 link. 

To ensure optimal efficiency of detection, the fluorescent beamlet projected onto the 

detector aperture was significantly smaller (1.8 µm FWHM) than the active area of the SPAD 

(6 µm dia.). The field of view of the microscope was determined by the magnification 

between object and detection planes, with beamlets separated in the detection plane by the 

detector spacing, 50 µm. With a 40x objective (Nikon Plan Fluor Oil Immersion 1.3 NA) the 

field of view was 100 μm for an 8 × 8 beamlet array. Precise alignment and matching of the 

beamlet spacing and angular orientation onto the detector array was performed to ensure an 

effective fill factor of 100%. The DWGS algorithm [33] was implemented (incorporating 

direct feedback from the detector array) to compensate for poor intensity fidelity between 

beamlets [34] leading to significant improvement in uniformity of the beamlet intensity 

variation. 

2.2 Time-resolved detection and megaframe architecture 

Based on the gated ring oscillator method [35, 36], the Megaframe SPAD array camera 

device is composed of a low power 32 × 32 10-bit time-to-digital converter (TDC) array (with 

an average temporal bin size of 52.5 +/ 0.7ps for a particular 8 × 8 array of SPADs) with 

integrated low dark-count SPAD, having a photon detection probability of 28% at 500 nm. 

Each pixel is 50 µm × 50 µm in size with a SPAD active region of 6 µm diameter [31]. 

In the current architecture, up to 0.5x10
6
 time-stamp/s are delivered to the field 

programmable gate array (FPGA) for each pixel. Each timestamp is 10 bits long resulting in 
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56 ns dynamic range covering the needs for most fluorophores and light sources commonly 

used in microscopy. The FPGA circuit board (Opal Kelly XEM3050) contains the Spartan 3 

FPGA from Xilinx (XC3S4000) and provides a USB2 interface to the host PC. The test 

software included with the FPGA circuit (pipetest.exe, FrontPanel 4.2.5, Opal Kelly) board 

can perform ~32MB/s streaming to the host PC. The firmware was written in Verilog using 

Xilinx’s ISE Design Tools, System Edition, version 13.2. FPGA board and Megaframe 

camera are interfaced via a custom motherboard printed circuit board (PCB). The 

motherboard PCB provides the inputs to laser pulse and laser scanner synchronization. Laser 

pulse synchronization signal is fed directly into the Megaframe camera for reverse start-stop 

TCSPC timing. Laser scanner synchronization signals are interfaced to the FPGA. 

The Megaframe was operated in either time-correlated (lifetime) or time-uncorrelated 

modes (intensity). On-pixel TDCs generated raw time-correlated data, which was post-

processed to generate an image. Due to the small size of the SPAD active area (6 µm 

diameter, ~28 µm
2
), the focused beamlet array required careful alignment for which a 

protocol was developed [37]. 

2.3 Image acquisition and reconstruction 

All aspects of the microscope system were controlled via custom developed software written 

in the LabVIEW graphical programming environment. The appropriate region of interest for 

each sample was first selected whilst operating the microscope in wide-field fluorescent 

mode. Depending on the sample, the most suitable acquisition time and beamlet pattern laser 

power were chosen. The MM-FLIM system functioned in either single acquire, time-lapse or 

z-stack imaging modes. For each individual image acquisition, the system was set up to 

process 32 × 32 data points for 8 × 8 detectors producing 256 × 256 pixel images. The user 

sets the scan period and software generates the appropriate x-y galvanometer signals and 

pixel trigger clock. Once initialized, the buffered data reads were saved sequentially with the 

data containing an embedded x- address signal to enable sorting. Processing on the 

Megaframe camera was controlled through firmware loaded onto an on-chip FPGA. 

Data lines from columns of the Megaframe camera were de-serialized and prepared for 

transfer over USB2. At each pixel clock cycle, one bit of a row was transferred from the top 

half (32 data lines) and bottom half (32 data lines). As each time-to-digital converter (TDC) 

was 10 bits, 10 pixel clock cycles were needed to transfer one top-half row and one bottom 

half row. The deserializer provided 640 lines (containing all data for two rows) to the module 

which checked if the two rows currently transferred contained pixels of interest. The data rate 

between the Megaframe camera and the FPGA is 5 Gbits/s (64 data lines at 80 MHz). This 

translates to a frame rate of 500 kHz, where each frame is 1024 pixels (32 × 32). As 5 Gbits/s 

data rate cannot be sustained to the PC and the FPGA did not include sufficient RAM for 

buffering full frame transfers, our approach was to select 64 pixels and transfer these at fastest 

possible rate over USB2.0 bus. The TDC timestamps for selected pixels were placed in the 

first-in-first-out (FIFO) buffer. Each timestamp is 16 bits long to allow for 10 bits of time 

data, 5 bits of addressing of 64 pixels and one spare bit. Our USB2 link allowed for up to 32 

MBytes/s transfer rate. In practice, this was lower due to overheads in firmware and also 

lower photon budget. The interface between the microscope and detector system (Megaframe, 

FPGA circuit board and the interface board) was via TTL triggers whereby the scanner 

triggered the detector on each pixel thus ensuring that histograms were calculated for the 

correct pixels of interest. 

Before analyzing the data, it must be pre-processed to compensate for non-linearities of 

the time-to-digital conversion (TDC) [38]. These manifest as: 

Differential Non-Linearity (DNL) – cyclic intensity variations in time due to phases 

generated by the four delay-element oscillator (see Fig. 3). This was corrected individually 

for each pixel. The four delay-element oscillator in the pixel has 8 phases (essentially four 

positive transitions round the ring followed by four negative transitions). This results in a 
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histogram with a repeating pattern of 8. By reducing the bin size to 8 for a measurement taken 

with a temporally uniform illumination source, one can determine an appropriate correction 

factor to scale each bin number. 

Integral Non-Linearity (INL) - Variations in the temporal bin size between detectors as a 

result of the CMOS fabrication process (see Fig. 4). This was compensated using a rational 

resampling technique. This technique incorporated first interpolation and decimation to 

change the sampling rate by a rational factor, thereby rescaling the temporal data taken from 

each detector into the same time bin size. 

 

Fig. 3. Comparing raw data with a DNL corrected histogram for a 7x7 detector array. 

Correction of the DNL gives a marked reduction of the intensity variation of the transient. 

 

Fig. 4. Presents data on the 7 × 7 detector array used for imaging (a) the temporal bin size of 

each detector in the 7 × 7 array. Average temporal resolution of the 7 × 7 array is 52.5 +/ 

0.7ps. Variation in the temporal bin sizes are due to minor discrepancies between individual 
SPADs caused in the fabrication process of the chip. (b) Presents a histogram of the 

distribution of bin sizes of the 7 × 7 detector array. 

Data was saved and subsequently analyzed using TRI2 lifetime analysis software [39]. 

#223018 - $15.00 USD Received 12 Sep 2014; revised 28 Nov 2014; accepted 30 Nov 2014; published 6 Jan 2015 
(C) 2015 OSA 1 Feb 2015 | Vol. 6, No. 2 | DOI:10.1364/BOE.6.000277 | BIOMEDICAL OPTICS EXPRESS 284 



2.4 Sample preparation of plasmids, cell lines, and cell culture conditions 

The plasmids encoding human EGFR and human ErbB2 tagged at the c-terminus with 

enhanced green fluorescent protein (EGFP) were constructed by inserting the cDNA for the 

respective receptor into a modified version of the pEGFP-N3 vector (Clontech) in which the 

dimerisation-defficient Ala206 to Lys mutation had been incorporated into the EGFP 

sequence. The plasmid encoding human ErbB3 tagged at the c-terminus with mRFP1 was 

constructed by inserting the ErbB3 cDNA sequence upstream of mRFP1 within a modified 

pcDNA3.1 vector. The plasmid encoding Grb2-mCherry was a gift from Dr Michela Perani 

and Prof Peter Parker (King’s College London, UK). 

MCF7 breast carcinoma cells were grown in DMEM medium supplemented with 10% 

fetal bovine serum (FBS), penicillin G (100 U/ml)/streptomycin (100 mg/ml) and 1% L-

glutamine, and cultured in an atmosphere containing 5% CO2/95% air (v/v). For imaging, 

cells were plated into 3.5 cm diameter glass-bottom culture dishes (PAA Laboratories) 24 

hours prior to transfection. For EGFR-EGFP/Grb2-mCherry and HER2-EGFP/HER3-

mCherry co-expression studies cells were co-transfected using Fugene 6 (Promega, 

Madison,WI, USA) with 1.5 µg and 3 µg of donor and acceptor plasmids respectively. 

Following transfection, cells were maintained at 37°C in a humidified 5% CO2 atmosphere 

for 24h to allow expression of exogenous proteins. For live cell imaging, cell culture media 

was replaced with phenol red-free OptiMEM (Gibco), supplemented with 10% FBS and 25 

mM HEPES. The microscope body was equipped with an environment chamber (Solent 

Scientific Ltd, UK) enabling cell cultures to be stably maintained at 37°C for the duration of 

imaging experiments. Human recombinant EGF and Neuregulin were purchased from 

PeproTech, New Jersey, USA. 

3. Experimental results 

3.1 Resolution measurements 

To demonstrate the diffraction limited imaging performance of the microscope across all 

beamlets, sub-resolution (100 nm dia.) fluorescent beads were imaged. Diffraction limited 

performance in lateral and axial resolutions of 0.44 ± 0.01 µm and 1.03 ± 0.01 µm 

respectively [N = 55 PSF’s distributed over 25 SPADs] was demonstrated with an effective 

1.2 N.A. (due to under-illumination of the back pupil of the 1.3 N.A. objective). In Fig. 5(a) 

and Fig. 5(b) lateral and axial PSFs (used to calculate the resolution) are displayed 

respectively for a single bead. In Fig. 5(c) and Fig. 5(d) the average resolutions for a 25 

SPADs are displayed on a colour chart. 
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Fig. 5. Presents resolution imaging performance of the microscope across all beamlets which 

were calculated by imaging sub-resolution (100 nm dia.) fluorescent beads. (a) A typical 

lateral PSF of a single bead. (b) A typical axial PSF of a single bead. (c) The average lateral 
resolutions per detector for 5 × 5 detector array (d) The average axial resolutions per detector 

for a 5 × 5 array. 

3.2 Comparing lifetime analysis techniques for image acquisition of live cells at high speed 

In order to compare the accuracies of lifetime determination techniques for image acquisition 

of live cells at high speed, data sets of MCF-7 human carcinoma cells transfected with EGFP 

were imaged for 500 milliseconds and 5 seconds per frame (Fig. 6). 
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Fig. 6. Comparing lifetime analysis techniques for image acquisition of live cells at high speed. 

MCF-7 human breast carcinoma cells were transiently transfected with EGFP only and data 

sets were acquired for a 7 × 7 array for 500 milliseconds and 5 seconds. In a 256 × 256 data 
set, a maximum of 200 photons and 2000 photons were collected per pixel at 500 milliseconds 

and 5 second acquisitions respectively. In order to simulate the analysis of time gated camera 

to compare with Levenberg-Marquardt (L-M) fitting using Tri2 we used the 2 gated Rapid 
Lifetime Determination (RLD) approach for single exponential decays with 2 ns gate size. 

Lifetime images are displayed for both techniques with no binning and 5 × 5 circular binning 

for both 500 milliseconds and 5second acquisitions and their histograms compared. L-M 
clearly outperforms the RLD in all data analysis performed giving a much more accurate 

determination of the lifetime. The average calculated lifetimes for 500 ms acquisitions are: 

RLD no binning = 2.12 +/ 0.83 ns, RLD 5 × 5 circ. binning = 2.30 ± 0.46 ns, L-M no binning 
= 2.25 ± 0.39 ns and L-M 5 × 5 circ. binning = 2.23 ± 0.07 ns. The average calculated lifetimes 

for 5 s acquisitions are: RLD no binning = 2.31 ± 0.49 ns, RLD 5 × 5 circ. binning = 2.28 ± 

0.29 ns, L-M no binning = 2.23 ± 0.12 ns and L-M 5 × 5 circ. binning = 2.24 ± 0.06 ns. 

Levenberg-Marquardt (L-M) lifetime fitting was compared with Rapid Lifetime 

Determination (RLD) [40], commonly used for analysis in gated image intensifier (GOI) 

based FLIM systems. These data demonstrate that L-M fitting with TCSPC data, even at low 

photon numbers gives a much more accurate determination of the lifetime per pixel than 

RLD. It should be noted that this comparison is at Poisson limited signal/noise which is 

superior to GOI performance. Our data also show that frame rates in excess of 2 Hz are 
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readily achievable with the system, without the limitations imposed by GOI based systems 

[41–44]. 

3.3 Imaging protein-protein interactions in live cells 

To demonstrate the dynamic imaging capability of the system we chose to image two critical 

steps involved in the signalling of receptor tyrosine kinases, namely, (1) receptor dimerization 

and (2) receptor recruitment of adaptor protein. In both cases we chose to image signalling 

components of the Epidermal Growth Factor Receptor (EGFR) family of receptor tyrosine 

kinases and all experiments were conducted in live human breast carcinoma cells. 

3.4 HER2-EGFP and HER3-mRFP1 

MM-FLIM was applied to the analysis of ligand-dependent receptor heterodimerisation. We 

examined the interaction between the EGFR family members HER2 and HER3, given the 

clinical significance of this heterodimer pair [45]. HER3, which lacks intrinsic tyrosine kinase 

activity, can form competent signalling complexes through heterodimerisation with other 

EGFR family members following activation by its ligand neuregulin. As a potent driver of the 

PI3K/AKT-dependent cell survival pathway this novel kinase-deficient EGFR family member 

is gaining greater attention as a potential therapeutic target in cancer [45]. In particular, the 

role that the HER2/HER3 heterodimer plays in tumourigenesis and treatment resistance in 

breast cancer has become the focus of intense study. In HER2-amplified breast cancers, it is 

the HER2/HER3 heterodimer which is largely responsible for driving tumour growth. Poor 

response to HER2-targeted therapies (for instance trastuzumab) in these patients is believed, 

in part, to be associated with increased expression of HER3 [46]. 

For live cell imaging experiments, MCF-7 cells were transiently transfected with 

expression constructs encoding EGFP-tagged HER2 (HER2-EGFP) and mRFP1-tagged 

HER3 (HER3-mRFP1) and compared with control cells transfected with EGFP-tagged HER2 

only, before and after treatment with neuregulin ligand (50 ng/ml). Cells were imaged every 

15s for 40 minutes with the addition of neuregulin occurring at the 0 seconds time point. A 7 

× 7 beamlet pattern was applied which gave sufficient field of view (87.5 × 87.5 µm) to 

illuminate small clusters of cells over the course of time-lapse experiments. The lifetimes of 6 

control and test samples were measured and the FRET efficiencies calculated (Fig. 7). In Fig. 

6(a) the wide-field fluorescence, MP intensity and fluorescence lifetimes of representative 

control and test cells are presented. Statistical analysis comparing FRET efficiencies is shown 

in Fig. 6(b). The donor lifetime of control cells expressing HER2-EGFP alone (2.28 ± 0.02ns) 

remained unchanged throughout the course of time-lapse experiments. A basal constitutive 

association between HER2 and HER3 was observed within the perinuclear compartment with 

an average FRET efficiency of 3.3 ± 1.2%. On addition of neuregulin ligand, a significant 

increase in this FRET interaction occurred, with FRET efficiency rising to 6.1 ± 0.9%. 
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Fig. 7. (a) Comparing widefield fluorescence, MP intensity and fluorescence lifetime data sets 
of test MCF-7 cells expressing EGFR-EGFP (control vs EGFR-EGFP & Grb2-mCherry, pre 

and post treated with EGF ligand. Acquisition time per frame is 15 seconds and all images 

have an 87.5µm x 87.5µm field of view. (b) Statistical analysis comparing FRET efficiencies 
of control MCF-7 cells expressing HER2-EGFP with MCF-7 cells coexpressing HER2-EGFP 

& HER3-mRFP1, both pre and post addition of neuregulin ligand. In order to compare two 

different populations (control vs. test) for statistical significance, two-tailed unpaired Student t-
test was used. For the same populations (pre vs. post treatment) paired t-test was used. *** 

between populations denotes a highly significant difference in lifetime values (p<0.0001). 

Time-lapse imaging data of one cell, representative of HER2-HER3 interaction, is 

presented in Fig. 8. Following expression, HER2-EGFP and HER3-mRFP1 both exhibited a 

distinct pattern of spatio-temporal localization within MCF-7, which would be extremely 

challenging to reveal using convention lifetime imaging techniques. These proteins 

accumulated at the cell periphery and within a perinuclear compartment, the latter of which 

was far more pronounced in the case of HER3-mRFP1 (Fig. 8(a) and 8(b)). Following the 

addition of neuregulin, time-lapse imaging revealed a gradual fall in the lifetime of the 

HER2-EGFP donor specifically within the perinuclear compartment (from 2.21 +/ 0.02ns to 

2.15 +/ 0.02 ns) due to accumulation of vesicles with short lifetimes whilst donor lifetime at 

the cell periphery remained relatively constant (Fig. 8(c)). These data constituted a FRET 

efficiency increase from 3.1 ± 1.3% to 5.7 ± 0.9% after neuregulin addition. The fall in donor 

lifetime, indicating an accumulation of HER2/HER3 heterodimer within a perinuclear 

compartment, was detectable within the first 100s of ligand addition and stabilised after 

approximately 7 minutes, remaining low for the remainder of the observation period. 

Interestingly, the lack of any detectable change in donor lifetime at the cell periphery suggests 

that newly formed HER2/HER3 heterodimers are rapidly internalised and targeted to 
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subcellular compartments following neuregulin stimulation and therefore active receptor 

complexes are predominantly intracellular. 

 

Fig. 8. (a) Fluorescence widefield image highlighting the relative abundance of donor (green) 

and acceptor (red) regions in each cell. (b) A composite of Intensity and lifetime images are 
presented highlighting the ROIs chosen for the cells which were examined before and after 

neuregulin ligand was added. (c) Average FRET efficiencies values of the ROIs are presented 

in the accompanying graph with 0 seconds indicating the moment that neuregulin addition 
occurs. Cells were imaged every 15s for 40 minutes. 

The diffraction limited spatial resolution afforded by the MM-FLIM system enabled 

lifetime changes within these discrete subcellular compartments to be monitored over the 

course of imaging experiments and regions of interest were selected such that lifetime 

changes within these compartments could be assessed (Fig. 9, Media 1). 
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Fig. 9. Intensity, lifetime and composite images for a four frames in the time lapse (Media1). 

3.5 EGFR-EGFP and Grb2-mCherry 

Epidermal Growth Factor (EGF)-dependent activation of EGFR represents the archetypal 

mitogenic signalling pathway for receptor tyrosine kinases, coupling extracellular growth 

factors to Ras/MAPK activation [47]. In addition to its role in cell proliferation, EGFR 

activation can promote cell survival and differentiation and also drive the profound 

remodelling of the cell cytoskeleton, inducing migratory and invasive phenotypes in many 

cell types. The adaptor protein Grb2 is likely to represent a key node coupling EGFR 

activation to this diverse range of biological outputs as it provides a molecular bridge between 

active receptor and an array of downstream signalling protein classes including exchange 

factors, phosphatases, ubiquitin ligases and cytoskeletal remodelling factors [48–51]. Grb2 is 

recruited to activated receptor via its Src Homology 2 (SH2) domain which targets specific 

peptide consensuses flanking a critical central phosphotyrosine residue within the receptor’s 

intracellular domain. Grb2 serves to establish receptor-associated signalling scaffolds through 

which a downstream array of enzymatic pathways are rapidly activated: indeed Ras 

activation, which occurs following the Grb2-dependent recruitment of the exchange factor 

SOS to ligand-activated EGFR, is maximal within two minutes of addition of EGF to cultured 

cells [52]. Visualisation of EGF-induced EGFR/Grb2 association (which cannot be performed 
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in a conventional signal beam scanning FLIM due to slow acquisition rates) represents an 

interesting challenge for testing the capabilities of the MM-FLIM system. 

For live cell experiments, MCF-7 human breast carcinoma cells, transiently transfected 

with an EGFP fusion of EGFR (EGFR-EGFP) and a mCherry fusion of Grb2 (Grb2-

mCherry) were subjected to fluorescence lifetime time-lapse imaging to assess the effects of 

EGF stimulation on EGFR-EGFP/Grb2- mCherry interaction. Cell imaging data was acquired 

for 30 minutes at 10 second acquisitions. The lifetimes of 6 control and test samples were 

measured and the FRET efficiencies calculated (Fig. 10). In Fig. 10(a) the widefield 

fluorescence, MP intensity and fluorescence lifetimes of representative control and test cells 

are presented. Statistical analysis comparing FRET efficiencies is shown in Fig. 10(b). 

 

Fig. 10. (a) Comparing widefield fluorescence, MP intensity and fluorescence lifetime data 
sets of control MCF-7 cells expressing EGFR-EGFP vs test MCF-7 cells expressing EGFR-

EGFP & Grb2-mCherry, pre and post treated with EGF ligand. Acquisition time per frame is 

10 seconds and all images have an 87.5µm x 87.5µm field of view.(b) Statistical analysis 
comparing control MCF-7 cells expressing EGFR-EGFP with MCF-7 cells coexpressing 

EGFR-EGFP & Grb2-mCherry, both pre and post addition of EGF ligand. In order to compare 

two different populations (control vs. test) for significance two-tailed unpaired Student t-test 
was used. For the same populations (pre vs. post treatment) paired t-test was used. *** 

between populations denotes a highly significant difference in lifetime values (p<0.0001). 

No reduction in lifetime was observed for control cells expressing EGFR-EGFP donor 

alone, or for cells expressing both donor and acceptor molecules where the expression of 

acceptor was poor indicating reduced stoichiometry for the interaction (Fig. 10). The basal 

donor lifetime of EGFR-EGFP/Grb2-mCherry expressing cells (2.21 ± 0.01 ns) was lower 

than that of control cells (2.28 ± 0.01 ns), indicating the existence of a basal constitutive 

association between receptor and Grb2 and a FRET efficiency of 3.1 ± 0.4%. On addition of 
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EGF ligand, a significant increase in this FRET interaction occurred, with FRET efficiency 

rising to 6.1 ± 0.9%. 

A continuous time lapse image data for one representative cell is presented in Fig. 11. Cell 

imaging data was acquired continuously for 30 minutes (10 s/frame) (Media 2). Addition of 

EGF (100 ng/ml) occurred at the 0 seconds time point. Analysis of the time-lapse imaging 

revealed a rapid increase in FRET between EGFR-EGFP and Grb2-mCherry following 

stimulation as measured by a reduction in the lifetime of the EGFR-tagged EGFP donor 

fluorophore (Fig. 11(c)). Reduction in lifetime was detectable within 75 s of EGF stimulation 

and was sustained for the duration of the experiments, demonstrating rapid initiation of 

signalling downstream of the activated receptor. 

 

Fig. 11. (a) Fluorescence widefield image highlighting the relative abundance of donor (green) 
and acceptor (red) in each cell. (b) A composite of intensity and lifetime images are presented 

highlighting the ROIs chosen for the two cells which were examined before and after EGF 

ligand was added. (c) Average FRET efficiency values of the region of interest (ROI) are 
presented in the accompanying graph with 0 seconds indicating the moment that EGF addition 

occurs (Media 2). 

The rapid association between EGFR and Grb2 observed in these live-cell imaging studies 

would be significantly more difficult to capture using conventional multiphoton excitation 

TCSPC techniques since association would be convolved with a long acquisition time or a 

loss of spatial resolution by integration of signal (c.f. increase in association shown by high 
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speed multiphoton FLIM within 75s after adding ligand in Fig. 11). These experiments 

highlight the major advantage afforded by the increased temporal resolution of MM-FLIM. 

In order to highlight the three dimensional sectioning capabilities of the system, a 40 

image series of z-sections of the cells was taken before and after the time-lapse data (Fig. 12, 

Media 3). Each image stack was acquired in 400 s (10s/section). These data were therefore 

acquired on a time-scale comparable to that required to acquire a single z-section using 

conventional TCSPC. 

 

Fig. 12. 3D-image stack of a 40 z-sections acquired in 400 s (1 section/10s) of an MCF-7 cell, 

taken pre and post EGF addition (Media 3). Data taken before and after the time lapse data had 

been acquired. 

Data from Fig. 11 were reanalysed by biexponential global analysis to determine the 

fraction of EGFR-EGFP interacting by FRET with Grb2-mCherry. The full data set was 

analysed simultaneously in a manner similar to that performed by Barber et al. [39]. The 

fluorescence lifetimes for the non-interacting and interacting fractions were determined as 

2.28 ± 0.01 ns and 1.40 ± 0.01 ns by global fitting of the entire data set. The fractional 

contribution of each lifetime component was then determined for each time-point (Fig. 13, 

Media 4). These data show that the drop in average fluorescence lifetime for EGFR-EGFP in 

response to ligand stimulation in cell 2 is due to recruitment of Grb2 to ~35% of EGFR 

molecules. This interpretation of these FRET data is appropriate if we assume only two 

populations (interacting and non-interacting) are present in the data. More complex 

interpretations are beyond the scope of this paper and these data serve as an example for the 

significant advantage of acquiring TCSPC data for FLIM post analysis rather than assuming a 

monoexponential model. 
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Fig. 13. Data from Fig. 11 reanalysed by biexponential global analysis to determine the 
fraction of EGFR-EGFP interacting by FRET with Grb2-mCherry. (a) Presents the total 

fraction of FRET interacting species, pre and post EGF addition. (b) Histograms comparing 

fractional contributions of FRET interaction species for pre and post EGF ligand addition 
(Media 4). 

4. Discussion and conclusions 

This paper presents development of a multifocal multiphoton imaging system for high-frame 

rate FLIM imaging. We have demonstrated that multifocal multiphoton imaging with a 2D 

SPAD array is practical and offers significant speed advantages compared to single beam 

laser scanning or widefield FLIM microscopes. With this implementation of MM-FLIM, the 

minimum acquisition time for a homogeneous image scales as 2 /N t n  where N
2
 is the 

number of pixels in the image, Δt is the pixel dwell time to acquire the required 1000 photons 

for a satisfactory single exponential fit [53] and n is the number of beams. At the maximum 

count rate per pixel for the current system (500 kHz) and 64 beams, the minimum frame time 

is 2.05 s for a homogeneous sample, which is a drastic improvement when compared with 

131 s required for a single beam scanning system. Often in FLIM imaging spatial resolution is 

sacrificed for temporal resolution and applying a 3 x 3 spatial binning reduces this acquisition 

further to 228 ms in the MM-FLIM. One can also fit with a lower number of photons to 

obtain faster acquisition rates (500 ms acquisitions) although this will affect the accuracy of 

the lifetime determination (Fig. 6). We have demonstrated long-term observation of living 

biological specimens with diffraction limited imaging performance with no significant 

degradation in signal to noise. This is due to the lower photon flux of excitation in each 

beamlet compared to a single beam scanning system [21]. 

Whilst wide-field fluorescence lifetime imaging is possible at up to video frame rates with 

gated image intensifiers [54,55, 56], this is not practical in a biological setting due to sample 

limitations (i.e. excited state fluorophore saturation), significant imaging artefacts and 

excitation photon flux that may be damaging to cells [19, 26, 27,29]. Moreover, the MM-

FLIM system described here, provides a platform for future improvements in speed and 

signal-to-noise by increasing the number of beams or improving the sensor spatial resolution 

with lower pitch, higher fill factor SPADs. To demonstrate the capabilities of the system we 
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have performed quantitative imaging of protein-protein interactions of the EGFR family 

signalling network within living cells at unprecedented spatial and temporal resolutions for 

time-domain FLIM. We observe the gradual accumulation of these HER2/HER3 receptor 

complexes within a discrete perinuclear compartment highlighting the spatial resolution of the 

MM-FLIM system. We show that the Grb2 adaptor protein is recruited to EGFR receptor 

within 75 s of cell stimulation with EGF, an observation that would be challenging with 

conventional TCSPC systems. In addition, we are able to visualise the rapid 

heterodimerisation of HER2 and HER3 receptor tyrosine kinases in response to cell 

stimulation with the ligand neuregulin. We believe this technology has the potential to 

transform functional FLIM/FRET imaging and other FLIM applications, to enable dynamic 

spatio-temporal protein interactions to be studied quantitatively for the first time in situ. 

Acknowledgments 

The authors would like to thank: The Biotechnology and Biological Sciences Research 

Council UK (BB/I022074/1 and BB/I022937/1); STMicroelectronics (Imaging Division, 

Edinburgh, UK); Cancer Research UK, Engineering and Physical Sciences Research Council 

(UK), Medical Research Council (UK) and Department of Health (UK), KCL/UCL 

Comprehensive Cancer Imaging Centre; Dimbleby Cancer Care endowment fund to King’s 

College London and The Royal Society. The Megaframe project has been supported by the 

European Community within the Sixth Framework Programme IST FET Open, 

http://www.megaframe.eu. 

 

#223018 - $15.00 USD Received 12 Sep 2014; revised 28 Nov 2014; accepted 30 Nov 2014; published 6 Jan 2015 
(C) 2015 OSA 1 Feb 2015 | Vol. 6, No. 2 | DOI:10.1364/BOE.6.000277 | BIOMEDICAL OPTICS EXPRESS 296 




