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Although retinal vessel segmentation has been extensively researched, a robust and time efficient segmentation method is
highly needed. This paper presents a local adaptive thresholding technique based on gray level cooccurrence matrix- (GLCM-
) energy information for retinal vessel segmentation. Different thresholds were computed using GLCM-energy information. An
experimental evaluation on DRIVE database using the grayscale intensity and Green Channel of the retinal image demonstrates
the high performance of the proposed local adaptive thresholding technique. The maximum average accuracy rates of 0.9511 and
0.9510 with maximum average sensitivity rates of 0.7650 and 0.7641 were achieved on DRIVE and STARE databases, respectively.
When compared to the widely previously used techniques on the databases, the proposed adaptive thresholding technique is time
efficient with a higher average sensitivity and average accuracy rates in the same range of very good specificity.

1. Introduction

Retinal fundus imaging in ophthalmology is of great use
in medical diagnosis and progression monitoring of several
diseases like hypertension, diabetes, stroke, and cardiovas-
cular disease [1]. Automatic vessel segmentation has a great
potential to assist in the reduction of the time required by
physicians or skilled technicians formanual labeling of retinal
vessels [2].

Several retinal vessel segmentation techniques have been
proposed and evaluated in literatures. Chaudhuri et al.
[3] implemented a two-dimensional matched filter using a
Gaussian shaped curve. However, the technique proposed in
[3] achieved very low average accuracy due to low detection
of retinal vessels. Hoover [4] segmented retinal vessels by
applying a threshold probing technique combining local ves-
sel attributes with region-based attributes on matched filter
response (MFR) image. When compared to [3] where a basic
thresholding of anMFRwas used, themethodproposed by [1]
reduced the false positive rate by as much as 15 times. Fraz et
al. [5] implemented vessel segmentation technique utilizing
extracted center-lines of retinal vessels through first-order

derivative of Gaussian filter. The authors used morphological
operatorwith directional structuring elements to enhance the
structure of blood vessels. They further generated the shape
and orientation map of the blood vessels using the bit planes
of a gray-scale image. Chakraborti et al. [6] implemented
an unsupervised segmentation technique that combines ves-
selness filter and matched filter using orientation histogram
for the segmentation of retinal vessels. Martinez-Perez et al.
[7] used a combination of scale space analysis and region
growing to segment the vasculature.The technique proposed
in [7] was however unable to segment the thin vessels. Zana
and Klein [8] used a general vessel segmentation method
based on mathematical morphology. However, the technique
proposed in [8] was unable to segment the thinner vessels.

Wang et al. [9] proposed multiwavelet kernels and mul-
tiscale hierarchical decomposition. Vessels were enhanced
using matched filtering with multiwavelet kernels. Szpak and
Tapamo [10] used gradient based approach and level set tech-
nique. The proposed technique in [10] was however unable
to detect the thinner vessels. Vlachos and Dermatas [11]
proposed a multiscale retinal vessel segmentation method.
The algorithm is based onmultiscale line-tracking procedure
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and morphological postprocessing. However, the proposed
technique in [11] was unable to detect the thinner vessels.
Mendonça and Campilho [12] combined differential filters
for center-line extraction with morphological operators for
filling vessel segments considering intensity and morpholog-
ical properties. Xiao et al. [13] proposed a Bayesian method
with spatial constraint for the segmentation of retinal vessels.
The spatial dependence of the posterior probability of each
pixel in relation to their neighboring pixels was utilized. An
energy function was further defined and a modified level
set approach was used for the vessel segmentation. Yin et
al. [14] implemented a probabilistic tracking-based method
for vessel segmentation. A Bayesian method with maximum
a posteriori (MAP) was used for detecting the retinal vessel
edge points.

Niemeijer et al. [15] proposed pixel classification using a
K-nearest neighbour classifier for the segmentation of vessels.
Staal et al. [16] proposed a ridge-based vessel segmenta-
tion method. The feature vectors were computed for every
pixel and classified using a K-nearest neighbour classifier
and sequential forward feature selection. Soares et al. [17]
generated a feature vector computed from the measurements
at different scales of two-dimensional (2D) Gabor wavelet
transform on each pixel. Bayesian classifier with Gaussian
mixtures was further used to classify the resulting feature
space as either vessel or nonvessel pixel. Ricci and Perfetti
[18] proposed automated vessel segmentation based on line
operators. Two segmentation methods were considered. One
of the segmentation methods used two orthogonal line
detectors with the gray level of the target pixel to construct
a feature vector for supervised classification using a support
vector machine. Another segmentation method used by [18]
thresholds the response of a basic line detector to obtain
unsupervised pixel classification. Maŕın et al. [19] computed
a 7D vector composed of gray-level and moment invariants-
based features for pixel representation and used a neural
network classifier for the pixel classification. Although the
techniques proposed by [15–19] provide high sensitivity and
accuracymeasures, onemajor challenge is the requirement of
more time for the training phase of the classifiers.

A number of local adaptive thresholding approaches
for retinal vessel segmentation such as [20–23] have been
proposed in different literatures. Jiang and Mojon [22]
proposed an adaptive local thresholding framework using a
verification-based multithreshold probing scheme. Although
the average running time of the proposed technique in [22]
is relatively very fast (8 to 36 seconds), it was unable to
detect the thinner vessels. Akram and Khan [20] enhanced
the vascular pattern using 2D Gabor wavelet and followed
it by a multilayered thresholding technique that applied
different threshold values iteratively to generate gray-level
segmented image. Cornforth et al. [21] applied wavelet analy-
sis, supervised classifier probabilities, and adaptive threshold
procedures, as well as morphology-based techniques. Li
et al. [23] combined multiscale analysis based on Gabor
filters, scale multiplication, and region-based thresholding to
achieve adaptive thresholding for vessel segmentation.

Several other works such as [24–27] have combined
pixel thresholding based on certain neighbourhood with

global thresholding technique as an adaptive thresholding
technique for different segmentation problems.

Gray-level cooccurrence matrix (GLCM) is popularly
known for its usage for texture image segmentation [28–
31]. Haralick features [28] computed from GLCM have been
used for both supervised and unsupervised segmentation.
Some known unsupervised gray-level cooccurrence based
segmentation techniques have been proposed in some other
literatures. Entropy has been one of the few major GLCM
features that has often been used for unsupervised segmen-
tation. Different entropy based thresholding such as global,
local, joint, and relative entropy has been proposed in [32–
36]. Chanwimaluang and Fan [37] proposed the combination
of matched filter and entropy for the segmentation of retinal
vessels. The performance measure of the proposed technique
in [37] was only visual. Li et al. [38] used a threshold selection
method based on multiscale edge analysis and gray-level
cooccurrence matrix to handle severely degraded document
images. A multiscale image description was first used to
analyse the image edge; then gray-level cooccurrence matrix
was further used to compute the edge pixel pair information.
A threshold value was computed using the edge pixel pair
cooccurrence matrix. Mokji and Abu Bakar [29] proposed a
technique based on the cooccurrence matrix where statistical
features were defined from the edge information to handle
images that have fuzzy boundaries between the object and the
background of the image.

Althoughmuch has been achieved in the previous works,
the performance measurement and visual results obtained
from literatures suggest the need for further research work
to address the robust segmentation of both large and thin
vessels in a timely efficient manner. This paper proposes
a local adaptive thresholding technique using gray-level
cooccurrence matrix- (GLCM-) energy information for the
robust segmentation of both large and thin vessels in a timely
efficient manner.

The rest of this paper is organized as follows. Section 2
describes the methods and techniques used in this paper.
Section 3 explains the experimental setup and results and
discussion, while the conclusion is drawn in Section 4.

2. Methods and Techniques

The proposed segmentation approach is considered because
it utilizes the angular second moment feature which captures
the dynamics of the textural information needed for the
robust segmentation of both large and thin vessels. A brief
description of GLCM and the formulation of a multiscale
angular second moment feature matrix are given in this
section. This is followed by the proposed local adaptive
thresholding technique. Morphological postprocessing tech-
nique is finally applied to remove the misclassifications in the
segmented vessels. Althoughmost of the previous techniques
used the Green Channel of the retinal image, the proposed
local adaptive thresholding technique uses the grayscale and
the Green Channel of the colored retinal fundus image.

(I) Gray-level cooccurrence matrix: GLCM is usually
computed using two key parameters, namely, the
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Figure 1: (a) Colored retinal image; (b) grayscale retinal image; (c) Green Channel of the colored retinal image.

relative distance “𝑑” between the pixel pair and their
relative orientation “Φ.” The distance “𝑑” is usually
measured in pixel number while “Φ” is quantized in
four directions (horizontal: 0∘, diagonal: 45∘, vertical:
90∘, and antidiagonal: 135∘). Given a grayscale image
𝑉 of 𝑀 rows and 𝑁 columns, the gray-level cooc-
currencematrix𝐶(𝑖, 𝑗), for distance “𝑑” and direction
“Φ,” is defined as

𝐶 (𝑖, 𝑗)

=

𝑀−1

∑

𝑥=0

𝑁−1

∑

𝑦=0

(𝑃 {𝑉 (𝑥, 𝑦) = 𝑖, 𝑉 (𝑥 ± 𝑑Φ
1
, 𝑦 ± 𝑑Φ

2
) = 𝑗}) ,

(1)

where𝑉(𝑥, 𝑦) = 𝑖 which means that 𝑖 is the gray-level
intensity of pixel (𝑥, 𝑦) and 𝑃 is defined as

𝑃 (𝑥) = {
1, if 𝑥 is true,
0, Otherwise.

(2)

Six features of GLCM were considered by Cataldo
et al. [24] to be the most relevant. These features
considered are energy, entropy, contrast, variance,
correlation, and inverse difference moment. Energy,
which is also called angular second moment (ASM)
or uniformity, measures the textural uniformity. It is
a GLCM feature that detects disorders in textures.
Information based on energy feature will be applied
for an adaptive thresholding process in this work.The
angular second moment is defined as

ASM = ∑

𝑖

∑

𝑗

ℎ (𝑖, 𝑗)
2

, (3)

where ℎ(𝑖, 𝑗) is the (𝑖, 𝑗)th entry in a normalized gray-
tone spatial dependence matrix 𝐶

(𝑖,𝑗)
/𝑅, with 1/𝑅

being the normalizing factor.
The visibility of vessels in a colored fundus retinal
image with its grayscale intensity image and the

Green Channel of the retinal image are shown in
Figure 1. The grayscale intensity and Green Channel
of the retinal image are further processed for the
segmentation of the retinal vessels.

(II) Multiscale ASM-feature measurement: the variation
of energy information within the varying distance
“𝑑” and relative orientation “Φ” is useful in the
design of an adaptive thresholding technique for
image segmentation. An ASM-feature matrix across
different orientations and distances is computed and
defined as

𝐴 = (𝑎
𝑖𝑗
) , 1 ≤ 𝑖, 𝑗 ≤ 4, (4)

where

𝑎
𝑖𝑗

= ASM
(𝑑𝑖 ,Φ𝑗)

, 1 ≤ 𝑖, 𝑗 ≤ 4, (5)

such that Φ
1
= 0∘, Φ

2
= 45∘, Φ

3
= 90∘, and Φ

4
= 135∘,

with distances (𝑑
𝑖
)
𝑖=1,...,4

. The range measure of 𝐴 is
given as follows:

Range
Φ

= Range (𝐴) , (6)

such that Range
Φ

is a row vector containing the range
of each column of 𝐴. Three different threshold values
are computed from each row vector to segment the
retinal vessels.The thresholds from the rangemeasure
are

𝐾 = 0.5 (MIN (Range
Φ

)) , (7)

𝐾 = 0.5 (MAX (Range
Φ

)) , (8)

𝐾 = 0.5 (MEAN (Range
Φ

)) . (9)

(III) The proposed local adaptive thresholding technique
includes the following.

(a) Image enhancement is as follows. A combina-
tion of unsharp filter, average filter, and contrast
enhancement is applied on the grayscale and
Green Channel of the retinal image.
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(b) Convolution of the result is obtained in (a)
through a median filter using local window size
𝑤 ∗ 𝑤. This is described as

𝑈 (𝑖, 𝑗) = 𝐻 [𝑥, 𝑦] ∗ 𝑉
1

𝑤∗𝑤

[𝑥, 𝑦] , (10)

where 𝑈(𝑖, 𝑗) is the convolved retinal image,
𝑉
1

[𝑥, 𝑦] is the result obtained in (a) and the
convolution mask 𝐻[𝑥, 𝑦] is a local median
filter.

(c) The difference image 𝐷(𝑥, 𝑦) is then computed.
This is described as

𝐷(𝑥, 𝑦) = 𝑈 (𝑖, 𝑗) − 𝑉
1

[𝑥, 𝑦] . (11)

(d) The segmented image 𝑆image is obtained as

𝑆image (𝑥, 𝑦) = {
0, if 𝐷(𝑥, 𝑦) ≤ 𝑇 (𝑥, 𝑦) ,

1, otherwise,
(12)

where 𝑇(𝑥, 𝑦) = 𝐾.

(IV) Postprocessing is as follows. A combination of mor-
phological opening with median filtering process is
performed on the inverted thresholded image to
handle the remaining misclassifications.

3. Experimental Results and Discussion

Experiments were carried out using MATLAB 2010a on an
Intel Core i5 2410M CPU, 2.30GHz, 4GB of RAM. The
proposed method was evaluated using the retinal images on
the publicly available DRIVE [39] and STARE [4] databases.
DRIVE database is made up of 40 images captured with the
use of Canon CR5 camera with 24-bit grayscale resolution
and a spatial resolution of 565 × 584 pixels. The 40 images
were divided into two.The first group of the DRIVE images is
a training set made up of twenty images. The second group is
a testing set made up of twenty images. DRIVE database also
provides gold standard images as the ground truth for vessel
segmentation for the comparative performance evaluation
of different vessel segmentation algorithms. STARE database
consists of retinal images captured with the use of TopCon
TRV-50 fundus camera with 24-bit grayscale resolution and
spatial resolution of 700 × 605 pixels. The database provides
20 coloured retinal images and 20 hand-labeled images as the
ground truth for the comparative performance evaluation of
different vessel segmentation algorithms.

Empirically, we established that window sizes 11 × 11 to
17 × 17 were effective for the segmentation of the retinal
vessels. There is however a higher amount of noise and an
increase in the computational time when the window size
is too large (i.e., larger than 17 × 17). In such a situation,
the further postprocessing for removal of noise leads to the
removal of the thin vessels as well as some large vessels.This is
however caused by the influence of the noneven illumination
across the retinal image. In related development, there is a
possibility of insufficient data when the window size is too
small (i.e., lesser than 11 × 11). This leads to the loss of some

large and thin vessels during segmentation.The average time
taken for the different window sizes to process each image on
DRIVE database ranges from 1.9 to 2.6 seconds.

The performance measures commonly used are sensitiv-
ity, specificity, and accuracy. The measures are described in
(12)–(14) as follows:

Sensitivity =
TP

(TP + FN)
, (13)

Specificity =
TN

(TN + FP)
, (14)

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
, (15)

where TP = true positive, TN = true negative, FP = false pos-
itive, and FN = false negative.

An event is said to be TP if a pixel is rightly segmented as a
vessel and TN when a pixel is rightly segmented as back-
ground. In related development, an event is said to be FN if a
vessel pixel is segmented to be a background and a FP when a
background pixel is segmented as a pixel in the vessel. Sen-
sitivity measure indicates the ability of a segmentation tech-
nique to detect the vessel pixels while specificity measure
indicates the ability of a segmentation technique to detect
background pixels. The accuracy measure indicates the
degree of conformity of the segmented retinal image to the
ground truth.

A receiver operating characteristic (ROC) curve per-
formance measure is a plot of the rightly classified pixels,
referred to as true positive rate (TPR) versus the fraction
of the wrongly classified pixels as vessels, referred to as
false positive rate (FPR). Area under the curve (AUC) is a
performance measure computed from the ROC curve.

The thresholds 𝐾 as computed in (6)–(8) are substituted
for 𝑇(𝑥, 𝑦) in (11) for the segmentation of retinal fundus
image.

The different results obtained from the grayscale intensity
image and the Green Channel of the colored fundus image
using the proposed ASM-based local adaptive thresholding
technique are compared with the manually segmented vessel
by the second human observer and the DRIVE database
ground truth in Figure 4. Figures 2 and 5 also show the
results obtained by the proposed local adaptive thresholding
technique based on different ASM range information-based
threshold values on DRIVE database. Figures 3 and 10 show
the visual results obtained by the proposed local adaptive
thresholding technique on STARE database.

Table 1 shows the performance of the different GLCM-
energy threshold values for the proposed adaptive thresh-
olding technique using DRIVE database. All the grayscale
intensity images have slightly lower sensitivity rates of 0.7397,
0.7313, and 0.7375 than the Green Channel of the colored
retinal images with average sensitivity rates of 0.7650, 0.7560,
and 0.7632. The grayscale intensity images however have
slightly higher accuracies of 0.9488, 0.9511, and 0.9503 over
the Green Channel of the colored retinal images with average
accuracies of 0.9449, 0.9461, and 0.9477. The maximummid-
range threshold value on the grayscale intensity image yields
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(a) (b) (c)

Figure 2: (a) DRIVE colored fundus image; (b) DRIVE database gold standard; (c) segmented vessel of the Green Channel using ASM range
information-based threshold value.

(a) (b) (c)

Figure 3: (a) STARE database ground-truth; (b) segmented vessel of the grayscale intensity image using ASM range information-based
threshold value; (c) segmented vessel of the Green Channel using ASM range information-based threshold value.

the best average accuracy rate of 0.9511 while the least average
accuracy rate of 0.9449 was achieved using the minimum
mid-range threshold value on the Green Channel of the
colored retinal images. In related development, theminimum
mid-range threshold value on the Green Channel of the
colored retinal images yields the highest average sensitivity of
0.7650 while themaximummid-range threshold value on the
grayscale intensity image yields the least average sensitivity of
0.7313. The average specificities of all the grayscale intensity
images are slightly higher than the average specificities of the
Green Channel of the colored retinal images.

Table 2 shows the performance of the different GLCM-
energy threshold values for the proposed adaptive thresh-
olding technique using STARE database. All the grayscale
intensity images have slightly lower sensitivity rates of 0.7458,
0.7428, and 0.7427 than the Green Channel of the colored
retinal images with average sensitivity rates of 0.7542, 0.7641,
and 0.7626. The grayscale intensity images also achieve
average accuracy rates of 0.9485, 0.9500, and 0.9504 while
the Green Channel of the colored retinal images achieved
average accuracy rates of 0.9457, 0.9500, and 0.9510. The
average mid-range threshold value on the Green Channel of
the retinal image achieved the best average accuracy rate of

0.9510 while the least average accuracy rate of 0.9457 was
achieved using the minimum mid-range threshold value on
the Green Channel of the colored retinal images.

The performance of the adaptive thresholding based on
different ASM range information using grayscale image as
depicted through ROC curves is shown in Figures 6 and 8.
The ROC curves depicting the performance of the adaptive
thresholding based on different ASM range information
using Green Channel image are also shown in Figures 7 and
9.

Although all the six thresholds performed well, the
slightly higher sensitivity rates achieved by the Green Chan-
nel indicate the fact that a bitmore vessels were detectedwhen
compared to the use of grayscale images. This is because the
Green Channel provides the best vessel-background contrast.

In order to compare the performance of the proposed
technique with the state of the art, comparison is made with
the results obtained by different unsupervised and supervised
techniques such as Maŕın et al. [19], Ricci and Perfetti [18],
Soares et al. [17], and Staal et al. [16] as shown in Tables 1 to 4.

3.1. Comparison with Existing Segmentation Methods on
DRIVE Database. The performance evaluation shows that
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(a) (b) (c) (d)

Figure 4: (a) DRIVE database gold standard; (b) manually segmented vessel by the second human observer on DRIVE database; (c)
segmented vessel of the Green Channel using ASM range information-based threshold value; (d) segmented vessel of the grayscale intensity
image using ASM range information-based threshold value.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Adaptive thresholding using different ASM range information on DRIVE database. (a) DRIVE database colored retinal image. (b)
DRIVE database gold standard. (c) Segmented vessel through adaptive thresholding using minimum ASM mid-range threshold value for
the grayscale intensity image. (d) Segmented vessel through adaptive thresholding using maximum ASM mid-range threshold value for the
grayscale intensity image. (e) Segmented vessel through adaptive thresholding using mean ASMmid-range threshold value for the grayscale
intensity image. (f) Segmented vessel through adaptive thresholding usingminimumASMmid-range threshold value for the Green Channel.
(g) Segmented vessel through adaptive thresholding using maximumASMmid-range threshold value for the Green Channel. (h) Segmented
vessel through adaptive thresholding using mean ASMmid-range threshold value for the Green Channel.

the works of Chaudhuri et al. [3], Martinez-Perez et al. [7],
Vlachos and Dermatas [11], Jiang and Mojon [22], Niemeijer
et al. [15], Yin et al. [14], Zana and Klein [8], and Chakraborti
et al. [6] present lower average accuracy and lower average
sensitivity when compared to all the adaptive thresholding
using different ASM range information. Szpak and Tapamo
[10] present no average sensitivity but a lower average accu-
racy when compared to all the adaptive thresholding using
different ASM range information. Maŕın et al. [19] present
no average sensitivity but a lower average accuracy when
compared to five of the six adaptive thresholding techniques

based on ASM information. Soares et al. [17] and Akram and
Khan [20] present no average sensitivity but a lower average
accuracy when compared to four of the six adaptive thresh-
olding techniques based on ASM information. Mendonça
and Campilho [12] present a lower average sensitivity when
compared to five of the six proposed thresholds but a lower
average accuracy when compared to four of the six thresholds
using the investigated techniques.

Staal et al. [16] present a lower average sensitivity when
compared to five of the six thresholds but a lower average
accuracy when compared to all the threshold values of the
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Table 1: Performance of different segmentation methods on DRIVE database.

Method Average accuracy Average sensitivity Average specificity
Human observer 0.9473 0.7761 0.9725
Staal et al. [16] 0.9442 0.7345 0.9773
Niemeijer et al. [15] 0.9416 0.7145 0.9801
Zana and Klein [8] 0.9377 0.6971 0.9769
Jiang and Mojon [22] 0.9212 0.6399 0.9625
Vlachos and Dermatas [11] 0.9285 0.7468 0.9551
Wang et al. [9] 0.9461 N/A N/A
Martinez-Perez et al. [7] 0.9181 0.6389 0.9496
Szpak and Tapamo [10] 0.9299 N/A N/A
Chaudhuri et al. [3] 0.8773 0.3357 0.9794
Soares et al. [17] 0.9466 N/A N/A
Akram and Khan [20] 0.9469 N/A N/A
Mendonça and Campilho [12] 0.9463 0.7315 N/A
Maŕın et al. [19] 0.9452 0.7067 0.9801
Ricci and Perfetti [18] 0.9595 N/A N/A
Xiao et al. [13] 0.9529 0.7513 0.9792
Yin et al. [14] 0.9267 0.6522 0.9710
Chakraborti et al. [6] 0.9370 0.7205 0.9579
𝐾 = 0.5 (MIN (Range

Φ

))

(Gray Intensity)
0.9488 0.7397 0.9691

𝐾 = 0.5 (MAX (Range
Φ

))

(Gray Intensity)
0.9511 0.7313 0.9724

𝐾 = 0.5 (MEAN (Range
Φ

))

(Gray Intensity)
0.9503 0.7375 0.9709

𝐾 = 0.5 (MIN (Range
Φ

))

(Green Channel)
0.9449 0.7650 0.9623

𝐾 = 0.5 (MAX (Range
Φ

))

(Green Channel)
0.9477 0.7560 0.9663

𝐾 = 0.5 (MEAN (Range
Φ

))

(Green Channel)
0.9461 0.7632 0.9634

investigated technique. Wang et al. [9] present no average
sensitivity but a lower average accuracy when compared to
four of the six adaptive thresholding techniques based on
ASM information. Ricci and Perfetti [18] present no average
sensitivity but a higher average accuracy when compared
to all the adaptive thresholding techniques based on ASM
information. Xiao et al. [13] present a higher average accu-
racy when compared to all the proposed thresholds but a
lower average sensitivity when compared to three of the six
proposed thresholds. The average sensitivity of the human
observer is higher than all sensitivities of all thresholds of the
proposed technique while four of the six average accuracies
of the proposed technique are higher when compared to the
average accuracy of the human observer.

3.2. Comparison with Existing Segmentation Methods on
STARE Database. Hoover [4] and Chakraborti et al. [6]
present a lower average accuracy and average sensitivity rates
when compared to all the adaptive thresholding techniques
using different ASM information. The work of Jiang and
Mojon [22] also achieves lower average accuracy rate when

compared to all the adaptive thresholding using different
ASM information. Staal et al. [16] present a higher average
accuracy ratewhen compared to all the average accuracy rates
obtained using adaptive thresholding techniques based on
ASM information. The average sensitivity rate presented by
Staal et al. [16] was however lower when compared to all the
average sensitivity rates obtained using adaptive thresholding
techniques based on ASM information. Yin et al. [14] present
a lower average accuracy rate when compared to all the
average accuracy rates obtained using adaptive thresholding
techniques based on ASM information.

Mendonça and Campilho [12] and Xiao et al. [13] present
lower average accuracy rates when compared to five of the
six average accuracy rates obtained using adaptive thresh-
olding techniques based on ASM information. The average
sensitivity rates obtained by Mendonça and Campilho [12],
Xiao et al. [13], and Yin et al. [14] are lower when compared
to all the average accuracy rates obtained using adaptive
thresholding techniques based on ASM information. Maŕın
et al. [19], Ricci and Perfetti [18], and Wang et al. [9] present
no sensitivity rate but a higher average accuracy rate when
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Table 2: Performance of different segmentation methods on STARE database.

Method Average accuracy Average sensitivity Average specificity
Human observer 0.9354 0.8949 N/A
Hoover [4] 0.9275 0.6751 0.9567
Staal et al. [16] 0.9516 0.6970 N/A
Jiang and Mojon [22] 0.9009 N/A N/A
Maŕın et al. [19] 0.9526 0.6944 0.9819
Ricci and Perfetti [18] 0.9584 N/A N/A
Soares et al. [17] 0.9480 N/A N/A
Akram and Khan [20] 0.9502 N/A N/A
Wang et al. [9] 0.9521 N/A N/A
Mendonça and Campilho [12] 0.9479 0.7123 N/A
Xiao et al. [13] 0.9476 0.7147 0.9735
Yin et al. [14] 0.9412 0.7248 0.9666
Chakraborti et al. [6] 0.9379 0.6786 0.9586
𝐾 = 0.5 (MIN (Range

Φ

))

(Gray Intensity)
0.9485 0.7458 0.9649

𝐾 = 0.5 (MAX (Range
Φ

))

(Gray Intensity)
0.9500 0.7428 0.9668

𝐾 = 0.5 (MEAN (Range
Φ

))

(Gray Intensity)
0.9504 0.7427 0.9672

𝐾 = 0.5 (MIN (Range
Φ

))

(Green Channel)
0.9457 0.7542 0.9612

𝐾 = 0.5 (MAX (Range
Φ

))

(Green Channel)
0.9500 0.7641 0.9651

𝐾 = 0.5 (MEAN (Range
Φ

))

(Green Channel)
0.9510 0.7626 0.9657

Table 3: Comparison of AUC of the proposed techniques with
previous works on DRIVE.

Method AUC
Staal et al. [16] 0.9520
Niemeijer et al. [15] 0.9294
Zana and Klein [8] 0.8984
Jiang and Mojon [22] 0.9114
Wang et al. [9] 0.9543
Chaudhuri et al. [3] 0.7878
Soares et al. [17] 0.9614
Akram and Khan [20] 0.963
Maŕın et al. [19] 0.9588
Ricci and Perfetti [18] 0.9558
Chakraborti et al. [6] 0.9419
ASMthresh = 0.5 (MINRange) (Gray Intensity) 0.9656
ASMthresh = 0.5 (MAXRange) (Gray Intensity) 0.9711
ASMthresh = 0.5 (MEANRange) (Gray Intensity) 0.9698
ASMthresh = 0.5 (MINRange) (Green Channel) 0.9634
ASMthresh = 0.5 (MAXRange) (Green Channel) 0.9680
ASMthresh = 0.5 (MEANRange) (Green Channel) 0.9658

compared to all the average accuracy rates obtained using
adaptive thresholding techniques based onASM information.

Table 4: Comparison of AUC of the proposed techniques with
previous works on STARE.

Method AUC
Staal et al. [16] 0.9614
Jiang and Mojon [22] 0.929
Wang et al. [9] 0.9682
Soares et al. [17] 0.9671
Akram and Khan [20] 0.970
Maŕın et al. [19] 0.9769
Ricci and Perfetti [18] 0.9602
ASMthresh = 0.5 (MINRange) (Gray Intensity) 0.9695
ASMthresh = 0.5 (MAXRange) (Gray Intensity) 0.9681
ASMthresh = 0.5 (MEANRange) (Gray Intensity) 0.9745
ASMthresh = 0.5 (MINRange) (Green Channel) 0.9671
ASMthresh = 0.5 (MAXRange) (Green Channel) 0.9782
ASMthresh = 0.5 (MEANRange) (Green Channel) 0.9781

Akram and Khan [20] present no sensitivity rate but a
lower average accuracy rate when compared to two of the
average accuracy rates obtained using adaptive thresholding
techniques based on ASM information. Soares et al. [17] also
present no sensitivity but a lower average accuracy rate when
compared to five of the average accuracy rates obtained using
adaptive thresholding techniques based onASM information.
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Figure 6: ROC curves showing the performance of each of the
adaptive thresholding based on ASM using grayscale on STARE.
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Figure 7: ROC curves showing the performance of each of the
adaptive thresholding based on ASM using Green Channel on
STARE.

The average sensitivity of the human observer is higher than
all the average sensitivity rates of all the adaptive thresholding
techniques based on ASM information.The average accuracy
rate of the second observer is however lower when compared
to all the average accuracy rates obtained from adaptive
thresholding techniques based on ASM information.

All the AUC obtained from the segmentation results
achieved by the proposed adaptive thresholding techniques
based on ASM information (see Table 3) are higher when
compared to the AUC of the previously proposed techniques

Tr
ue

 p
os

iti
ve

 ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1
False positive rate

0.2 0.4 0.6 0.8

ASM based on minimum range (grayscale)
ASM based on maximum range (grayscale)
ASM based on mean range (grayscale)

Figure 8: ROC curves showing the performance of each of the
adaptive thresholding based on ASM using grayscale on DRIVE.
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Figure 9: ROC curves showing the performance of each of the
adaptive thresholding based on ASM using Green Channel on
DRIVE.

on DRIVE, while two of the six AUC obtained by the
proposed adaptive thresholding techniques based on ASM
information on STARE (see Table 4) are higher than the AUC
of all the previously proposed techniques.

4. Conclusion and Future Work

This paper proposes a local adaptive thresholding technique
based on GLCM-energy information for the segmentation of



10 Computational and Mathematical Methods in Medicine

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Adaptive thresholding using different ASM range information on STARE database. (a) STARE database ground truth. (b)
Segmented retinal vessel by Hoover [4]. (c) Segmented vessel through adaptive thresholding using minimum ASM mid-range threshold
value for the grayscale intensity image. (d) Segmented vessel through adaptive thresholding usingmaximumASMmid-range threshold value
for the grayscale intensity image. (e) Segmented vessel through adaptive thresholding using mean ASM mid-range threshold value for the
grayscale intensity image. (f) Segmented vessel through adaptive thresholding usingminimumASMmid-range threshold value for the Green
Channel. (g) Segmented vessel through adaptive thresholding using maximum ASM mid-range threshold value for the Green Channel. (h)
Segmented vessel through adaptive thresholding using mean ASMmid-range threshold value for the Green Channel.

retinal vessels in retinal fundus images. It is shown through
different thresholds that the proposed local adaptive thresh-
olding techniques based on energy information perform a
robust segmentation from both grayscale intensity and the
Green Channel of retinal images. Furthermore, it is shown
that the proposed local adaptive thresholding technique is
time efficient and gives higher average sensitivity, average
accuracy, and AUC values when compared to a wide range
of previously proposed techniques on both DRIVE and
STARE databases. Future work will investigate the use of soft
computing andmainly the introduction of heuristics to detect
more thin vessels.
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