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Abstract

Accurate cellular level segmentation of lung cancer is the prerequisite to extract objective 

morphological features in digitized pathology specimens. It is of great importance for image-

guided diagnosis and prognosis. However, it is challenging to correctly and robustly segment cells 

in lung cancer images due to cell occlusion or touching, intracellular inhomogeneity, background 

clutter, etc. In this paper, we present a novel segmentation algorithm combining a robust selection-

based sparse shape model (top-down) and an efficient local repulsive balloon snake deformable 

model (bottom-up) to tackle these challenges. The algorithm has been extensively tested on 62 

cases with over 6000 tumor cells. We experimentally demonstrate that the proposed algorithm can 

produce better performance than other state-of-the-art methods.

1 Introduction

Efficient and accurate cell segmentation on pathology images for lung cancer can provide 

diagnosis and prognosis support for improved characterization and personalized treatment, 

but it remains as a challenging problem due to cell occlusion/touching, densely clustering, 

size variation, intracellular inhomogeneity, etc. Segmentation methods that only rely on 

bottom-up information may not be sufficient to handle images exhibiting large 

inhomogeneities like lung cancer. Supervised learning [11], multi-reference level set [4], 

hierarchical partial matching [17], and various shape prior models [7,3,8,16,14] were 

proposed to address these challenges and achieved excellent performance. Recently, Zhang 

et al. [19] modeled shape prior using a sparse shape composition, which produces accurate 

organ-level segmentation in lung and liver images. Compared with the traditional PCA-

based active shape model [7], sparse representation-based shape model can preserve local 

details [19].

Sparse shape model using all training shapes as the dictionary is inefficient for a large 

dataset. KSVD [1] is a popular dictionary learning algorithm which is also used in [19], 

however it is not designed as a discriminative and selection-based dictionary learning 

method with respect to classification and segmentation. In this work, we propose a novel 

and robust selection-based dictionary learning algorithm for cellular level shape modeling 

for lung cancer tumor cells. Different from KSVD, this method directly selects the most 

representative cellular shapes from the training dataset as dictionary bases. The robustness 
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of the dictionary learning method is achieved by minimizing an integrated square error with 

a sparse constraint. In addition, an efficient online dictionary update scheme is designed to 

adaptively update dictionary bases. Finally, a novel local repulsive balloon snake is 

presented to fast deform shapes considering the requirement for touching cell segmentation.

2 Methodology

Figure 1 shows the framework of the whole segmentation algorithm. In the training stage, a 

cell boundary detector is learned using the method in [18]. The training cell shapes, after 

alignment with Procrustes analysis [7], are utilized to train a compact dictionary using the 

proposed selection-based dictionary learning method. In the testing stage, the seeds of the 

cells are automatically detected using a voting-based seed detection algorithm presented in 

[12], and these detected local minima (seeds) are used to initiate an adaptive H-minima 

transformation to obtain the initial shapes [5], one per cell. The algorithm alternately 

performs shape deformation using an efficient local repulsive balloon snake, and shape 

inference using the shape prior derived from the sparse shape model.

Robust Selection-based Sparse Shape Model

In this paper, cell shape v ∈ R2m is represented by the concatenated 2D coordinates of m 

landmarks which are automatically detected by the rules: 1) The two endpoints of the major 

axis of the shape are selected as major landmarks. 2) All the other landmarks are 

interpolated along the shape. Given N cell shapes {vi} aligned by Procrustes analysis [7], 

sparsity-based shape modeling aims to find a compact shape dictionary B = [b1 b2, ... bK] 

({bk ∈ R2m} are bases) and a sparse coefficient α such that any aligned shape v can be 

represented with a few bases: v = Bα+ε, where ε is the residual. Calculating α is called 

sparse coding, while dictionary learning can be formulated as

(1)

For a large cell shape dataset, it is intuitive to select a subset of the data as a shape 

repository that can sufficiently represent the whole dataset. This summarization can help 

remove outliers that are not the true representatives of the dataset and reduce the 

computational time for runtime optimization due to the decreased object-space dimension. 

Based on these considerations, we propose a novel selection-based dictionary learning 

method for sparse representation by minimizing a locality-constrained integrated squared 

error (ISE):

(2)

where εi = vi – Bαi and αi = [αi1 αi2 ... αiK]T · g(x|θ) is a parametric model with parameter θ. 

The first two terms forms the integrated squared error, which is robust to outliers [13]. The 

last term constrains local representation of bases with weighted sparse codes, and is used to 

encourage each cell to be sufficiently represented by its neighboring dictionary bases for 
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similarity preserving, which is essential in the sparse reconstruction. The constraint 1Tαi = 1, 

 ensures the shift-invariance. The residual is modeled with multivariate normal 

distribution: εi ~ N(0, σ2I2m). In this way g(εi|θ) = ξϕ(εi|0, σ2I2m), where ξ denotes the 

percentage of the inlier shapes that need to be estimated and ϕ is the probability density 

function of multivariate normal distribution. Based on (2), the dictionary B and sparse 

coefficients {αi} can be calculated by estimating θ = {ξ, B, α1, α2, .., αN, σ2}.

Equation (2) can be solved by performing dictionary basis selection and sparse coding 

alternatively. As J(θ) in (2) is differentiable, projection based-gradient descent is utilized for 

minimization. We update the bases {bk} by directly selecting shapes within each iteration. 

For sparse coding, we keep the dictionary fixed. Based on the sparse reconstruction 

criterion, the sparse coding objective function can be rewritten as:

(3)

where A is the set of indices corresponding to estimated inlier shapes. Locality-constrained 

linear coding (LLC) [15] is applied to (3) for sparse coding, where the neighboring bases are 

defined in terms of the Euclidean distances between the shape and dictionary bases.

Let B0 be the initial dictionary where the bases are randomly selected from the dataset, LLC 

is used in (3) to compute the current coefficients {αi}. Meanwhile, the active set A is 

updated with the indices corresponding to the N · ξ shapes with the smallest reconstruction 

errors  in each iteration. At the t-th step, , and 

, denote the gradient of J(θ) in (2): , , and , as Jbk, Jσ2 and 

Jξ, respectively. The basis bk is updated by selecting the shape vl which has the largest 

correlation between the displacement and the current :

(4)

Let At represent a set of indices corresponding to the current estimated inliers, the current 

reconstruction error Et and the ISE error Ft are defined as

(5)

where I(x) is the indicator function. Assume that  is the current reconstruction error, 

 is the reconstruction error after replacing the k-th basis with vl,  is the current ISE 

error, and  is the ISE error after replacing the k-th basis with vl, then the replacement 

will be performed only if  and . The σ2 and ξ are updated in the 

negative gradient directions:
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(6)

where Δhσ2 and Δhξ represent the learning rates.

Sparse Shape Model Update

Our algorithm supports efficient dictionary update. Recall that each basis bk corresponds to 

one row α(k) of the sparse coefficient matrix, and one basis is significant if it is used to 

represent many shapes in the sparse reconstruction such that α(k) will have many nonzero 

elements with relatively large values. Therefore, we define the significance of basis bk as

(7)

where C denotes the normalized constant, and  is the i-th element of α(k) which is the k-

th row of the sparse coefficient matrix G = [α(1)T α(2)T ...α(K)T]T. The learned shape 

dictionary can be only updated when the current reconstruction error in (5) is larger than a 

threshold by replacing the current least significant basis with the most important one 

generated from the new images. This represents the case that cell shapes change 

dramatically.

Shape Deformation

For shape deformation, we propose a novel repulsive balloon snake (RBS) with locality 

constraint. We introduce a local repulsive term into the model in [6] to handle touching cells 

so that each point on the i-th shape vi will be driven by both its own internal/external forces, 

and the extrinsic repulsive forces calculated from its neighboring contours (shapes). 

Practically, each cell is often surrounded by a limited number (M) of adjacent cells, and only 

its neighboring cells make dominant repulsive force contributions to its shape deformation. 

This suggests that we can deform shape vi in its local coordinate system for speedup, and it 

can be implemented by simply using vi's M (M << N) nearest neighbors Vi. Therefore, we 

formulate a local RBS to find a balance between internal Fint(vi) [6] and external 

forces: , where  is defined as:

(8)

where Si = {j : vj ∈ Vi, j ≠ i}. dij(s, u) = ∥vi(s) – vj(u)∥2 is the Euclidean distance between 

vi(s) and vj(u). f(dij(s, u)) is preferably designed so that its value decreases as the distance 

from point vi(s) to vj(u), and it controls the magnitudes of repulsive forces. In the 

implementation f(x) is simply chosen as: f(x) = x–2. p(vi(s)) represents the edge detector 

which is chosen as the learned boundary detector [18] (the non-learning based edge detector 

[6] can also be utilized). Equation (8) reduces the computation complexity significantly from 

 to  due to M << N.
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3 Experiments

The algorithm is extensively tested on the whole slide H&E-stained images of non-small cell 

lung cancer that contains 62 cases. There are hundreds of cells in each case, and in total the 

dataset has over 6000 tumor cells. The ground truth segmentation is manually labeled and 

confirmed by three pathologists. 20 cases out of 62 are used for training with the rest for 

testing. The algorithm is implemented with Matlab, and the parameters are chosen based on 

cross-validation and fixed in the experimental stage: λ = 0.0001, K = 300 in (2,3) and γ = 

0.8, w = 0.5, η = 5 in (8).

Segmentation Performance Analysis I

We design both qualitative and quantitative experiments to evaluate the proposed 

segmentation algorithm. In Figure 2, hundreds of cells on four image patches (1712 × 952) 

are accurately segmented within the regions of interest (ROIs). The ROIs are obtained using 

an Adaboost learning method [9] with texton feature, and the ROIs represent those regions 

in which pathologists are more interested, such as epithelium regions. The comparative 

segmentation results on two randomly selected image patches using the proposed algorithm 

and the other five methods, including mean shift (MS), isoperimetric (ISO) [10], marker-

based watershed (MWS), graph-cut and coloring (GCC) [2], and repulsive level set (RLS) 

[12] are presented in Figure 3. It is clear that this novel algorithm does take advantage of 

object topology constraints and shape prior, and therefore it can handle partial occlusion, 

inhomogeneous intensity, and size variations. Please note that the proposed algorithm is 

designed to preserve the touching cell shapes in order to facilitate the subsequent 

morphological feature extraction. For quantitative analysis with the pixel-wise segmentation 

accuracy, we calculate the precision P and recall ,  where sr represents 

the segmentation result and gt denotes the ground truth. The final segmentation results are 

presented in Table 1. The 80% column denotes the sorted 80% highest accuracy. As one can 

tell, the proposed method produces the best quantitative segmentation accuracy.

Segmentation Performance Analysis II

To analyze the performance of the selection-based sparse shape model, we compare our 

shape modeling method with: mean shape model (MSM) generated with Procrustes analysis, 

traditional shape model using PCA [7], general sparse shape model using KSVD [1], and 

shape inference by solving the LASSO optimization problem. All these methods are tested 

with the same initialization. The results are displayed in Figure 4 in terms of precision P, 

recall R, and F1 score . MSM and LASSO give the worst performance in terms 

of recall, while shape models based on MSM, PCA, and KSVD have relatively higher 

precision. Our model produces better performance with respect to the criteria. Please note 

that one advantage of the proposed dictionary learning method is its robustness to outliers.

Running Time Analysis

The Matlab execution time of this novel algorithm depends on M in (8). We evaluate the 

execution time of the segmentation algorithm with {M = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 

30, 60, 100} on one 704 × 704 image patch that contains N = 101 detected tumor cells, as 
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shown in Figure 5. M = 0 corresponds to no repulsive term considered in (8). The recall is 

relatively high since all shapes deform independently without any repulsion until they reach 

the maximum number of iterations, therefore they can almost cover the whole cells. 

However, the precision of boundary segmentation is extremely low. The execution time is 

602 seconds when M = N – 1, which represents the case that the repulsive forces from all 

other cells in the image are calculated. When M = 5, also used in our experiments, the 

execution time is 35 seconds. As shown in Figure 5, the segmentation accuracy does not 

have a significant variation when M > 5, since the square of distance in f(x) of (8) greatly 

penalizes those contours far away. Practically, one can select a proper M by providing a 

rough estimation to speed up the algorithm instead of using M = N – 1.

4 Conclusion

In this work, we present a novel cellular image segmentation algorithm for lung cancer, 

which combines the bottom-up image appearances with top-down shape priors. The shape 

repository is learned with a novel locality-constrained, selection-based dictionary learning 

algorithm, and a local repulsive balloon snake is proposed for adaptive shape deformation.
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Fig. 1. 
The flow chart of the proposed algorithm.
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Fig. 2. 
Segmentation results using the proposed algorithm on regions of interest (ROIs) of the lung 

cancer pathology specimens. The ROIs and non-ROIs are separated by cyan curves. Several 

patches are zoomed in for better illustration.
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Fig. 3. 
Comparative segmentation using different methods on two sample patches (rows 1 and 2). 

From left to right: original image, MS, ISO [10], MWS, GCC [2], RLS [12], and ours. 

MWS, RLS, and ours use the same initialization.
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Fig. 4. 
Box plot for quantitative comparison (precision, recall, and F1 score). In each panel, x-axis 

denotes 5 shape models (from left to right): MSM, PCA, KSVD, LASSO, and Our method.
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Fig. 5. 
The performance with respect to the number of nearest neighbors M.
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Table 1

PIXEL-WISE SEGMENTATION ACCURACY

P.M. 
* P.V. P.80% R.M. R.V. R.80%

MS 0.74 0.08 0.96 0.79 0.03 0.89

ISO [10] 0.71 0.09 0.99 0.81 0.02 0.92

MWS 0.89 0.05 1.0 0.77 0.01 0.86

GCC [2] 0.79 0.06 0.99 0.77 0.02 0.88

RLS [12] 0.84 0.02 0.95 0.85 0.01 0.92

Ours 0.90 0.01 0.98 0.89 0.01 0.96

*
P.M./R.M., P.V./R.V., and P.80%/R.80% are mean, variance, and sorted 80% highest accuracy of precision/recall, respectively.
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