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Abstract

Cell migration is a fundamental process underlying diverse (patho)physiological phenomena. The 

classical understanding of the molecular mechanisms of cell migration has been based on in vitro 

studies on two-dimensional substrates. More recently, mounting evidence from intravital studies 

has shown that during metastasis, tumor cells must navigate complex microenvironments in vivo, 

including narrow, pre-existing microtracks created by anatomical structures. It is becoming 

apparent that unraveling the mechanisms of confined cell migration in this context requires a 

multi-disciplinary approach through integration of in vivo and in vitro studies, along with 

sophisticated bioengineering techniques and mathematical modeling. Here, we highlight such an 

approach that has led to discovery of a new model for cell migration in confined 

microenvironments (i.e., the Osmotic Engine Model).

Introduction

Cell migration plays a key role in both cell physiology, including embryonic development, 

wound healing, and the immune response, and in development of pathological conditions. 

For example, in cancer metastasis, cells migrate away from the primary tumor, through the 

surrounding microenvironment, and to the microvessels, where they can invade into the 

blood and/or lymphatic circulation for metastasis to distal sites [1–3]. After traveling in the 
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circulation, the tumor cells extravasate from a blood vessel and migrate to the site where a 

secondary tumor will form. Recent in vivo intravital microscopy studies suggest that the 

metastatic cascade involves migration of tumor cells through extremely complex 

microenvironments [4–8], and it is becoming increasingly evident that physical forces are at 

play during multiple steps of metastasis [3,9]. To achieve migration through such 

microenvironments, cells are required to either degrade matrix to create their own migration 

tracks [10] or find preexisting tracks [11,12] through which to migrate. Interestingly, recent 

intravital microscopy studies reveal that cells preferentially migrate along very narrow pre-

existing tracks in vivo [4,8]. These tracks vary from <3 µm to ~30 µm in width and are 100–

600 µm in length [13]. The microtrack width modestly increases during perimuscular 

invasion [7], which may be attributed to limited matrix metalloproteinase (MMP)-dependent 

proteolysis or outward pushing exerted by invading cells. It is noteworthy that no significant 

changes in track width are detected during migration through collagen networks, fat tissue, 

or perineural space [7]. Hence, invading tumor cells not only preferentially follow pre-

existing tissue tracks, but also adapt their shape to the space available without significant 

tissue remodeling or degradation. This may partly explain why MMP inhibitors have largely 

failed clinically in cancer patients [14].

Cell migration through confined spaces plays important roles in both physiological and 

pathological cell migration events [8,15–17]. During the past decades, in vitro cell migration 

studies have been mainly performed on unconfined two-dimensional (2D) surfaces such as 

glass or plastic; while we have learned an extensive amount about how cells migrate from 

these 2D assays [18–21], they fail to recapitulate the in vivo microenvironment. A number of 

assays have been developed to provide additional information, such as how cells respond to 

biochemical [22,23], adhesive [24], topographical [25], mechanical [26–32], and 

dimensional [33–36] cues; however, each of these assays faces its own limitations (Fig. 1). 

Only relatively recently have microfabrication techniques been used to simulate microtracks 

in vitro. The fundamental question now is whether cells utilize the same machinery and 

mechanisms for confined versus unconfined migration, and how the biochemical and 

mechanical properties of the microenvironment affect these mechanisms. Answering this 

question will most likely require a multi-disciplinary approach through integration of in vivo 

and in vitro studies, along with mathematical modeling.

Engineering the cellular microenvironment

Given the physiological relevance of cell migration through confined spaces in vivo [4,7], it 

is necessary to create appropriate in vitro systems that enable understanding of cell 

migration in this context. Reconstituted three-dimensional (3D) collagen gels have been 

extensively used to study the mechanisms of random 3D migration in vitro [13,37–39]. 

However, these 3D assays fail to recapitulate the longitudinal tracks and the dynamic range 

of collagen-free pore sizes encountered by cells in vivo [7,13]. To circumvent the limitations 

presented by traditional 2D and reconstituted gel migration assays, engineering techniques 

such as microfabrication have recently allowed researchers to evaluate the effects of 

physical confinement on cell migration [40–50] (Fig. 1). For instance, the microfabrication 

technology has been applied to create in vitro models of cellular intravasation [41], which 

represents a form of migration in a confined space, as cells must squeeze between 
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endothelial cell-cell junctions in order to enter a blood vessel. Microfabrication techniques 

have also been employed to generate surfaces, wells, or molds with adhesive areas of 

varying size and shape in order to evaluate the effects of spatial confinement on cellular 

differentiation [51], proliferation [52], angiogenesis [53], and protein expression [52]. 

Recently, perfusable engineered vascular channels have been developed [54] by 3D printing 

of rigid filament networks of carbohydrate glass, which served as a template for the casting 

of either a synthetic or natural extracellular matrix containing cells around the lattice. Upon 

dissolving the carbohydrate glass away, endothelial cells are introduced into the vascular 

architecture and perfused with media to simulate blood flow and the physiological 

endothelial cell function. This microfabrication approach could also be used to create 

microtracks to investigate cell migration in confined microchannels.

We and others have developed PDMS-based microfluidic devices where physical cues (e.g., 

microchannel cross-sectional area and topography) and biochemical cues (e.g., 

chemoattractant gradient and surface protein presentation) can be simultaneously varied 

within the same device [45–47,55–57]. Furthermore, we have used this device to investigate 

the molecular mechanisms and signaling pathways involved in cell migration in unconfined 

versus confined spaces [47,55]. While this PDMS-based device is likely relevant in the 

context of stiffer in vivo microtracks such as those which might be found along muscle and 

nerve fibers [7], a limitation is its narrow range of tunable stiffness (Fig. 1). To address this 

limitation, a polyacrylamide gel-based device has been fabricated consisting of 3-wall 

microchannels of varying width (10–40 µm) and stiffness (0.4 kPa to 120 kPa) [42,43]. 

However, this device cannot replicate a truly confined microenvironment, as it is comprised 

of 3- rather than 4- wall microchannels of 10 µm or larger in width, nor does it incorporate a 

chemotactic gradient. To circumvent these limitations, we are currently developing a new 

model of our chemotaxis-based device in which the stiffness of the narrow (3 µm wide) 

microchannel walls can also be manipulated systematically; this will allow for modeling of 

softer microtracks, such as those that would occur between bundles of collagen fibers within 

the ECM [4].

Using the microchannel device, two classes of cell responses have been discovered – (1) 

those that utilize a Rho/Rac crosstalk mechanism (e.g., in normal fibroblasts, fibroblast-like 

cells, primary murine T-cells, and α4-expressing A375 melanoma cells), where Rho-

mediated cell contractility is necessary for migration in confined spaces [55], and (2) those 

that do not require actomyosin during migration in confined spaces (e.g, metastatic cells 

such as murine S180 sarcoma cells, human MDA-MB-231 breast tumor and CH2879 

chondrosarcoma cells) [45,47] (Fig. 2).

By incorporating a bed of micropillars onto the bottom wall of the microchannels within the 

microfluidic device, cellular traction forces have been measured during migration in 

confined and unconfined spaces [46]. This assay has revealed that traction forces exerted by 

cells in confined microchannels are lower than those in unconfined (2D) channels. These 

observations are in line with studies demonstrating that cells exert lower traction forces on 

1D micropatterned lines in comparison with 2D substrates [36]. As expected, treatment of 

human osteosarcoma (HOS) cells by blebbistatin, which suppresses myosin II-mediated 

contractility, or calyculin A, which increases cell contractility, decreases or increases cell 
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traction forces, respectively, in wide channels (i.e., unconfined spaces) [46]. Remarkably, 

neither blebbistatin nor calyculin A has any effect on cell traction forces in narrow channels 

(i.e., confined spaces). Thus, myosin-mediated cell contractility appears to play reduced role 

in HOS cell confined migration, as in other metastatic cell lines [45,47]. In agreement with 

these observations, tumor cells have recently been shown to exert less frictional forces along 

channel walls in comparison with normal cells [58].

Tumor cells also display an altered actin cytoskeleton, with fewer stress fibers [59,60], and 

increased deformability [58,61,62]. Similar to observations in 3D collagen gels [38], focal 

adhesions are also suppressed in tumor cells within narrow microchannels [45]. 

Furthermore, physical confinement induces F-actin remodeling, such that stress fibers are 

drastically diminished in physically confined spaces [45]. Moreover, actin appears to be 

concentrated on the leading and trailing edges of cells migrating in narrow channels [45]. In 

line with our observations, HL60 neutrophil-like cells chemotactically migrating in 

confining microchannels (5×5 µm2) form a “slab” of actin that fills the entire cross-section 

of the channel at the cell’s leading edge, rather than assembling thin ~200 nm-thick actin-

rich lamellipodia at the leading edge, as occurs on 2D surfaces [56]. Our findings, along 

with experimental observations [45] and a mathematical model [63] showing that tumor 

cells are able to migrate even in the absence of integrin-mediated adhesion, may help 

explain the reduced magnitude of traction forces measured in confined relative to 

unconfined migration [46]. The marked decrease in the formation of stress fibers and focal 

adhesions may also explain why inhibition of cell contractility via blebbistatin has no effect 

on tumor cell migration in confined spaces [45–47]. In contrast, normal fibroblast-like cells 

intrinsically displaying a higher level of stress fibers and focal adhesions demonstrate 

decreased confined migration upon blebbistatin treatment [55]. Intriguingly, tumor cells are 

still able to undergo confined migration in the presence of latrunculin-A, which disrupts 

actin polymerization, even though the same treatment completely abrogates migration in 

wide channels, as it does on a 2D surface. It is thus becoming increasingly apparent that the 

cellular mechanisms utilized during tumor cell migration in confined spaces can be 

fundamentally different from migration in unconfined spaces (i.e. 2D planar surfaces).

New Model for Cell Migration

Recently, we discovered a new model for confined cell migration that is driven by water 

permeation through the cell membrane [47]. This mechanism, termed the “Osmotic Engine 

Model” of cell migration, requires the coordinated activity of ion channels and aquaporins 

and is based on water flux into the cell at the leading edge and water flux out of the cell at 

the trailing edge (Fig. 3A). Ion pumps and aquaporins have previously been implicated in 

2D cell migration [64–66], however their function has been both underappreciated and not 

well understood. Their role as cellular migration machinery has mostly been associated with 

the cytoskeleton. For example, the Sodium Hydrogen Exchanger-1 (NHE-1) physically 

interacts with the actin cytoskeleton, and in turn, the actin cytoskeleton regulates the activity 

of ion channels [67–69]. Indeed, inhibition of NHE-1 decreases 2D migration speed in 

several cell types [47,70,71]. Furthermore, Aquaporin 5 (AQP5) is overexpressed in lung 

and breast tumor cells [72,73] and acts to facilitate actin polymerization [64] while 

stabilizing microtubules [74], thus supporting 2D cell migration. In addition, aquaporins 
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crosstalk to cell-matrix adhesion molecules (i.e., integrins) during cell migration, especially 

in renal cells and cancer cells that abundantly express aquaporins [75–77].

Our work provides a new context in which ion channels and aquaporins (e.g., NHE-1 and 

AQP5) are not only required but can also drive migration through confined spaces when the 

function of actin polymerization is disrupted [47]. By integrating theory and experiments, 

we derived an analytical expression for cell migration velocity in confined spaces. The 

mathematical model takes into account the kinetics of water, kinetics and diffusion of ions, 

flow of the cell cytoplasm, and mechanics of the cell cortex (i.e., the friction between the 

cell and channel wall and between the cell cortex and cytoplasm) [78,79]. Importantly, the 

model predicts that a nonzero cell velocity can be achieved even without actin 

polymerization and myosin II activity in confined spaces, which aligns with experimental 

observations, and distinguishes our model from previous mathematical frameworks 

[18,63,80–88]. For instance, although prior work has modeled the cell as a soft, fluid-

infiltrated sponge surrounded by a water permeable barrier capable of taking in water across 

the cell membrane, it couples hydraulics and cytoskeleton-dependent cellular mechanics 

[89]. Both theoretical and experimental data from our Osmotic Engine Model reveal that 

confined cell migration depends on osmotic and hydrostatic pressure differences across the 

cell membrane at both the cell and trailing edges. For instance, application of a hypotonic 

shock at the cell leading edge or of a hypertonic shock at the trailing edge causes a rapid 

reversal in the direction of cell migration (Fig. 3B–C). In both cases, cells repolarize to 

migrate towards the higher osmolarity regions.

During cell entry into narrow microchannels, a highly polarized distribution of ion pumps 

(i.e., NHE-1) and aquaporins (i.e., AQP5) is detected along the longitudinal surface of the 

cell with an intense signal at the cell leading edge [47]. This polarized, spatial distribution of 

ion pumps and aquaporins is required for sustained migration through confined spaces when 

actin polymerization is disrupted, as also suggested by the theoretical framework. In 

contrast, the ion pumps and aquaporins are more randomly distributed on the surface of 

migrating cells on 2D substrates and act in coordination with the actin cytoskeleton to help 

drive cell protrusion at the leading edge. As such, interfering with actin polymerization is 

sufficient to abrogate 2D, but not confined, migration. Of note, knockdown or inhibition of 

ion pumps and aquaporins markedly suppresses both unconfined and confined migration 

[47,70,71]. It is also noteworthy that actin polymerization appears to be necessary to set up 

the polarization of ion pumps and aquaporins during cell entry into confined channels; 

however, once this polarization is established, actin polymerization is dispensable for 

confined cell migration [79]. Interestingly, actin is required for the re-polarization of 

aquaporins and ion channels in cells migrating inside narrow channels following the 

application of an osmotic shock. If actin polymerization is disrupted, the cells fail to 

repolarize aquaporins and ion channels to the post-shock leading edge, and are unable to 

sustain migration [79]. Collectively, the Osmotic Engine Model can predict cellular 

movement in confined spaces even in the case where actin polymerization is not the driving 

force, and it thus offers a new perspective into how we view cell migration.

In the classical model of cell migration, cell protrusion at the leading edge is driven by actin 

polymerization and is stabilized by integrin-dependent adhesion to the substrate, while de-
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adhesion at the rear is facilitated by cellular contractile forces. Cells likely use this 

mechanism when migrating in vivo in situations where they are not laterally confined. 

However, cells may possess multiple power sources for motility, and it appears that tumor 

cells have evolved to be capable of using different mechanisms (i.e. actomyosin-based and 

water permeation-based) depending on the specific properties of the microenvironment. Of 

course, we cannot eliminate the possibility that normal cells also use the Osmotic Engine 

Model of migration, but the overexpression of aquaporins and ion pumps in numerous 

metastatic tumor cells [72,73,90] may cause the Osmotic Engine Model to be more evident 

in these tumor cells.

In confined spaces, water flux through the cell membrane is directed along a single axis 

longitudinally through the confined cell, allowing water permeation to be a major 

mechanism driving cell migration within the microchannel [79]. This mode of migration 

cannot be detected on 2D surfaces due to the lack of biological (e.g., ion channels and 

aquaporins) and geometrical (e.g., pill-shaped) polarization. Thus, in the 2D setting, actin 

polymerization is indispensable to guide the protrusions and drive migration. We speculate 

that Rho-associated kinase 1 (ROCK1), which phosphorylates myosin light chains to induce 

actomyosin contractility and is an upstream activator of NHE-1 [91], may serve as a linker 

between the actin-driven and water permeation-based mechanisms. NHE-1 is also involved 

in regulation of intracellular pH due to its role in exchanging Na+ and H+ ions; NHE-1 

recruitment to cellular invadopodia is promoted by cortactin phosphorylation, thereby 

regulating both cellular pH and invasive capability [92]. Cellular pH could thus be 

incorporated along with osmolarity in future refinements of the Osmotic Engine Model. 

Prior modeling work suggests that the relative significance of hydraulics and cytoskeletal 

dynamics (i.e., actin-, microtubule-, or intermediate filament-based) on cellular morphology 

depends on the time-, length-, and force-scales involved [89]. In light of this model, we 

postulate that physical confinement alters cellular parameters such as the cytoskeletal mesh 

structure, membrane permeability, local contractility, and adhesion, all of which could 

heterogeneously alter cellular hydraulics and thus cellular migration in confined spaces.

A recent microfluidic study has also suggested that cells push water in confined spaces, 

where “barotaxis” can override chemotaxis in asymmetric hydraulic microenvironments 

[57]. Specifically, cells reaching an intersection “decide” to follow the path of least 

hydraulic resistance, which was manipulated experimentally by adjusting the length or width 

of the downstream channel far from a bifurcation (i.e., increasing channel length or reducing 

channel width increased hydraulic resistance). Interestingly, cell velocity is identical to the 

flow velocity of suspended 500-nm fluorescent polystyrene beads (and therefore also the 

bulk velocity), suggesting that these differentiated HL60 (dHL60) cells “push” fluid as they 

migrate forward. This mechanism may depend primarily on actin, given that actin-based 

motility is faster than the Osmotic Engine Model [47] and that dHL60 cells are fast-moving 

in comparison with tumor cells; however, the molecular constituents involved in this process 

have yet to be delineated. This phenomenon may occur in tandem with the Osmotic Engine 

Model, especially in slower-moving tumor cells, since cell water uptake may be limited by 

the number of aquaporins and ion channels on the cell surface. The question that remains to 
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be unraveled is whether other conditions besides physical confinement encourage cells to 

favor the Osmotic Engine Model of migration.

Outlook

Cutting edge bioengineering techniques, such as microfabrication, in vivo and in vitro 

imaging, in combination with molecular biology, have led to new insights to the 

mechanisms by which normal and pathological cells migrate in heterogeneous 

microenvironments. These tools have allowed researchers to unravel the distinct effects of 

physical and biochemical cues, including confinement and dimensionality, matrix stiffness, 

topography, chemoattractant gradients, soluble factors, and matrix-bound adhesion proteins, 

on cell migration. Furthermore, we wish to emphasize the importance of mathematical 

modeling in combination with both in vitro and in vivo experimental analyses in order to 

help explain non-intuitive cellular behaviors. An integrated theoretical and multifaceted 

experimental approach can lead to discovery of new mechanisms for cell migration, just as 

the Osmotic Engine Model revealed novel roles for cellular machinery including ion pumps 

and aquaporins.

Open questions include how forces induced by the cellular microenvironment direct the 

distinct machinery cells use to move. For example, how does the force of physical 

confinement lead tumor cells to utilize an “Osmotic Engine” mode in addition to actin 

polymerization-based migration? We hypothesize that physical confinement induces 

biochemical signaling pathways within cells, similar to how cells transduce signals from 

biomechanical stimuli (e.g., matrix stiffness, fluid shear stress) [93–96]. Furthermore, the 

precise mechanisms by which physical confinement leads to polarization of ion pumps and 

aquaporins remain to be defined. Moving forward, it will also be critical to unravel the 

interplay between various mechanisms of migration (e.g., actomyosin-based and water 

permeation-based) and identify the specific microenvironments that promote one mechanism 

to become more dominant over the other; we predict it may depend on the type of cell (i.e., 

normal versus tumor), cell mechanics (e.g., traction forces, actin organization), and/or 

protein expression (e.g., Rho/Rac crosstalk, aquaporins, ion pumps), as well as the physical 

and biochemical properties of the microenvironment. An effective strategy may be to 

perform such analyses on the highly migratory population of tumor cells selectively isolated 

from a primary tumor that bear a gene signature predictive of cancer metastasis [97]. 

Engineering technology, combined with mathematical modeling, cutting-edge imaging and 

biological approaches, and in vivo studies will likely need to be integrated holistically in 

order to attack these questions.
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Figure 1. 
Overview of 2D, 3D, 1D, and microchannel cell migration assays and their limitations. In 

the wound healing assay, a monolayer of cells is scratched, or a physical barrier is removed, 

and the cells subsequently migrate towards each other to close the wound. In the durotaxis 
assay, a gradient of substrate stiffness is created by placing two drops of polymerizing 

polyacrylamide (PA) of different stiffnesses next to each other, and covering the solutions 

with a glass coverslip. Cells are then induced to migrate in response to the mechanical 

gradient of stiffness. In the micropipette assay, cells respond to a chemotactic gradient 
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created by a chemoattractant-filled micropipette. In a 3D matrix, cells must enzymatically 

degrade the surrounding matrix in order to move, while in fabricated tracks within a 3D 
matrix, preexisting tracks are created in a collagen gel via microfabrication techniques. In 

the assay with microprinted 1D lines, cells adhere selectively to 1D protein lines of specific 

width. In the microchannel assay, cells are induced to migrate into confined or unconfined 

microchannels in response to a chemoattractant gradient. Some parts of the figure are 

adapted with permission from [9].
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Figure 2. 
Comparison of major differences between 2D migration and migration through confined 

spaces (i.e., microchannels). In 2D migration, actin polymerization drives the leading edge 

forward, and both cortical actin and stress fibers are evident within the cell. Myosin motors 

are necessary to retract the cell’s trailing edge. Distinct focal adhesions help anchor the cell 

and traction forces are generated through these focal adhesions. When the actin-disrupting 

drug latrunculin-A is added to cells in 2D, they lose attachment to the substrate, round up, 

and cell velocity goes to zero. Blebbistatin, which inhibits myosin II function and decreases 
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cell contractility, decreases cell traction forces in 2D; meanwhile, calyculin A, which 

inhibits protein phosphatases and increases cell contractility, increases cell traction forces in 

2D. During migration in confined microchannels, the cell undergoes dramatic stress fiber 

and cortical actin remodeling, with both becoming more diffuse throughout the cell. 

Attenuation of focal adhesion size is also observed in microchannels. In contrast to 2D, the 

cell can still move in confined microchannels if actin and myosin functions are disrupted. 

Furthermore, neither blebbistatin nor calyculin A has any effect on the magnitude of cell 

traction forces in confinement, indicating that cell traction forces play a reduced role during 

migration through confined spaces. In confined spaces, the net direction of forces is towards 

the chemoattractant, though appreciable forces are also directed towards the side walls of the 

microchannels.
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Figure 3. 
Overview of the Osmotic Engine Model of cell migration. (A) Cell migration in confined 

spaces is driven by water permeation across the cell membrane. Water flows in at the cell’s 

leading edge, which allows the front of the cell to extend forward, and water flows out at the 

cell’s trailing edge, which allows the back of the cell to retract. This results in translocation 

of the cell body forward with little change in cell length (or volume). (B) The Osmotic 

Engine Model can be tested by applying osmotic shocks to the cell’s leading (or trailing) 

edge. Here, a hypotonic shock is introduced within the microfluidic device at the cell’s 
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leading edge, causing the cell to reverse direction and migrate away from the 

chemoattractant gradient. (C) The velocity of cell migration depends on the magnitude of 

osmolarity of the extracellular medium at the cell’s leading edge. The reversal of cell 

migration direction in response to a hypotonic shock at the cell’s leading edge is predicted 

by the theoretical framework of the Osmotic Engine Model. Thus, differences in solute 

concentration at the leading and trailing ends of the cell can drive cell migration. In the 

absence of osmotic shocks, the cell’s ion channels and aquaporins must be polarized in order 

to sustain migration. Figures reproduced with permission from [79].

Stroka et al. Page 19

Curr Opin Cell Biol. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


