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Background. The emergence and spread of drug resistance to current antimalarial therapies remains a pressing
concern, escalating the need for compounds that demonstrate novel modes of action. Diversity-Oriented Synthesis
(DOS) libraries bridge the gap between conventional small molecule and natural product libraries, allowing the in-
terrogation of more diverse chemical space in efforts to identify probes of novel parasite pathways.

Methods. We screened and optimized a probe from a DOS library using whole-cell phenotypic assays. Resistance
selection and whole-genome sequencing approaches were employed to identify the cellular target of the compounds.

Results. We identified a novel macrocyclic inhibitor of Plasmodium falciparum with nanomolar potency and iden-
tified the reduction site of cytochrome b as its cellular target. Combination experiments with reduction and oxidation
site inhibitors showed synergistic inhibition of the parasite.

Conclusions. The cytochrome b oxidation center is a validated antimalarial target. We show that the reduction site
of cytochrome b is also a druggable target. Our results demonstrating a synergistic relationship between oxidation and
reduction site inhibitors suggests a future strategy for new combination therapies in the treatment of malaria.

Keywords. cytochrome b; diversity-oriented synthesis; drug development; drug resistance; malaria; target
identification.

Malaria remains one of the most significant global pub-
lic health burdens with over 40% of the world’s popula-
tion at risk for infection and approximately 800 000
annual deaths due to the disease [1]. Disease is caused
by infection with protozoan parasites of the Plasmodi-
um genus and can range from asymptomatic or uncom-
plicated clinical malaria to severe disease, including
anemia, respiratory distress, and cerebral complications.
A major challenge in the treatment of malaria has been
the emergence of resistance to antimalarial drugs [2, 3].
A large proportion of the antimalarial drugs currently
used as front-line therapies are combinations of struc-
tures in the aminoquinoline and artemisinin classes.
With documented resistance to each class [1], the dis-
covery of new structural classes of antimalarial mole-
cules with potential novel mode of action is greatly
needed by the malaria research community. Recent
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efforts by several groups have aimed to develop leads with novel
mechanisms of action [4], and we believe that the exploration of
new chemical space is critical to the identification of new targets
and pathways.

With the goal of developing diverse, novel compounds repre-
senting little probed chemical space, the Broad Institute has
synthesized approximately 100 000 complex small molecules
through Diversity-Oriented Synthesis (DOS) for use in high-
throughput screens [5]. This strategy aims to cover chemical
space and access structural features beyond that of traditional
libraries, combining the complexity of natural products and
the efficiency of high-throughput synthesis [6–8]. A subset of
the DOS library called the “informer set” (approximately
8000 compounds) was screened in a phenotypic whole-cell
assay against both drug-sensitive (3D7) and drug-resistant
(Dd2) P. falciparum strains. The molecules in this screening
set were selected to maximize chemotype and stereochemical
diversity. This effort identified a new series of active molecules
from the “ring-closing metathesis” (RCM) collection. Analysis
of the 16 stereoisomers of the hit molecule identified the SRRS
configuration to be the most potent, with marginal activity ob-
served with the RRRS stereoisomer and no activity observed for
the remaining isomers. Medicinal chemistry efforts resulted in
the identification of lead ML238, a Molecular Libraries Probe
Production Centers Network (MLPCN) designated probe [5]
(Figure 1A). Further optimization yielded BRD6323 (Figure 1A),
which contains a 2,4-dimethylisoxazolyl at the urea substituent
and demonstrates both increased water and buffer solubility
(400 µM, water), with somewhat diminished potency (Dd2
half maximal effective concentration [EC50] = 9 nM) [9]. Both
compounds are stable in plasma and demonstrate neither cellu-
lar toxicity in HepG2 cells nor erythrocyte hemolysis [5]. The
challenge remained to identify the molecular target of these
molecules.

METHODS

Synthesis of ML238 (a.k.a. BRD9554, IDI-5918)
ML238 was prepared following the literature procedure [5]. 1H
nuclear magnetic resonance spectra matched that reported, and
high-performance liquid chromatography analysis indicated
>95% purity.

Synthesis of BRD6323 (a.k.a. IDI-5994) N-(((2S,8R,9R)-11-((S)-1-
(Dimethylamino)Propan-2-yl)-14-(3-(3,5-dimethylisoxazol-4-yl)
Ureido)-2,9-dimethyl-12-oxo-2,3,4,5,6,8,9,10,11,12-
decahydrobenzo[b][1,9,5]Dioxaazacyclotetradecin-8-yl)
Methyl)-4-fluoro-N-methylbenzenesulfonamide
This compound was synthesized using the same procedure used
to prepare the previously reported phenyl urea [5] with the ex-
ception that 4-isocyanato-3,5-dimethylisoxazole was used in-
stead of phenyl isocyanate during urea formation. Complete

methods for the synthesis of this compound can be found in
Supplementary Information.

Parasite Strains and Culture Maintenance
Parasites were obtained from the Malaria Research and Reagent
Resource Repository (MR4). We used the following parasite
lines from the MR4 repository of the American Type Culture
Collection (ATCC): 3D7 (MRA-151), Dd2 (MRA-156), the ato-
vaquone-resistant cell line TM90C6B (MRA-205) harboring a
Y268S mutation in PfCYTb, and an atovaquone-resistant para-
site line of unknown origin with a K272R mutation in PfCYTb
(ATVR: K272R). Transgenic Dd2 parasites expressing a chro-
mosomally integrated copy of the Saccharomyces cerevisiae
dihydroorotate dehydrogenase (DHOD) were utilized as previ-
ously described [10]. Parasites were cultured by standard meth-
ods [11] in Roswell Park Memorial Institute (RPMI) media
supplemented with 5% human O+ serum and 0.25% AlbuMAX
II (Life Technologies 11021-045).

Selection for Drug Resistance
Approximately 5 × 108 mixed stage parasites were treated at 5
nM of ML238 or 50 nM BRD6323 in each of 4 independent
flasks until cultures were negative for parasites by microscopy
(6–8 days). After this treatment, compound pressure was re-
moved and the cultures fed on alternate days with complete
compound free-RPMI media. Once healthy parasites reap-
peared in the culture flasks and parasitemia reached 2%–4%,
compound exposure was repeated. These steps were executed
for 30–50 days until the parasites were growing in the presence
of compound at a good multiplication rate. To prevent the lysis
of red blood cells, 30%–40% of parasite culture was replaced
with freshly washed cells once a week during the entire selection
period. Selected parasites were cloned by limiting dilution in
a 96-well plate in the presence of 5 nM ML238 or 50 nM
BRD6323. Parasite clones were detected by light microscopy
after 3 weeks of growth and expanded for cryopreservation
and phenotypic analysis. The resistant mutant cell lines are
available to the research community upon request.

In Vitro Drug Sensitivity and EC50 Determination
Drug assays were performed as previously described [12], with
modifications for 384-well format. Briefly, synchronized ring-
stage parasites were cultured in the presence of 12-point
2-fold serial dilutions of test compounds in 40 µL of RPMI sup-
plemented with 0.5% AlbuMAX II at 1.0% hematocrit and an
initial parasitemia of 1.0% in black clear-bottom plates (Greiner
Bio-one 781090). Following 72 hours’ incubation under stan-
dard culture conditions, SYBR Green I dye (Invitrogen S7563)
was added to a dilution of 1:5000, and plates were stored at
room temperature until fluorescence signal was read on a Spec-
tramax M5 plate reader (Molecular Devices, ex 480 nm, em 530
nM). After background subtraction and normalization, EC50
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values were calculated using the Levenberg-Marquardt algo-
rithm [13, 14] as implemented in the Collaborative Drug Dis-
covery database [15].

Isobologram experiments were performed in similar fashion,
utilizing the modified fixed-ratio methodology [16]. Briefly,
DOS and control compounds were mixed at multiple fixed

volumetric ratios (10:0, 8:2, 6:4, 5:5, 4:6, 2:8, and 0:10) and
then serially diluted in 12-point 2-fold dilutions and dispensed
in triplicate to 384-well assay plates. Fractional inhibitory con-
centrations (FICs) were calculated for each drug combination as
described [16]. Synergy was defined as Σ FIC < 1.0, additivity as
Σ FIC = 1, and antagonism as Σ FIC > 1.0.

Figure 1. Selection of DOS-resistant parasites. A, Molecules used for resistance selection experiments. ML238 is an MLPCN-designated probe. B, Dose-
response phenotype of representative clones from ML238-resistant (Dd2: G33A) and BRD6323-resistant (Dd2: G33V) parasites demonstrate significant shifts
in EC50 (***P≤ .0001). Solid white bars: Dd2; bars with diagonal lines: Dd2:G33A mutant; solid black bars: Dd2:G33V parasites. C, Topological represen-
tation of PfCYTb highlighting the resistance mutations identified in this study (red) and previously reported oxidation (Qo) site mutations (yellow, ATV re-
sistance [22]; green, decoquinate resistance [21]; blue, BZT resistance [10]). EC50 values were determined using a whole-cell SYBR green assay [12]. Error
bars indicate the standard deviation of 3 biological replicates, each with triplicate measurements. Significance relative to Dd2 EC50 was determined by 1-
way ANOVAwith Dunnett’s multiple comparison post-test; n = 3. Abbreviations: ANOVA, analysis of variance; ATV, atovaquone; BZT, benzothiazepine; DOS,
Diversity-Oriented Synthesis; EC50, half maximal effective concentration; MLPCN, Molecular Libraries Probe Production Centers Network; Qo, ubiquinol
oxidation center; Qi, ubiquinone reduction site of cytochrome b.
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Genome Sequencing and Single-Nucleotide Polymorphisms
Identification
Genomic DNA extractions from late-stage parasite cultures
were performed using Qiagen DNeasy kit (Qiagen). Genomic
DNA was sheared and made into a 200 bp fragment Illumina
sequencing library, and sequenced with paired-end reads on
an Illumina GAIIx machine. The sequenced reads were aligned
against the P. falciparum 3D7 reference from PlasmoDB (ver-
sion 7.1*) [17] using Burrows-Wheeler Aligner program version
0.5.7 [18]. Duplicate reads were marked using the Picard Mark-
Duplicates tool <http://picard.sourceforge.net/>. The consensus
bases were called using the Genome Analysis Toolkit’s (GATK)
Unified Genotyper (version 1.0.5974) [19] and the SAMtools
(version 0.1.16) [20] mpileup command. Only bases that were
called as homozygous for the reference or the alternate allele
with a genotype quality of at least 30 were considered.

Polymerase Chain Reaction Analysis and DNA Sequencing
Gene-specific primers were used to polymerase chain reaction
(PCR) amplify the region around each single-nucleotide poly-
morphism (SNP) identified by whole-genome sequencing. Prim-
er sequences are included in the online Supplementary
Information file. PCR was performed using 20 pmol of each
primer, genomic DNA template, and Pfusion high-fidelity
DNA polymerase HF master mix (New England Biolabs). The
mixture was heated to 95°C for 5 minutes and then cycled at
95°C for 30 seconds, 55°C for 30 seconds, and 72°C for 1 minute
over 35 cycles, with an additional extension at 72°C for 10 min-
utes after the completion of all cycles. PCR products were evalu-
ated by agarose gel electrophoresis, purified using ExoSAP-IT per
the manufacturer’s protocol (Affymetrix), and sequenced using
the same gene-specific amplification primers. PCR sequences
were aligned and SNPs identified using the SeqMan program
from the Lasergene suite, version 11.2.1 (DNASTAR, Inc).

Sequence Data
Whole-genome sequence data were deposited in GenBank
under accession number SRX120899, root sample ID: SM-
26YXR. PCR sequences were deposited in GenBank under
accession numbers KM032225-KM032247.

Statistical Analyses
EC50 data are listed as mean ± standard deviation and were an-
alyzed by 1-way analysis of variance with Dunnett’s multiple
comparison post-test; n = 3 as implemented in the Mac OS X
Prism 6.0c software package (GraphPad Software, Inc) and as
noted in the figure legends. Differences were considered signifi-
cant for P < .05.

RESULTS

To explore whether ML238 and BRD6323 targeted known an-
timalarial drug pathways, we screened a panel of parasite Ta
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isolates representing diverse drug-resistance genotypes, includ-
ing a set of recent clinical isolates. There was not an appreciable
difference in EC50 between the strains tested, suggesting that
this chemical series has a nonoverlapping mode of action
with existing drugs (Supplementary Figure 1). To identify the
target, we selected resistant parasites and used whole-genome
sequencing to identify causal mutations. Selection of Dd2 par-
asites with ML238 resulted in a single mutant parasite line,
while 2 independent lines were generated upon exposure to
BRD6323. Phenotypic whole-cell dose-response assays showed
a 30- to 100-fold shift in EC50 for the mutants relative to their
Dd2 parental line (ML238: 5 nM to 160 nM, BRD6323: 9 nM to
900 nM) (Figure 1B); the efficacy of control compounds was
unchanged between mutants and parent.

The full genome sequence of the parasite line resistant to
ML238 was determined, and SNPs between the Dd2 parental
genome and the resistant parasite were identified. Silent muta-
tions and known highly polymorphic surface antigens were fil-
tered from the dataset, and 4 nonsynonymous mutations were
identified in the resistant parasite (Table 1). Sequencing of each
of these loci in the BRD6323-resistant clones revealed that only
the mutation in the cytb locus was consistent across all resistant
lines. ML238-selected parasites had a G98C nucleotide substitu-
tion, resulting in a G33A amino acid change, while both the
BRD6323-resistant parasite lines harbor a G33V amino acid
substitution (G98T nucleotide change). Cytochrome b contains
2 discrete reaction sites involved in the Q cycle: a ubiquinone
reduction center (Qi site) and a ubiquinol oxidation center
(Qo site). These mutations map to the ubiquinone reduction
(Qi) center of P. falciparum cytochrome b (PfCYTb) in a region
of the protein completely distinct from known PfCYTb drug re-
sistance mutations in the Qo center (Figure 1C) [10, 21, 22].

Cytochrome b multimerizes with a Rieske iron-sulfur protein
and cytochrome c1 subunit to form Complex III of the electron
transport chain located in the mitochondrial inner membrane.
In P. falciparum, electron transport mediated by Complex III
plays a critical role in the pyrimidine biosynthetic pathway by

regenerating the ubiquinone cofactor of DHOD [23]. To further
validate cytochrome b as the target of the DOSmolecules, we test-
ed a transgenic Dd2 parasite line carrying a copy of the type-1A
yeast DHOD enzyme (Dd2-scDHOD), which allows the parasite
to bypass the need for electron transport in the pyrimidine bio-
synthetic pathway [10, 23].Electron transport inhibitors targeting
complexes I-III are therefore rendered ineffective against the
transgenic parasites expressing the yeast enzyme. Dose response
to either selection compound in the Dd2-scDHOD cell line
showed a dramatic shift in EC50 (100-fold less sensitive), confirm-
ing that parasite electron transport is involved in the primary
mechanism of action of the DOS molecules (Supplementary
Table 2). The relative potency of the control compound, chloro-
quine, which has a nonmitochondrial antimalarial mechanism,
remained unchanged across these parasite strains.

The Qo site is known to be the target of atovaquone (ATV),
while the Qi site appears to be an underappreciated alternate bind-
ing site for an effective antiparasitic agent. To understand the in-
terplay between resistance to Qi and Qo site inhibitors, we tested
cell lines harboring Qo site mutations along with our Qi site mu-
tants against a panel of Qi site and Qo site inhibitors. TM90C6B, a
culture-adapted clinical isolate resistant to ATV, contains a Y268S
mutation in the Qo site, which has been shown to be an important
contributor to ATV resistance [22]. Additionally, we tested an in-
dependent ATV-resistant cell line (ATVR: K272R) with a K272R
mutation in the Qo site. Dd2: G131S is a Dd2-derived cell line re-
sistant to a class of tetracyclic benzothiazepine (BZT) cytochrome
b inhibitors and harbors a G131S mutation in the ubiquinol bind-
ing pocket of cytochrome b [10].

To evaluate the effect of Qi site inhibitors on our various mu-
tant cell lines, we assayed them in the presence of the DOS mol-
ecules or antimycin. Antimycin is a natural product derived from
Streptomyces that has modest antimalarial activity [10, 22] and
has been shown to potently inhibit human and yeast cytochrome
b. Resistance to antimycin in yeast has been attributed tomultiple
mutations in the Qi site [24], leading us to predict that our Dd2:
G33A/V mutant lines would be cross-resistant to the molecule.

Table 2. Activity of Qi Site Inhibitors in PfCYTb-Mutant Cell Lines

EC50 (nM) ± SD

Dd2 Dd2: G33A Dd2: G33V Dd2: G131S TM90C6B ATVR: K272R

Chloroquine 95 ± 7 94 ± 12 92 ± 10 71 ± 25 250 ± 67** 130 ± 20

ML238 4.8 ± 1.0 160 ± 17*** 84 ± 110*** 2.0 ± 0.7* 1.23 ± 0.6*** 1.7 ± 0.7**
BRD6323 9.9 ± 1.0 920 ± 120*** 1300 ± 230*** 9.6 ± 1.2 5.92 ± 1.4* 4.1 ± 0.04***

Antimycin 160 ± 22 110 ± 33 600 ± 94** 170 ± 95 72.8 ± 49 71 ± 18

EC50s (nM) are mean ± SD of 3 independent assays (each run in triplicate). Significance relative to Dd2 EC50 was determined by 1-way ANOVA followed by Dunnett’s
multiple comparison post-test; n = 3.

Abbreviations: ANOVA, analysis of variance; ATVR, atovaquone resistant; EC50, half maximal effective concentration; PfCYTb, Plasmodium falciparum cytochrome
b; Qi, ubiquinone reduction site of cytochrome b.

* P < .05; **P < .005; ***P < .0005.
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Interestingly, only the Dd2: G33V mutant and not the Dd2:
G33A mutant showed reduced sensitivity to antimycin (Table 2),
suggesting that disruption of antimycin binding and/or activity
requires larger steric changes than the small alteration represent-
ed by the addition of the methyl group in the G33A mutant. The
ATV-resistant cell lines, TM90C6B and ATVR: K272R, were not
cross-resistant with any of the Qi site inhibitors. In fact, they were
hypersensitive to the DOS molecules and showed a similar trend
in response to antimycin. Dd2: G131S parasites also demonstrat-
ed increased sensitivity to ML238 (Table 2). These results could
imply that mutations in the Qo site (TM90C6B, ATVR: K272R,
Dd2: G131S cell lines) come at a fitness cost, rendering the par-
asites more susceptible to inhibition at the Qi site. Indeed, re-
duced fitness of Qo site–mutant parasites relative to wild-type
has been previously described and attributed to reduced ubiqui-
none binding [25].

We further interrogated whether Qo site inhibitors would
demonstrate a similar pattern of activities and implied fitness
consequences in our panel of mutant parasite lines. The Dd2:
G33A/V cell lines did not show cross-resistance to any of the
Qo site inhibitors tested (Table 3). Paralleling the effect seen
with Qi site inhibitors in the Qo site mutant cell lines, the
Dd2: G33V cell line showed increased sensitivity to ATV, sug-
gesting that there might be reciprocal fitness costs in mutating
either the Qi or Qo site.

Given the increased sensitivity of our mutant cell lines to in-
hibitors of the other site, we were interested in exploring the ef-
fect of Qi and Qo site inhibitors on the malaria parasite when
administered in combination. Using a modified fixed-ratio
methodology [16], isobolar analysis of ML238 in combination
with either ATV or decoquinate demonstrated a synergistic re-
lationship between the 2 classes of inhibitors (mean Σ FIC
(ML238 + ATV) = 0.77, mean Σ FIC (ML238 + DEC) = 0.57)
(Figure 2, Supplementary Table 2). These results are consistent
with what is known about the shuttle of electrons between these
2 sites during the Q-cycle and observations that bypass mech-
anisms in the face of perturbation at the Qi site (by either inhib-
itor binding or site mutation) are not permitted [26]. Their

synergistic effect also suggests the possibility of using Qo and
Qi site inhibitors in combination therapies, particularly in the
face of clinical resistance to ATV.

DISCUSSION

Screening of chemically diverse DOS libraries coupled with ad-
vances in target identification technologies offer a powerful, in-
tegrated approach toward elucidating new pathways for drug
development. Here we have presented a proof-of-concept

Table 3. Activity of Qo Site Inhibitors in PfCYTb-Mutant Cell Lines

EC50 (nM) ± SD

Dd2 Dd2: G33A Dd2: G33V Dd2: G131S TM90C6B ATVR: K272R

Decoquinate 1.3 ± 0.3 0.62 ± 0.13 0.64 ± 0.39* 290 ± 36*** 485 ± 73*** 12 ± 2***
Atovaquone 0.16 ± 0.02 0.10 ± 0.02 0.072 ± 0.02* 0.099 ± 0.02 6690 ± 3700*** 5.6 ± 0.6***

BZT1 24 ± 2 30 ± 23 21 ± 7 2700 ± 140*** 342 ± 120*** 66 ± 5*

EC50s (nM) are mean ± standard deviation of 3 independent assays. Significance relative to Dd2 EC50 was determined by 1-way ANOVA followed by Dunnett’s
multiple comparison post-test; n = 3.

Abbreviations: ANOVA, analysis of variance; ATVR, atovaquone resistant; EC50, half maximal effective concentration; PfCYTb, Plasmodium falciparum cytochrome b;
Qo, ubiquinol oxidation site of cytochrome b.

* P < .05, **P < .005, ***P < .0005.

Figure 2. Qi and Qo site inhibitors are synergistic. ML238 was tested in
combination with ATV (closed green squares and curve) and DEC (closed
blue circles and curve) at multiple fixed volumetric ratios (10:0, 8:2, 6:4, 5:5,
4:6, 2:8, and 0:10) [16]. FICs for each drug were calculated and plotted.
Synergy was defined as Σ FIC < 1, additivity as Σ FIC = 1, and antagonism
as Σ FIC > 1. Abbreviations: ATV, atovaquone; DEC, decoquinate; FICs, frac-
tional inhibitory concentrations; Qo, ubiquinol oxidation center; Qi, ubiqui-
none reduction site of cytochrome b.
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chemogenomic approach identifying the quinolone reduction
site of cytochrome bc1 as the molecular target for an antimalar-
ial probe from a DOS library. Cytochrome b is a validated target
in Apicomplexa parasites; ATV, one of the partner drugs in
Malarone, inhibits the oxidation site of cytochrome b and dem-
onstrates activity in both the erythrocytic and liver stages of the
parasite lifecycle and Endochin-like quinolones have activity
against both malaria and Toxoplasma gondii parasites and
have been shown to target cytochrome bc1 [22, 27].We demon-
strate that the Qi site is also a druggable target in P. falciparum
and lacks cross-resistance with Qo site inhibitors. This study,
along with those of Vailleres et al [28] and Nilsen et al [29], of-
fers new hope in utilizing Qi site inhibitors to thwart ATV re-
sistance. We believe the lack of cross-resistance between Qo or
Qi site mutants/inhibitors coupled with their effect in combina-
tion suggest that using targeted combination therapy toward 2
active sites in the same enzyme could represent a promising
avenue for antimalarial development.
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