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Abstract
TheX-linked lethal Ogden syndromewas thefirst reportedhumangenetic disorderassociatedwith amutation in anN-terminal
acetyltransferase (NAT) gene. The affectedmales harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic
subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and
molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis
and at the interface betweenNaa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic
capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA
complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden
syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-
type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration
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and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in
Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.

Introduction
Protein acetylation is one of the most common protein modifica-
tions occurring both on lysine side chains in proteins and at pro-
tein N termini (1). Nt-acetylation is mainly co-translational and
presumed to be an irreversible covalent modification catalyzed
by the ribosome associated N-terminal acetyltransferases
(NATs), members of the Gcn5-related N-acetyltransferase super-
family of acetyltransferases (2). NATs transfer an acetyl moiety
from acetyl coenzyme A (Ac-CoA) to the primary α-amino
group of nascent polypeptides as they emerge from ribosomes,
and proteomic analyses have revealed that 50–90% of yeast,
plant, fruit fly and human proteins are Nt-acetylated (1,3–5).

Originally, Nt-acetylation was assumed to protect proteins
from degradation (6). However, current findings link Nt-acetylation
todegradationof someproteins, viaAc/N-degron-mediated recruit-
ment of specific ubiquitin ligases (7,8). Nt-acetylation may also in-
fluence protein complex formation, as exemplified by the NEDD8
ligation enzymes (9), next to prion formation (10). Also, protein-spe-
cific targeting to membranes of the nucleus (11), Golgi (12,13) and
lysosomes (14) was shown to require Nt-acetylation, but a general
role in targeting is not supported (15). Some proteins destined
for translocation through the endoplasmic reticulum are Nt-free,
suggesting that Nt-acetylation of this pool of proteins inhibits
translocation (16).

To date, six NATs (NatA–NatF) have been identified in higher
eukaryotes and their substrate specificities have been character-
ized (2,17). Each NAT acetylates defined subsets of substrates
mainly based on the identity of the first two amino acid residues
of the nascent polypeptide (2), although there is some potential
redundancy in the system with some NATs acetylating the
same type of substrates. NatA, the major eukaryotic NAT in
terms of targeted substrates, displays a broad substrate specifi-
city profile by Nt-acetylating Ser-, Thr-, Ala-, Val-, Gly- and Cys-
starting N termini of which the initiator methionine (iMet) was
removed by the action of methionine aminopeptidase (1,18,19).
The NatA complex is composed of the catalytic subunit, Naa10
(ARD1) and the auxiliary subunit Naa15 (NAT1/NATH) (19–21),
which anchors Naa10 to the ribosome andmodulates its catalytic
activity (22,23). Furthermore, the catalytic subunit Naa50 (NAT5)
defined as NatE (22,24) and in multicellular eukaryotes, the
Huntingtin-interacting protein K (25) are physically associated
with the NatA complex, but whether Naa50 exerts activity in vivo
in a monomeric form or whether the active form of Naa50 is en-
tirely dependent on its association with NatA (26–28) is still not
known. Recently, the structures of the first eukaryotic NATs,
human Naa50 and the Schizosaccharomyces pombe Naa10–Naa15
(NatA) complex, were elucidated by X-ray crystallography (23,29).
These structures reveal themolecularmechanism and the key re-
sidues involved in substrate-specific Nt-acetylation. Besides co-
translational Nt-acetylation by the NatA complex, it has been
shown in vitro that monomeric Naa10 also displays posttransla-
tional Nt-acetylation (28) and in vitro and in vivo (co- and/or post-
translational) Nt-propionylation activity (30).

NatA function is not essential in yeast, but Saccharomyces cer-
evisiae naa10Δ and naa15Δ strains show defects in mating, sporu-
lation, entry into stationary phase and temperature, salt and
drug sensitivity (1,19,31). Loss of the Drosophila melanogaster
Naa10 homolog results in lethality (32) as does loss of the

corresponding homologs in Trypanosoma brucei (33) and Caenor-
habditis elegans (34). Further, deregulated human Naa10 or NatA
expression is linked to tumor development or progression, and
depletion of NatA subunits from cancer cells induces cell cycle
arrest or apoptosis (35).

In 2011, the first human genetic disorder, named Ogden
syndrome, involving an Ser37Pro (S37P) mutation in hNaa10
was revealed (OMIM 300013) (36). This X-linked disorder is char-
acterized by severe global developmental delays, comprising a
unique combination of craniofacial anomalies, hypotonia, car-
diac arrhythmia and eventual cardiomyopathy, resulting inmor-
tality during infancy. Recently, the S37P mutant was shown to
display reduced catalytic activity and a reduced ability to form
a NatA complex when co-expressed with hNaa15 in yeast (37).
A recent study also suggested the association of de novo putative
frameshift mutations in hNAA15 with congenital heart defects,
consistent with the range of minor cardiac anomalies seen in
Ogden syndrome (38). An hNAA10 mutation resulting in expres-
sion of a truncated Naa10 protein was found in a single family
with Lenz microphthalmia syndrome, however, showing very
little overlap with the Ogden syndrome phenotype (39). Further,
de novo missense mutations in hNAA10 were identified and
suggested to be involved in two unrelated individuals with global
developmental delays (40).

We hypothesize that the hemizygous hypomorphic muta-
tion in male infants with Ogden syndrome leads to decreased
Nt-acetylation of key substrates important for the control and
regulation of physiological processes dysregulated in Ogden
syndrome. Here, we present the first evidence showing that im-
paired NatA-S37P complex formation and catalytic capacity of
the human proteins leads to reduced in vivo Nt-acetylation of a
subset of proteins in cells from an Ogden syndrome family.

Results
The hNaa10-S37P mutation affects the structure and
dynamics of a human NatA structural model

In order to investigate the structural effects of the Ogden syn-
drome hNaa10-S37P mutation, we generated and simulated
structural models of both the wild-type human NatA complex
and the S37P mutant. Homology models were built based on the
recently determined crystal structure of the NatA complex from
S. pombe (23). As calculated by BLAST, the human and S. pombe
Naa15 sequences share 39% identity and 57% similarity, and the
human and S. pombe Naa10 sequences share 66% identity and
81%similarity (SupplementaryMaterial, Fig. S1). Further, bothmu-
tant andWTNatAmodels complexedwithAc-CoAwere each sub-
jected to two independent 100 ns-long molecular dynamics (MD)
simulations (Supplementary Material, Fig. S2). The resulting
model of the WT complex is shown in Figure 1A–C. We observed
that the S37P mutation shortens helix α2 of hNaa10 (Fig. 1D).

Similarly to what has been observed in the S. pombe complex
(23), interactions between subunits of the human complex in-
volve numerous hydrophobic contacts via helices α1 and α2 of
hNaa10 and helices 25, 27, 28, 29 and 30 of hNaa15 (Fig. 1C).
Free energy decomposition analysis using the molecular
mechanics (MM)/Poisson Boltzman surface area (PBSA) scheme
shows that these amino acids contribute significantly to the
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free energy of binding, but are not affected by the S37P mutation
(Supplementary Material, Fig. S3). The complex is also stabilized
by three hydrogen-bonding networks represented in Figure 1B.
Amino acids involved in the three hydrogen bond networks at
the hNaa10–hNaa15 interface are shown as sticks in orange,
yellow and pink, respectively. In both simulations, the mutation
affects subtly but systematically two of these networks yielding a
slight overall weakening of the interfacial hydrogen-bonding net-
work (Supplementary Material, Table S1).

Comparison of the atomic fluctuations reveals differences in
the flexibility of hNaa10-WT and S37P; the atomic fluctuations
of helix α1 and loop α1–α2 decrease as a consequence of the
S37P mutation of hNaa10 and this is observed in both MD repli-
cates (Fig. 1D; Supplementary Material, Fig. S4).

Interestingly, this region lining the substrate-binding site is
also involved in the hNaa10–hNaa15 interface. Amino acid
Glu24 earlier identified as important for both catalytic activity
and substrate binding (23) also mediates hydrogen bonding

Figure 1. 3D structural models of the human WT and S37P Naa10–Naa15 complex. (A) WT NatA complex containing Naa15 (brown cartoons) and Naa10 (cyan cartoons)

after 100 ns MD simulations. Only helices involved in the most relevant interactions between Naa15 and Naa10 are labeled. A black arrow indicates the mutation point,

serine 37. (B) Amino acids involved in the three hydrogen bond networks at the Naa10–Naa15 interface: The first network (shown in orange) involves basic residues of

Naa10 from the β4-α4 loop (Arg79 and Arg82) and amino acids from helix α23 and loop α24–α25 from Naa15 (Glu409, Asp438 and Asp441). The second network (shown

in yellow) is constituted by acidic residues of the β2–β3 loop of Naa10 (Asp47 and Glu48) and amino acids of the α17 and α19 helices (Arg330 and Arg295) from Naa15.

The third network (shown in pink) involves Glu24 and Asp140 from Naa10, two acidic residues located in the loops bordering the substrate-binding site, and Arg470 in

the α26-α27 loopofNaa15. Ac-CoA is docked in theNaa10 subunit (sticks in CPK color). Note that the position of the side chain of Glu24 is highlymobile, yet it interactswith

Arg470 via hydrogen bondswith occupancyof 0.9 during the simulation (SupplementalMaterial, Table S1). For the sake of overall clarity, we chose a snapshotwhereGlu24

does not interact with Arg470 (C). Amino acids that make hydrophobic contacts at the Naa10–Naa15 interface are shown as blue sticks. Interactions between Naa10 and

Naa15 involve numerous hydrophobic contacts via helix α1 (Pro8, Met12, Leu19, Leu 20 and Pro23) and helix α2 (Met28, Phe32, Tyr33 and Leu36) of the Naa10 subunit and

helices 25, 27, 28, 29 and 30 (Phe443, Met482, Trp486, Phe525, Tyr528 and Leu544) of the Naa15 subunit. (D) Superimposition ofWT (cyan) and S37P (grey) Naa10. The S37P

mutation shortens the α2 helix and modifies the protein flexibility in the two regions highlighted in orange (from N13 to E24 and E48 to E49).

1958 | Human Molecular Genetics, 2015, Vol. 24, No. 7

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu611/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu611/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu611/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu611/-/DC1


with Arg470 of hNaa15 in the WT complex. In addition, in the
mutant, we observe an increase of the flexibility of the β2–β3
loop, which carries Glu48, itself involved in hydrogen bonds
with hNaa15. These alterations of the flexibility are also observed
in independent 20 ns-long simulations of uncomplexed hNaa10-
S37P. Moreover, we earlier reported correlations between the dy-
namics of the α2 helix and the peptide substrate-binding site of
the structurally related hNaa50 (41).

Taken together, the predicted perturbations of the hNaa10–
hNaa15 interactions and changes in the flexibility of key regions
for substrate bindingmay result in impairedNt-acetyltransferase
activity and complex stability of human NatA-S37P.

hNaa10-S37P has impaired peptide substrate binding
and reduced in vitro catalytic activity

In order to study if hNaa10-S37P displays a reduced catalytic ac-
tivity, we assayed hNaa10-WT and hNaa10-S37P by a quantita-
tive in vitro acetylation assay using three different Naa10
oligopeptide substrates represented by the N termini of classical
in vivo human NatA substrates; SMCA4 (STPD-), the RNaseP pro-
tein p30 (AVFA-) (1) and γ-actin (EEEI-), the latter representative
of a very efficient substrate in vitro and a likely posttranslational
target of monomeric hNaa10 in vivo (28). The in vitro acetylation
screen showed a 20–75% reduction in product formation for
hNaa10-S37P dependent on the N-terminal sequence of the sub-
strate oligopeptides tested (Fig. 2A). Further, the Km, kcat and spe-
cificity constants of the two enzymes were determined, both for
the substrate oligopeptides and for Ac-CoA, to directly compare
the catalytic efficiency of hNaa10-WT and hNaa10-S37P and
their specificity for different substrates. The specificity constant
kcat/Km of hNaa10-S37P was calculated to be 4-, 3.5- and 2-fold
lower for the substrates EEEI, STPD and Ac-CoA, respectively,
compared with hNaa10-WT (Fig. 2; Supplementary Material,
Fig. S5). The mutant hNaa10 showed a ∼2-fold increase in Km

for the substrate oligopeptides EEEI and STPD, while no differ-
ence was observed for the Km of Ac-CoA. Taken together, these
data suggest that the S37Pmutation reduces the intrinsic catalyt-
ic activity of hNaa10, likely due to altered peptide substrate bind-
ing or release, while Ac-CoA binding remains unaffected.

X-chromosome skewing supports the role of NAA10
in Ogden syndrome

Female mammals compensate dosage differences of X-chromo-
somal gene products by transcriptional silencing of one of the
two X-chromosomes. This process, called X-chromosome inacti-
vation (XCI), occurs during early development and is transmitted
through subsequent mitosis (42). Although early studies suggest
that the choice forwhichX-chromosome is inactivated is random
(43), later studies on female carriers of specific X-linked muta-
tions showed skewed patterns of XCI resulting from negative se-
lection of cells harboring the lethal allele in the active state (44).
Furthermore, X-chromosome skewing is a common feature of
tumorigenic processes in which an acquired somatic mutation
occurs in a single progenitor cell that subsequently undergoes
clonal expansion and gives rise to progeny with the same XCI
pattern (44, 45).

Therefore, we analyzed Ogden carrier women for their XCI
pattern. First, a classical assay using the androgen receptor was
used to determine the inactivation pattern in B cells from the
Utah family (Fig. 3A). As shown in Figure 3B, the two female
non-carriers show X-inactivation that is within the normal
range, while all carriers have significant skewing. Three of the

four carriers are nearly completely skewed; while the fourth
(II-2) is less skewed (∼90%), although interpretation of this sam-
ple is complicated by alleles that are close in size (resulting
in interference from stutter peaks). To assess the inactivated
NAA10 allele directly, a customized assay was performed. Sup-
plementary Material, Figure S6B shows a representative result
(for carrier woman II2). In all carrier women analyzed, the
affected allele was found to be skewed toward the wild-type
allele. These results support the hypothesis that cells expressing
only the mutant NAA10 allele might be counterselected for (at
least B-cells) due to their decreased fitness or production rate.

Unaffected hNaa10 protein levels and subcellular
localization in B cells and fibroblasts from Ogden males

To determine whether the hNaa10-S37P mutant had an impact
on NatA subunit steady-state protein levels, protein profiles of
EBV-immortalized B-cells were established and investigated for
11 members of the Ogden syndrome family including two
males carrying the mutation and four female heterozygous car-
riers (Fig. 3A). Western blotting with specific NAT-antibodies de-
monstrated only minor mutation-correlated alterations in the
steady-state protein levels of hNaa10 itself, the auxiliary subunit
hNaa15 (21) or the physically associated hNaa50 (24) (Fig. 3C).
These results and data from fibroblasts below suggest that the
hNaa10-S37P mutation does not significantly alter protein levels
of hNaa10 or other NatA components.

Primary fibroblasts isolated from one of the Ogden-affected
males (III-6) and control BJ fibroblasts were immortalized in parallel
by ectopically expressing the catalytic subunit of human telomer-
ase (hTERT) (46,47). These are referred to as WT-hTERT for the
BJ control cells and S37P-hTERT for the hNaa10-S37P-expressing
cells (III-6 cells). A subcellular localization study of hNaa10 and
hNaa15 by immunofluorescence demonstrated a similar and pre-
dominant cytoplasmic staining pattern for both WT and mutant
protein and no obvious localization differences between WT- and
S37P-hTERT were observed (Fig. 3D). Thus, neither the levels nor
the subcellular localization of hNaa10 appear to be affected by the
S37P mutation.

Ogden syndrome fibroblasts display altered proliferation,
growth and migration

We further performed phenotypic analyses of the Naa10-S37P
cells. S37P-hTERT cells displayed a significantly increased cell
size compared with the control cell line (Fig. 4A). In dense cul-
tures, it was also evident that S37P-hTERT cells packed different-
ly compared with control cells and started to grow on top of each
other (Fig. 4B). In analogy to cancer cell lines, these findings sug-
gest a partial loss of cell-to-cell contact inhibition when they
reach confluence. These data are supported by cell cycle analyses
(fluorescence-activated cell sorting, FACS) that show that at least
9% of S37P-hTERT cells continue to proliferatewhen in dense cul-
ture, while WT-hTERT cells enter the G0 phase (Supplementary
Material, Fig. S7). The migration capacity was assessed by a
wound-healing assay where cells were inspected every 15 min
for a total of 48 h (Fig. 4C; Supplementary Material, Fig. S8).
S37P-hTERT cells were impaired in their motility both in normal
growth medium and particularly when culturing cells in poor
medium (medium lacking either serum or -glutamine). Import-
antly, when overexpressing hNaa10-WT in S37P-hTERT cells, a
partially rescuedmigration potentialwas observed. Furthermore,
cell proliferation assayswith cells seeded at different densities all
showed a significantly reduced growth rate for S37P-hTERT cells
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when compared with WT-hTERT cells (Fig. 4D). Notably, de-
creased growth rate and proliferation of Ogden cells were also
confirmed for primary WT and Ogden S37P fibroblasts (III-6; Sup-
plementary Material, Fig. S9). AWST-8 viability assay (Fig. 4E) de-
monstrated that the S37P-hTERT cells were less viable when
cultured dispersed (1000 cells perwell in a 96-well tray). However,
the WST-8 assay also revealed that the S37P-hTERT cells were
metabolically more active when kept in a dense culture. Selected
markers for pathways linked to Naa10’s function revealed that
Ogden syndrome fibroblasts have higher levels of Retinoblast-
oma 1 (Rb1), a known negative regulator of the cell cycle
(Fig. 4F) (48–50). Myosin light chain kinase (MYLK), and thereby
cell motility, was previously shown to be positively regulated by
hNaa10 by a direct interaction (51). Here, we were not able to
demonstrate an interaction between hNaa10 and MYLK in either
WT- or S37P-hTERT cells (Supplementary Material, Fig. S10). Rb1
was previously found to be affected in specific thyroid cancer cells
upon hNAA10 depletion (52). Other pathways, including cyclin D1/
β-catenin, TSC2/mTOR/pS6K1 and β-PIX (ARHGEF7) (53–55) did not
appear to be perturbed in S37P-hTERT cells (Fig. 4F; Supplementary
Material, Fig. S10). Summarizing this part, Ogden syndrome fibro-
blastsdisplayanalteredmorphology, growthandmigrationpattern
and are more sensitive towards stressed conditions, a phenotype
that was partially rescued upon overexpressing hNaa10-WT in
S37P-hTERT cells (Fig. 4C).

hNaa10-S37P impairs NatA complex formation
and intrinsic NatA catalytic activity

The structural modeling and MD simulations suggested that
NatA (hNaa10–hNaa15) complex formation could be negatively
affected by the hNaa10-S37P mutant. This was investigated by

co-expression of hNaa15-myc and hNaa10-V5 or hNaa10-S37P-
V5 followed by co-immunoprecipitation from HEK293 cells.
It was evident that NatA complex formation was impaired when
expressing hNaa10-S37P-V5 when compared with hNaa10-V5
(Fig. 5A). This finding was confirmed in co-immunoprecipitation
studies detecting endogenous proteins (Fig. 5B, left panel). We
also showed that complex formation of hNaa10 with hNaa50
was reduced in the context of NatA-S37P mutant (Fig. 5B, right
panel). In order to study complex formation of endogenous NatA
and NatA-S37P complexes, lysates of WT- and S37P-hTERT cells
were subjected to immunoprecipitation using anti-hNaa10 or
anti-hNaa15. The NatA complex was detectable in both cell
types, but the ability of hNaa10-S37P to interact with hNaa15
was significantly reduced (Fig. 5C). As the in vitro kinetic studies
suggested that hNaa10-S37P is catalytically impaired, we also as-
sessed the in vitroNAT activity of the endogenous hNaa10 in com-
plex with hNaa15. NatA complexes were immunoprecipitated
from WT- and S37P-hTERT cell lysates, and the absolute catalytic
activity of NatA-S37P was measured. As expected, NatA-S37P ac-
tivity towards the SESS-starting substrate oligopeptidewas signifi-
cantly reduced when compared with NatA-WT when correlating
the amount of hNaa15 present in each sample (NAT activity per
hNaa15 molecule; Fig. 5D, left). When correlating the amount of
hNaa10 (NAT activity per hNaa10 molecule; Fig. 5D, right) an
∼10-fold reduction was measured. Combined, these results sug-
gest that hNaa10-S37P is partially defective in both its ability to
bind hNaa15 and in its catalytic activity.

Reduced protein N-terminal acetylation levels in B cells
and fibroblasts derived frommaleswithOgden syndrome

N-Terminal-combined fractional diagonal chromatography
(COFRADIC) has previously been used to quantify the degree

Figure 2. In vitro NAT-activity and kinetic parameters of hNaa10-WT and hNaa10-S37P. (A) NAT activity of the recombinant MBP-hNaa10-WT and MBP-hNaa10-S37P for

oligopeptides EEEI, STPD and AVFA. Purified MBP-hNaa10-WT/S37P was incubated with 2 m peptide and 500 µ Ac-CoA for 10 min, and the reaction was stopped by

adding TFA to a final concentration of 1%. Product formation was quantified by RP-HPLC, P < 0.001 (B) Apparent Km values of MBP-hNaa10-WT/S37P for the synthetic

oligopeptides EEEI (P < 0.01), STPD (P < 0.01) and for Ac-CoA. Purified MBP-hNaa10-WT/S37P was incubated with varying concentrations of either peptide or Ac-CoA in

acetylation buffer for 10 min at 37°C. The Km and kcat were determined with the software GraFit7 (C) Summary of the Km and kcat/Km values of MBP-hNaa10-WT/S37P

for oligopeptides EEEI, STPD and for Ac-CoA.
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and define the patterns of in vivo protein Nt-acetylation (1,5,56)
and was here used to investigate whether patient cells derived
from affected males or female carriers displayed altered levels
of protein Nt-acetylation at the proteome-wide level. By in vitro
labeling with 13C2D3-acetylation, all Nt-free amines are modified
with an 13C2D3 acetate moiety, allowing us to distinguish be-
tween in vivo Nt-acetylated and primary protein N termini and
to quantify the degree of Nt-acetylation (57). Overall, 2624
human N termini derived from 2346 human proteins were iden-
tified in all B-cell samples analyzed (Supplementary Material,
Tables S2 and S3). Of these 2624 N termini, 2067 started at Pos-
ition 1 or 2 (1970 proteins), while 557 had a start position beyond
protein Position 2 (510 proteins). The latter N termini are indica-
tive of alternative translation initiation events (58,59). Four hun-
dred and seventy-two of all N terminiwere identified in all setups
analyzed (18% of all identified protein N termini).

Comparing the Nt-acetylomes of Ogden syndrome male III-4
and his brother III-2 (hNaa10-WT) allowed us to identify differ-
ences in the degree of Nt-acetylation of 1066 N termini. Here,
the hNaa10-S37P mutation resulted in a reduced degree of
in vivo Nt-acetylation of a subset of N termini; 30 N termini
(3% of all N termini) displayed a difference of 10% or more in
their degree of Nt-acetylation (Supplementary Material, Tables
S2–S5), while the degree of Nt-acetylation remained essentially

unaltered when comparing Nt-acetylomes of carriers and WT
samples (see Supplementary Material, Fig. S11 for a correlation
of all family members with a healthy hNaa10-WT brother (III-2)
of an Ogden syndrome male).

Representative MS-spectra of a classical NatA-type substrate,
an Ala-starting N-terminal peptide from the translational activa-
tor GCN1 (A2ADTQVSETLKR13) (Fig. 6A) and of a possible NatE
substrate, the Met-Leu-starting N-terminal peptide of the Kine-
sin-like protein (M1LGAPDESSVR11) (Fig. 6B), are shown for an
Ogden syndrome male (III-4, hNaa10-S37P) and his brother
(III-2, hNaa10-WT) and a reduced degree of Nt-acetylation is
in both cases clearly visible (Supplementary Material, Fig. S11
and Tables S2–S4; Table 1). These peptides were found to be Nt-
acetylated between 50 and 54% in the proteomes of B cells de-
rived from two males with Ogden syndrome in comparison
with 77–86% in the proteomes of unaffected individuals, thus
showing a reduced degree of Nt-acetylation of 28 and 25% on
average, respectively (Supplementary Material, Table S2). Fig-
ure 6C shows representative scatter plots displaying the correl-
ation of the degrees of Nt-acetylation of all determined and
commonly identified N termini in the N-terminal proteomes of
an Ogden syndrome male (III-4, hNaa10-S37P) and his brother
(III-2, hNaa10-WT) (left panel), and the brother (III-2, hNaa10-
WT) and his mother (II-2, carrier of hNaa10-S37P) (right panel).

Figure 3. X-chromosome skewing among female carriers and hNaa10-S37P protein parameters in patient-derived cells. (A) The pedigree of the Ogden syndrome family.

hNaa10-WT familymembers indicated with green squares formale individuals and blue circle for female individuals. Infant males with S37P indicated with a red square

and healthy women carriers of the S37P mutation indicated with a pink circle. *, presumed to have the mutation. (B) X-chromosome inactivation assay. Classical X-

chromosome inactivation analysis using exon 1 of human androgen receptor locus. Shown is the quantitative evaluation of the XCI pattern for six members of the

Utah family. An inactivation pattern of >90% is considered to be skewed. All females from the Ogden syndrome family have been tested for X-inactivation at least

twice. (C) Immortalized B cells from family members were lysed and analyzed by SDS–PAGE and western blotting using anti-hNaa10, anti-hNaa15 or anti-hNaa50

antibodies. Anti-β-tubulin was used as control for equal protein loading. The levels of hNaa10, hNaa15 and hNaa50 were quantitated by densitometry analysis

(ImageJ) where each band of hNaa10/hNaa15/hNaa50 was corrected to its corresponding β-tubulin level and further normalized to the other samples where the mean

value of all WT samples was set to 1.0. (D) Confocal micrographs (×67 magnification) of hTERT-transduced fibroblasts; WT-hTERT (BJ-hTERT), S37P-hTERT stained

with anti-hNaa10 (red) or anti-hNaa15 (green) and counter-stained with Alexa Fluor 594 or Alexa Fluor 488 secondary antibody. Images shown are representative of at

least 50 observed cells.
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Figure 4. Altered size, morphology, growth rate andmigration capacity of S37P-hTERT fibroblasts cells. (A) Live imaging (10×) ofWT-hTERT (hNaa10-WT) and S37P-hTERT

(hNaa10-S37P) cells with cell size measurements of 100 cells of each type. The cell size is indicated in micrometer squared and the difference between WT- and S37P-

hTERT was statistically significant (P < 0.001, Student’s t-test). (B) Live imaging (10×) of dense WT- and S37P-hTERT cultures demonstrating cell packing. Upper panel:

nine overlapping live cell images of WT- or S37P-hTERT; lower panel: zoom-in on delineated field. (C) Wound-healing experiment where cell migration of WT- and

S37P-hTERT was monitored every 15 min for 48 h. S37P-hTERT cells were transfected with pcDNA3.1-V5 vector (S37P-hTERT+Ctr-V5) or pcDNA3.1-Naa10-WT-V5

(S37P-hTERT+Naa10 WT-V5). Total number of cells migrating in the wound as indicated showed a statistically significant difference between WT- and S37P-hTERT

cells (P < 0.0001, Student’s t-test) as well as between S37P-hTERT+Ctr-V5 and Naa10-S37P+Naa10 WT-V5 cells (P < 0.0001, Student’s t-test). (D) Proliferation assay with

cells seeded at Day 1 and counted 1 week later. (E) WT- and S37P-hTERT cells were seeded dispersed (1000 cells) and dense (5000 and 10 000 cells) per well in a 96-well

tray and incubated for 16 h, before being subjected to cell viability/metabolic activity assay (WST-8). (F) WT- and S37P-hTERT protein lysates analyzed bywestern blotting

using anti-Rb, anti-pS6K1, anti-cyclin D1, anti-cyclin E2, anti-p27, anti-p21, anti-hNaa10 and anti-hNaa15. β-Tubulin and GAPDHwere used as a control for equal protein

loading.
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Further, all affected N-termini display a reduced degree of Nt-
acetylation in the proteomes of B cells derived from males with
Ogden syndrome when compared with unaffected individuals.
Overall, N-terminomics demonstrated reduced N-terminal
acetylation of classical NatA-type substrates, as well as some
NatE-type substrates for Ogden syndrome affected individuals.

Differential N-terminal COFRADIC analyses were also per-
formed to check the protein Nt-acetylation states in fibroblasts
carrying the S37P mutation. WT, WT-hTERT, S37P and S37P-
hTERT fibroblasts were stable-isotope labeling by amino acids
in cell culture (SILAC) labeled and their N-terminomeswere com-
pared, assaying the corresponding wild-type and mutant cell
lines alongside. The distribution of N-terminal peptides based
on their Nt-acetylation status and their known/predicted Nat-
substrate class in the proteomes of these fibroblasts is shown in

Figure 7A. The overall degree of Nt-acetylation (82%) and the Nat-
type distribution of identified protein N termini in the fibroblast
proteomes showed a clear resemblance to the B-cell proteomes
(Supplementary Material, Table S2) as well as to earlier studies
in human cancer cells (1,5). About 57% of the N-terminome con-
sists of typical NatA-type peptides, 20% NatB substrates, 5%
NatC/NatE or NatF substrates, while 18% was Nt-free (Fig. 7A).
The latter group included peptides with Pro at Position 1 or 2,
known as Nt-free N termini (3), and additionally hold N termini
from other Nat-type classes with <2% Nt-acetylation in vivo. As
for the B cells, N-terminal proteomics revealed a reduced
N-terminal acetylation of classical/predicted NatA-type sub-
strates, both in primary and hTERT-immortalized S37P fibro-
blasts (Fig. 7A–E and Table 1; Supplementary Material, Tables
S6 and S7). Representative MS-spectra of N-termini displaying

Figure 5. Reduced human NatA complex formation and catalytic activity of hNaa10-S37P. (A) HEK293 cells were transiently transfected with hNaa10-V5 and hNaa15-Myc

encoding plasmids and hNaa10-V5 or hNaa15-Myc was immunoprecipitated using anti-V5 or anti-Myc antibodies, respectively (upper panel). Loading and transfection

controls are shown in the lower panel. ** and *, respectively, indicate heavy and light chain of precipitating antibody. GAPDH levels indicate equal input. (B) Co-
immunoprecipitation of transfected HEK293 cells with endogenous Naa15 (left) or Naa50 (right). ** heavy and * light chain of precipitating antibody. (C) Endogenous
hNatA was immunoprecipitated from WT- and S37P-hTERT fibroblasts using either anti-hNaa10 or anti-hNaa15 and analyzed by western blotting using anti-hNaa15

or anti-hNaa10. β-Tubulin levels indicate equal input. Lysates (Lanes 1 and 2) show equal amount of the hNaa10 and hNaa15 proteins at the start. (D) hNatA and

hNatA-S37P was immunoprecipitated from WT- and S37P-hTERT cell lines, respectively, with anti-hNaa15 and used for NAT-activity measurements towards the

substrate polypeptide SESS. The amount of hNaa10 and hNaa15 present in each sample was determined by western blotting and densitometry analysis by the use of

ImageLab v3.0. Activity measurements were correlated to band intensities to show relative product formation (activity) per hNaa10 or hNaa15 molecule present in

each sample. hNatA activity was set to 1 and hNatA S37P activity was calculated relative to this. All data shown are representative of three independent experiments.
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Figure 6. Impaired in vivoNt-acetylation in B cells fromOgden syndrome patients. N-Terminal- COFRADIC was used to enrich protein N termini and quantify their degree

of in vivo proteinNt-acetylation. (A) RepresentativeMS-spectra of anAla-starting N-terminal peptide (classical NatA-type substrate), here the translational activator GCN1

(A2ADTQVSETLKR13) and (B) the ML-starting N-terminal peptides (NatE substrate), of the Kinesin-like protein (M1LGAPDESSVR11) are shown for an Ogden syndromemale

(III-4, hNaa10-S37P), left panel and his brother (III-2, hNaa10-WT), right panel, respectively. (C) Representative scatter plots displaying the correlation of the degrees of Nt-

acetylation of all N termini identified in the N-terminal proteomes of patient III-3 (brother, hNaa10-WT) and III-4 (proband, hNaa10-S37P), left panel and patient III-2

(brother, hNaa10-WT) and II-2 (mother, carrier of hNaa10-S37P), right panel.
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an ∼30 or ∼40% difference in their Nt-acetylation status in S37P
cells when compared with control WT primary cells as well as
hTERT cells are shown for the Ser-starting dolichyl-diphosphoo-
ligosaccharide-protein glycosyltransferase subunit (DAD1) and
the Ala-starting mitochondrial ribosomal protein L15 (MRPL15)
(Fig. 7B–E). Nomajor differences in Nt-acetylation levels were ob-
served between primary and hTERT-immortalized cells (Supple-
mentary Material, Table S6).

Overall, in B cells as well as in fibroblasts, a fraction of the
N-terminal acetylome was affected by the hNaa10-S37P muta-
tion, and the affected N termini mostly represented classical
NatA substrates and some putative NatE substrates (Figs 6 and
7 and Table 1; Supplementary Material, Table S4), the latter

consistent with the reduced hNaa10 interaction demonstrated
above with hNaa50 (Fig. 5).

Characterization of hNaa10-S37P-affected Nt-acetylation
substrates, including THOC7

In order to determine whether the substrates affected in their
Nt-acetylation status in hNaa10-S37P cells depended on their
Nt-acetylation for protein stability, we selected seven substrates
for in-depth investigation: THO complex subunit seven homolog
(THOC7), SUMO-activating enzyme subunit 1 (SAE1), transcrip-
tion elongation factor B polypeptide 3 (ELOA1), 60S ribosomal pro-
tein L13a (RL13A), OTU domain-containing protein 7B (OTU7B),

Table 1. Overview of N termini less acetylated in Naa10-S37P B-cells, fibroblasts and siNatA HeLa cells

NAT
type

P1′a P1–P5b S37P
B-cells

S37P
fibroblasts

siNatA
(HeLa)

Accession Protein description

NatA M AAADA √ NI NI Q9H9B1 Histone-lysine N-methyltransferase EHMT1 (EHMT1)
NatA M AAAEE √ √ NI Q99942 E3 ubiquitin-protein ligase RNF5 (RNF5)
NatA M AAAQE √ √ NI O96005 Cleft lip and palate transmembrane protein 1 (CLPT1)
NatA M AADTQ √ √ √ Q92616 Translational activator GCN1 (GCN1L)
NatA M AAESA √ √ √ Q14241 Transcription elongation factor B polypeptide 3 (ELOA1)
NatA M AAGGG √ √ NI Q5VT52 Regulation of nuclear pre-mRNA domain-containing protein

2 (RPRD2)
NatA M AEVQV √ √ √ P40429 60S RL13A
NatA M AGGGA NI √ NI Q13637 Ras-related protein Rab-32 (RAB32)
NatA M AGPLQ √ √ NI Q9P015 39S ribosomal protein L15, mitochondrial (RM15/MRPL15)
NatA M AIKSI NI √ NI Q9Y2C4 Nuclease EXOG, mitochondrial (EXOG)
NatA M ALDGP √ √ NI P62195 26S protease regulatory subunit 8 (PRS8)
NatA M AQPGT √ NI NI Q8NEF9 Serum response factor-binding protein 1 (SRFB1)
NatA M ASAGS NI √ NI Q9BQJ4 Transmembrane protein 47 (TMM47)
NatA M AVEDE √ √ NI Q14644 Ras GTPase-activating protein 3 (RASA3)
NatA M AVFAD √ √ √ P78346 Ribonuclease P protein subunit p30 (RPP30)
NatA M AVKVQ NI √ NI O75746 Calcium-binding mitochondrial carrier protein Aralar1

(CMC1)
NatA M GAAAA NI √ NI Q9Y580 RNA-binding protein 7 (RBM7)
NatA M GAVTD √ √ NI Q6I9Y2 THO complex subunit 7 homolog (THOC7)
NatA M GEQPI √ NI NI Q86YM7 Homer protein homolog 1 (HOME1)
NatA M SASVV √ √ NI P61803 Dolichyl-diphosphooligosaccharide-protein

glycosyltransferase subunit DAD1 (DAD1)
NatA M SEGDS NI √ NI O15258 Protein RER1 (RER1)
NatA M SGFLE √ √ NI O95807 Transmembrane protein 50A (TM50A)
NatA M TAQGG √ √ NI Q5J8M3 Transmembrane protein 85 (TMM85)
NatA M TKAGS √ √ NI Q96AG4 Leucine-rich repeat-containing protein 59 (LRC59)
NatA M TKVAE √ NI NI Q13206 Probable ATP-dependent RNA helicase DDX10 (DDX10)
NatA M TMDAL √ NI NI Q86XL3 Ankyrin repeat and LEM domain-containing protein 2

(ANKL2)
NatA M TMDKS √ √ NI P31946 14-3-3 protein β/α (1433B)
NatA M VEKEE √ √ √ Q9UBE0 SAE1
NatA M VEQGD √ NI NI A4D1U4 Protein LCHN (LCHN)
NatA M VEYVL √ NI NI Q8TB72 Pumilio homolog 2 (PUM2)
NatA M VNPTV √ √ √ P62937 Peptidyl-prolyl cis–trans isomerase A (PPIA)
NatA M VTMEE √ NI NI Q13115 Dual specificity protein phosphatase 4 (DUS4)
NatEc – MLEAM √ NI NI Q9BUL5 PHD finger protein 23 (PHF23)
NatEc – MLGAP √ NI NA Q7Z4S6 Kinesin-like protein KIF21A (KI21A)
NatEc – MLSPE √ NI NI Q9NUG6 p53 and DNA damage-regulated protein 1 (PDRG1)
NatEc – MMDPC √ NI NI Q8N8R7 Uncharacterized protein C11orf46 (CK046)
NatEc – MVEKE √ √ NA Q9UBE0 SAE1
NatEc – MVNPT √ √ NI P62937 Peptidyl-prolyl cis–trans isomerase A (PPIA)
NatEc – MVTEQ √ √ NI Q9BU89 Deoxyhypusine hydroxylase (DOHH)

aiMet cleaved off prior to Nt-acetylation.
bFirst five amino acids of the acetylated peptide.
cPutative NatE substrate.

NI, respective N termini were not identified; NA: respective N termini were identified, but not affected under the conditions assayed.
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DAD1 and MRPL15. It is well known that mutating the second
residue in a protein to proline inhibits Nt-acetylation by the
NATs (28,60). Therefore, these candidates and their Pro mutant
versions were expressed and investigated by western blotting to
probe their steady-state protein levels. None of themutant (non-
acetylated) proteins displayed a significant differencewhen com-
pared with their wild-type variants except for THOC7 that
showed significantly lower levels when expressed as an Nt-free,
proline mutant. To verify these findings, the cDNAs of THOC7
(Fig. 8A) and SAE1 (Fig. 8B) were modified as follows; the codons
for the second residue, respectively, encoding Gly (for THOC7) or
Val (for SAE1) were replaced by an Ser, Pro, Val or Asp to promote
full NatA- (4) (Ser-) or full NatB- (Asp-) dependent Nt-acetylation
of the amino-terminus, to prevent Nt-acetylation (61) (Pro-) or to

promote partial Nt-acetylation of the amino-terminus (6) (Val-).
Furthermore, their degree of Nt-acetylation was determined
using in-gel stable-isotope labeling (ISIL) followed by in gel-diges-
tion and mass spectrometric analysis (62). In line with what was
expected, the N termini of THOC7-WT (96%), THOC7-G2V (21%)
and SAE1-WT (19%) were found to be partially Nt-acetylated,
while THOC7-G2S, THOC7-G2D and SAE1-V2S were fully
Nt-acetylated and the G2P variants were Nt-free (Fig. 8). Of note
here is that only SAE1 variants with their iMet removed were de-
tected in the setups analyzed. Overall, no notable differences in
the steady-state, synthesis and degradation levels could be ob-
served for the N-terminal SAE1 variants, while the THOC7-G2P
and G2V variants displayed a decreased protein stability which
was rescued upon proteasomal inhibition (Fig. 8A).

Figure 7. Effect of the hNaa10-S37Pmutation in fibroblasts on specific subgroups of the Nt-acetylome and on theNt-acetylation of individual proteins. (A) The distribution

of N-terminal sequences according to Nt-acetylation status and NAT-type groups in the proteome of WT cells. The highlighted pie parts represent peptides with a ≥10%
Nt-acetylation shift in S37P cells when compared with WT. (B) A representative MS spectrum of the N terminus of dolichyl-diphosphooligosaccharide-protein

glycosyltransferase subunit (DAD1) in primary fibroblast WT cells and primary fibroblast S37P cells, while (C) shows the DAD1 MS spectrum in WT- and S37P-hTERT

fibroblasts. (D) A representative MS spectrum of the 39S ribosomal protein L15 (MRPL15) in WT and S37P fibroblasts and (E) shows a typical MS spectrum of RM15 in

WT- and S37P-hTERT fibroblasts.
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To further unravel if Nt-acetylation of THOC7 affects the pro-
tein’s half-life, THOC7-V5/His variants were expressed in un-
treated and siNatA-treated A431 cells and a cycloheximide
chasewas performed. THOC7 variants were immunoprecipitated
using anti-V5 antibody and their degree of Nt-acetylation deter-
mined (Fig. 9A and B) (30,62). When silencing NatA (siNatA), the
difference in protein half-life (t1/2) increased by over 1.5-fold
when comparing the THOC7-G2S and THOC7-WT chases.
THOC7-G2S was fully Nt-acetylated in both setups while
THOC7-WT Nt-acetylation drops from 96 to only 50% upon siNa-
tA treatment. In fact, THOC7-WT showed a decrease in t1/2 in the
siNatA setup and approached the t1/2 of free THOC7-G2P, indicat-
ing that a reduced degree of Nt-acetylation of THOC7, and not the
N-terminal mutation introduced, is linked to the decrease in
THOC7 protein half-life (Fig. 9A). Quantification of the CHX
pulse-chase data revealed a decreasing protein stability for
THOC7-G2D > G2S >WT > G2P > G2V (Fig. 9B). Figure 9C shows
the sihNaa10 and sihNaa15 (siNatA) knockdown efficiency in
A431 cells and revealed an NatA knockdown efficiency of ≥95%.
Representative MS and MS/MS spectra for the Nt-acetylated sta-
tus of THOC7-WT in siCtrl versus siNatA-treated knockdown
A431 cells are shown in Figure 9D.

Discussion
Ogden syndrome is a genetic disorder with a wide variety of se-
vere phenotypes and ultimately leads to mortality during in-
fancy in males. The syndrome is associated thus far in two
families with a single point mutation in hNAA10 creating an
S37P substitution in the resulting protein. X-chromosome skew-
ing analyses in the carrier women demonstrates skewing, con-
sistent with either a production or an elimination defect for
lymphocytes expressing the X-chromosome with the mutation
in hNAA10. Consistent with this result, cell proliferation assays
showed that both primary and TERT-immortalized hemizygous

S37P-hTERT cells derived from one of the male infants have a re-
duced growth rate compared with standard control cells. One
caveat is that these cell lineswere non-isogenic, and as such gen-
etic background differences could contribute to the different
growth rates observed between these two fibroblast cell lines.
However, the altered growth rate is in agreement with several
studies in cancer cells demonstrating that loss of NatA or
hNaa10 affects cell proliferation via several different pathways
(35). One of these pathways, the Rb1-pathway, was also found
to be affected in the S37P-hTERT cells and could be a contributing
factor to the abnormal growth observed. On the other hand, the
effect of hNaa10 on cyclin D1 expression (55) as well as the inter-
action with TSC2 (53), both observed in cancer cells, was not af-
fected in the Ogden syndrome fibroblasts. In contrast to the cell
proliferation studies, viability assays demonstrated that S37P-
hTERT cells have increased cellular metabolism when kept at
high cell densities. When cultivated in dense cultures, S37P-
hTERT cells appeared to grow on top of each other and in a
less-polarized and more disorganized cell-sheets when com-
pared with wild-type cells, a growth pattern reminiscent to the
growth pattern of cancer cells for which cell–cell contact inhib-
ition is lost (63,64). In agreement with this observation, we ob-
served that a substantial fraction of the S37P-hTERT cells did
not enter the G0 phasewhen kept at a high density while control
cells were predominantly in the G0 phase. The very first study on
Naa10 in yeast reported that Naa10 deficient cells are unable to
enter the G0 phase, do not respond to the mating pheromone
α-factor and are unable to sporulatewhichwas attributed to a po-
tential role of Naa10 in switching between the mitotic cell cycle
and different cell fates (31). Also, the fact that S37P-hTERT cells
are more sensitive toward stress agrees with these findings.
Cell cycle arrest is crucial for cell differentiation and determining
cell fate. Failure of cells to enter the stationary phase might lead
to developmental defects as tissue organization is known to re-
quire strict control of cell divisions. This partial inability of

Figure 8. Steady-state expression levels of N-terminal variants of proteins identified as less Nt-acetylated in Naa10-S37P B-cells and fibroblasts. The cDNA of theWT THO

complex subunit seven homolog (THOC7) (A) and the SAE1 (B) were subcloned into a C-terminal V5/His-tag pEF-DEST51 vector and a series of N-terminal mutants were

createdwhere the second amino acidwas replaced by Ser, Pro, Val or Asp and transfected into A431 cells. After 24 h of expression, sampleswere taken of cells treatedwith

either proteasomal inhibitor MG132 or the translation inhibitor cycloheximide (CHX). The tagged proteins were detected by western blotting using anti-V5 antibody and

the degree of Nt-acetylation was assayed by ISIL.
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S37P-hTERT cells to enter G0 phase might contribute to the
developmental defects observed for Ogden syndrome males.

We also observed that S37P-hTERT cells migrate at signifi-
cantly reduced speed compared with wild-type cells, especially
under nutrient-starved conditions. hNaa10 has previously been
shown to negatively regulate cellular motility in cancer cells by
binding and inhibiting the translocation of PIX to the cell migra-
tionmachinery at the plasmamembrane in an acetyltransferase-
independent manner (54). However, we were not able to confirm
the PIX–hNaa10 interaction in either Naa10-WT or Naa10-S37P
fibroblasts. hNaa10 has also been shown to regulate cell motility
by inhibiting MYLK either directly through interaction or indir-
ectly through acetylation of lysine residues on MYLK (51). We
were unable to show a direct interaction between MYLK and
hNaa10 in these fibroblasts. Cellularmotility is critical for normal
development (65) and a functional Naa10 is important as demon-
strated by the partially rescued migration phenotype when over-
expressing Naa10-WT in S37P-hTERT fibroblasts. We thus
suspect that a reduced cell migration capacity in combination
with reduced cell proliferation and loss of correct cell cycle pro-
gression may contribute to the Ogden syndrome at the cellular
level.

Our structuralmodelling data based on theNatA crystal struc-
ture of S. pombe (23) revealed that the hNaa10-S37P mutation re-
sults in shortening of helix α2 thereby introducing changes in the
flexibility of hNaa10 that may decrease its catalytic properties
both in its NatA- or non-complexed form. Further, the changes
in flexibility as well as rearrangement of hydrogen bonds in the
interface between hNaa10 and the auxiliary subunit of the
NatA complex, hNaa15, suggested a reduced NatA-complex sta-
bility. These hypotheses were confirmed by in vitro enzyme as-
says demonstrating a reduced enzymatic activity for both
hNatA-S37P and hNaa10-S37P, likely caused by a reduced sub-
strate peptide binding or release. Immunoprecipitation experi-
ments revealed that NatA-complex formation was clearly
impaired in S37P-hTERT cells. Our recently developed Ogden
syndrome heterologous yeast model also presented data in line
with these findings in terms of a reduced catalytic activity and
a reduced ability to form an NatA complex when co-expressed
with hNaa15 in yeast for hNaa10-S37P (37).

Steady-state protein levels of hNaa10, hNaa15 and hNaa50 in
B cells from various family members including Ogden syndrome
males, carrier females and unaffected individuals revealed no
major differences in protein levels. This indicates that reduced

Figure 9. Reduced Nt-acetylation of THOC7 leads to a decreased protein half-life. (A) THOC7-V5/HIS variants were expressed in untreated and siNatA-treated A431 cells

and a cycloheximide chase was performed for 15 min, 30 min, 1 h, 2 h, 4 h and 6 h. THOC7 variants were detected by means of western blotting using anti-V5 antibodies

and subjected to ISIL in order tomeasure their Nt-acetylation status. Actin was used as control for equal protein loading. In the Y-axis, the value of 100 correspondswith a

protein half-life of 1.5 h for the longest-lived THOC7 variant; THOC7-G2D as determined by densitometric analyses (B) shows the quantification of the protein half-life in

the control cells while (C) shows a western blot to demonstrate efficient knockdown of hNaa10 and hNaa15 (siNatA) in A431 cells using siNatA mediated knockdown.

GAPDH was used as a control for protein loading. A combined CID/HCD MS/MS spectrum of the Nt-acetylated N terminus of THOC7-WT is shown with b and y

fragment ions indicated in (D). The CID spectrum was used for identification of the peptide (G2AVTDDEVIR11) and was acquired during the acquisition of the HCD

spectrum of the same precursor.
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complex formation does not influence the steady-state protein
levels of hNaa10 or hNaa15. In contrast, hNaa10 level seems to
depend on complex formation with hNaa15 in cancer cells lines
(66). Fluorescence microscopy studies demonstrated that the
hNaa10-S37Pmutation did not influence the subcellular localiza-
tion of hNaa10 or hNaa15. Both hNaa10-WT and hNaa10-S37P
were cytosolic, in contrast to what has been described in cancer
and other cell lines previously, where hNaa10 is both localized to
and performs functions in cytosol and nucleus (21). The bulk of
the evidence shows that hNaa10mainly performs cytosolic func-
tions in normal cells, suggesting that Ogden syndrome is caused
by an impaired cytosolic function of hNaa10-S37P, most likely
involving co-translational Nt-acetylation. Indeed, N-terminal
COFRADIC analysis of WT and hNaa10-S37P fibroblasts and
B-cells revealed a significantly reduced degree of Nt-acetylation
of certain NatA/NatE-type substrate N termini in Naa10-S37P
cells. Again, this is in agreement with the abovementioned
Ogden syndrome yeast model; yeast cells expressing mutant
hNatA displayed a reduced degree of Nt-acetylation among a
large group of NatA substrates when compared with yeast
expressing wild-type hNatA (37).

The substantial loss of NatA-complex formation in cells
expressing hNaa10-S37P in addition to the reduced catalytic ac-
tivity toward classical NatA substrates appears sufficient to im-
pact the Nt-acetylome. The impairment of in vivo NAT activity
in hNaa10-S37P cells toward classical NatA substrates is clearly
reflected in the COFRADIC datasets of B cells and fibroblasts
from the Ogden-affected males. Here, mostly, NatA-type sub-
strate N-termini displayed a reduced degree of Nt-acetylation,
which is strongly reminiscent to the observations made in a pre-
viousNatA knockdown study (1). Several of the specificNatA sub-
strates previously identified bymeans of siNatA knockdownwere
also identified here. The in vitro enzyme assays suggest that
hNaa10-S37P has a decreased catalytic activity both for classical
NatA substrates (Ser-, Ala-, etc.) and acidic N termini (Glu-, Asp-),
the latter posttranslationally acetylated by monomeric hNaa10.
However, mainly, classical NatA substrates were found to be af-
fected in their degree of Nt-acetylation in our proteomic analyses
in vivo. Earlier studies have suggested that primarily suboptimal
substrates are affected by NatA or NatB knockdown, leaving the
most preferred substrates unaffected in their Nt-acetylation
states (1,56). Furthermore, as described previously, hNaa10 was
also found in non-polysomal fractions in a monomeric form, in-
dicating that it might function outside the NatA complex (28).
This, together with our finding that the S37P mutation affects
NatA-complex formation, indicating increased monomeric
hNaa10-S37P availability, could counteract hNaa10’s putatively
reduced activity toward acidic N termini. We therefore hypothe-
size that Ogden syndrome ismainly caused by loss of NatA activ-
ity, and not by loss of NatA-independent hNaa10 activities such
as the posttranslational Nt-acetylation of actin (28). A small sub-
set of the affectedN termini in the COFRADIC datasets represents
non-NatA-type substrates and rather hints to NatE substrates.
This is consistent with the immunoprecipitation results showing
that there is less mutant hNaa10 interacting with hNaa15 and
hNaa50 (NatE), although it is not clear if there is direct or indirect
binding of hNaa50 to hNaa15 and/or hNaa10.

Several of the S37P-affected substrate N termini here identi-
fied by means of positional proteomics were chosen for further
in depth analyses as they displayed an overall Nt-acetylation
reduction between 10 and 40%. No observable changes in stea-
dy-state protein levels could be observed for six of the seven can-
didates tested. For THOC7, however, which is a component of the
THO complex (67,68), a multi-protein complex implicated in the

coupling of transcription and mRNA processing, a decrease in
protein half-life could be observed. Here, the observed proteaso-
mal-dependent decrease in protein half-life of THOC7 correlated
with decreased Nt-acetylation, suggesting that the acetyl group
confers stability to THOC7.

In conclusion,wepresent data supporting our hypothesis that
a major contributing factor to Ogden syndrome is loss of Nt-
acetylation of specific NatA- and NatE-type substrates due to re-
duced catalytic activity, reduced NatA-complex formation, and
reduced interaction with hNaa50. Our cellular studies suggest
that S37P-hTERT cells have reduced cell proliferation via perturb-
ation of the Rb1-pathway and are dysregulated in terms of cell–
cell contact inhibition and migration, possibly accounting for
the detrimental effect of hNaa10-S37P observed in males suffer-
ing from Ogden syndrome.

Materials and Methods
Homology modeling

The homology model of the human NatAWT complex was built
withModeller version 9.8 (69) using the NatA complex of S. pombe
as a template. The sequence identity between the target and the
template is ∼67 and 37% for the subunits Naa10 and Naa15, re-
spectively (Supplementary Material, Fig. S1). The NatA-S37P
complex was designed from the human WT NatA model using
SCWRL instead of Modeller, in order to have starting structures
as similar as possible as to avoid bias in comparison between
the wild-type and mutant NatA complex.

MD simulations and trajectory analysis

The systems were prepared and simulated as for hNaa50 and as
described by Grauffel et al. (41), with some differences duemostly
to the size of the systems. Briefly (see details in Supplementary
Material), the complexes were solvated in larger cubic boxes
(120 Å-long edges). We ran long simulations (100 ns) at a tem-
perature of 300 K using the NAMD program (70) and the
CHARMM27 force field (61). The system was subjected to energy
minimization, followed by a gradual heating and by a 1 ns equili-
bration phase during which velocities were reassigned every
picosecond. The production phase consisted of a 100 ns simula-
tion in the NPT ensemble, with a time step of 1 fs. Two simula-
tions (replicas) using a different set of initial velocities were
conducted for each system.

An extensive study of the interactions between the two subu-
nits was conducted by using free energy decompositions and by
monitoring intermolecular hydrogen bonds. All analyses were
performed on the last 80 ns of simulation. They were subse-
quently divided into four windows of 20 ns each. Hydrogen
bonds were defined using a 2.4 Å distance criterion between
hydrogen and acceptor, and a 130° donor–hydrogen–acceptor
angle criterion. For the analysis of atomic fluctuations, the
main 20 ns long analysis windowswere divided into 40windows.
Fluctuations were computed on each of these 500 ps windows
using the corresponding average structure. Fluctuations are con-
sidered different when two ormore consecutive residues have an
increase or decrease of fluctuations >10%. The protocol used to
obtain the energetic contributions of all amino acids to the for-
mation of the complexes is based on the MM/PBSA approach
(71). Briefly, 25 representative conformations are extracted at
regular intervals from 20 ns-long segments of the trajectory.
Van derWaals interactions and non-polar contributions are eval-
uated with CHARMM using Lennard-Jones potential and solvent
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accessible surface area analysis, respectively. Electrostatics is
evaluated using the program UHBD (72). These decompositions
are performed at the backbone/side chain level in order to get
more insights into interactions. The reported binding energies
are averages over eight 20 ns-long segments.

Sample collection

The sample collection for blood (B cells), fibroblasts and cell line
creation was approved by the institutional review board at the
University of Utah. Written informed consent was obtained
from the Ogden syndrome family for all sample collections. Dei-
dentified aliquots of cell lines were distributed for use in the
experiments described.

Materials and antibodies

Antibodies used in this study were anti-hNaa10 (anti-hARD1)
(21), anti-hNaa15 (anti-NATH) (21), anti-hNaa50 (Biogenes, cus-
tom-made rabbit IgG toward amino acid 150–163 of hNaa50), rab-
bit anti-Naa50 (LifeSpan BioSciences, #LS-C81324-100), anti-V5
(Life Technologies; R960-25), anti-Myc (Life Technologies; R950-
25), anti-tuberin (TSC2, Santa Cruz Biotechnologies; sc-893),
anti-β-PIX (ARHGEF7, Santa Cruz Biotechnologies; sc-10932),
anti-MYLK (Santa Cruz Biotechnologies; sc-9452), anti-pS6K1
(phosphoThr389, Cell Signaling; 9234), anti-Rb (Cell Signaling;
9309), anti-Cyclin E2 (Cell Signaling; 4132), anti-p21(p21(SX118)
Cip1, Santa Cruz Biotechnologies; sc-53870), anti-p27 (p27Kip1,
Santa Cruz Biotechnologies; sc-53871, anti-β-tubulin (Sigma-
Aldrich; T5293), anti-GAPDH (Santa Cruz; sc-25778, Abcam; Ab
8245) and anti-actin (Santa Cruz Biotechnologies; SC1615,
Sigma-Aldrich; A2066). The secondary antibodies used for west-
ern blot visualization of the primary antibodies were HRP-linked
sheep anti-mouse, sheep anti-rabbit (GE Healthcare; NXA931),
donkey anti-rabbit (GE Healthcare; NA934V) and mouse anti-
goat (Santa Cruz Biotechnologies; sc-2354) antibodies next to
the infrared dye coupled antibodies; IRDye 800 CW goat anti-
rabbit IgG (Westburg, LI-COR; 926-32211), IRDye 680 CW goat
anti-rabbit IgG (Westburg, LI-COR; 926-32221) or IRDye 680 CW
goat anti-mouse antibody IgG (Westburg, LI-COR; 926-32220)
and IRDye 800 CW goat anti-mouse antibody IgG (Westburg,
LI-COR; 926-32210) as indicated in the figures and method text.

Cell culture, virus production and cell treatment

Primary B cells were isolated fromOgden patients, EBV immorta-
lized at the University of Utah core facility, and cultured in Hy-
Clone Roswell Park Memorial Institute 1640 supplemented with
15% fetal calf serum and 3% -glutamine. Primary BJ cells [Ameri-
can type culture collection (ATCC), CRL-2522], isolated from new-
born male foreskin, primary dermal fibroblasts, neonatal (HDFn;
Life Technologies; C-004-5C) and primary S37P fibroblasts (III-6)
from a skin-punch biopsy, isolated at the University of Utah
were cultured in Eagle’s minimal essential medium (EMEM) sup-
plemented with 10% fetal bovine serum (FBS) and 3% -glutam-
ine. 293T (Phoenix amphotropic, ATCC; CRL-3213) and HeLa
(ATCC; CCL-2) cells were maintained in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10% FBS and 3% -
glutamine. Human A431 cells (epidermoid carcinoma; ATCC;
CRL1555) were cultured in Glutamax-containing DMEM supple-
mented with 10% dialyzed FBS (Invitrogen), 100 units/ml penicil-
lin (Invitrogen) and 100 µg/ml streptomycin (Invitrogen). Cells
were cultured at 37°C in a humidified atmosphere with 5% CO2.

Replication defective virus was produced by transfecting 293T
cells with pMIGR1-hTERT and pCMV-VSVG and harvested 48 h
posttransfection at 500 g for 5 min. The virus suspension was fil-
tered through a 0.45 µm filter before 5 µg/ml protamine sulfate
was added. Primary fibroblasts (BJ and S37P) were infected with
virus representing hTERT for 12 h before supernatant was re-
moved and cells washed with phosphate-buffered saline (PBS)
and culture medium. The cells were cultured for at least 10
days and two cell cultivations before hTERT- (GFP) positive cells
were sorted by FACS by use of FACS Aria.

To inhibit proteasomal-mediated degradation of expressed
proteins, 5 µMG132 (Calbiochem; 4747490) was added to transi-
ently transfected cells for the indicated time-points before lysis.
To inhibit protein synthesis and study stability of expressed
proteins a chase with 50 µg/ml cycloheximide (Sigma-Aldrich;
C6255) was performed for 15 min, 30 min, 1 h, 2 h, 4 h and 6 h.
After drug treatment, cell lysates were prepared and analyzed
by western blotting as described below.

X-chromosome skewing assay

The X-inactivation pattern of female mutation carriers and non-
carriers from the Utah family was determined by analyzing the
methylation sites in the first exon of the humanandrogen receptor
locus as described previously (73). Briefly, genomic DNAwas iso-
lated from leucocytes andPCRwithgene-specific andfluorescently
labeled primers was performed. Digested and undigested products
were analyzed by capillaryelectrophoresis andpeakareaswerede-
termined to quantify the skewing patterns. All experiments were
performed at least in duplicate and results were averaged.

Since this assay is quantitative but does not provide informa-
tion which Naa10 allele is inactivated, an NAA10 mutation-
specific X-inactivation assay was performed. For this assay,
375 ng of genomic DNA from each of four female carriers of the
c.109T > C (p.S37P) mutation and two wild-type females was di-
gested in a 10 µl volume with the methylation-sensitive restric-
tion endonuclease SmaI (New England BioLabs) for 3 h at 25°C,
followed by heat inactivation at 65°C for 30 min. Primers were de-
signed to amplify a 653 bp PCR product that encompassed the
c.109T > C (p.S37P) mutation in exon 2 of NAA10 and an SmaI
site (chrX:153200324-153200329 [hg19]) in an adjacent CpG island
(forward: GCAGCTGACTGCGCCTTCAC; reverse: TCCCTCCAA
GATGGCCAGATG). PCR was performed in a 10 µl volume using
the FailSafe™ PCR System and PreMix J (Epicentre® [an Illumina®

company]) with 2 µl of uncleaned, digested DNA as template. The
reactions were denatured at 94°C for 1 min, then 35 cycles of 94°C
for 15 s, 62°C for 10 s and 72°C for 1 min were performed. Sanger
sequencing of the amplified products was completed using stand-
ard methods. Since the PCR product does not amplify from DNA
that has been cut by SmaI (unmethylated DNA), skewed X-inacti-
vation is seen as apparent loss of heterozygosity of the p.S37P
mutation and other variants within the sequenced amplicon.

Immunoblotting

B cells and fibroblasts were harvested, washed two times in cold
PBS and lysed by incubation in IPH lysis buffer (50 m Tris–HCl,
pH 8.0, 0.5%Nonidet P-40, 5 m EDTA and EDTA-free protease in-
hibitor) on ice for 15 min. Cellular debris was pelleted at 15 700g
for 1 min. Sample-loading buffer was added to the lysate
supernatant and proteins were separated by SDS–PAGE using
Tris-glycine or polyacrylamide Criterion XT‐gels (Bio-Rad). Sub-
sequently, proteins were transferred onto a nitrocellulose or
PVDF membrane. Membranes were blocked with 5% non-fat
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dry-milk (Regilait) or 1 : 1 Tris‐buffered saline and 0.1% Tween‐20
(TBS‐T) Odyssey Blocking solution (LI-COR; 927-40003) before in-
cubation with antibodies as mentioned in Materials and anti-
bodies. Bands were visualized using a ChemiDoc™ XRS+ and
ImageLab v3.0 or Odyssey infrared imaging system (LI-COR).

Immunofluorescence assay

Fibroblasts cultured on coverslips were washed in cytoskeleton
buffer (134 m NaCl, 5 m KCL, 1.1 m Na2HPO2·2H2O, 0.4 m

KH2PO4, 5.5 m glucose, 4 m NaHCO3, 10 m MES, pH 6.1,
2 m EGTA, 2 m MgCl2) and fixed with 4% paraformaldehyde.
Cells were permeabilized in 0.1% Triton X-100 and blocked in
1–10% BSA before the proteins of interest were labeled with the
indicated primary antibodies. Secondary antibodies used were
Alexa Fluor 488 or 594. Micrographs were acquired using a Leica
TCS SP5 multiphoton confocal microscopy. Z-stacks and Z-stack
projections were handled using Fiji Image Processing Software.

Protein expression and purification

Plasmids-encoding recombinant His-tagged MBP-hNaa10-WT
and MBP-hNaa10-S37P were transformed into E. coli BL21 star
(DE3) cells by heat shock transformation, and grown in 200 ml
cultures to an OD600 nm of 0.6. Cell cultures were cooled down to
16°C and protein expressionwas induced byadding 1 m of IPTG.
Cell cultures were incubated for 14 h, harvested in 100 ml pellets
and stored at −20°C. Pellets were dissolved in lysis buffer (50 m

Tris–HCl, pH 7.4, 300 mNaCl, 2 mDTTand EDTA-free protease
inhibitor) and cells lysed in a French press. Cell debris was
removed by centrifugation at 17 000 g at 4°C for 20 min. Recom-
binant proteins were purified by Immobilized Metal Affinity
Chromatography and size-exclusion chromatography (Superdex
200 10/300). Fractions were analyzed by SDS–PAGE, and protein
concentrations determined by OD280 measurements (Nano-
drop1000) and Bradford assay (Bio-Rad).

Quantitative in vitro acetylation assay and determination
of kinetic constants

Purified recombinant MBP-tagged enzymes were mixed with Acet-
yl-CoA (10–500 μ) and synthetic oligopeptides (10–1000 μ) and in-
cubated in acetylation buffer (50 m Tris–HCl, pH 8.5, 1 m EDTA,
10%glycerol) for 10 minat 37°C. Reactionswere stoppedbyaddinga
final concentration of 1% trifluoroacetic acid (TFA) to the mixture.
Peptides were custom-made (Biogenes) to a purity of 80–95%.
All peptides (24-mers) contain seven unique amino acids at their
N-terminus, as these harbor the major substrate determinants
influencingN-terminal acetylation. Thenext 17 amino acids are es-
sentially identical to the ACTH peptide sequence (RWGRPVGRRRR
PVRVYP); however, lysines were replaced by arginines tominimize
any potential interference by Nɛ-acetylation. The following syn-
thetic oligopeptides were used: the N terminus of SMCA4: ([NH2]
STPDPPLRWGRPVGRRRRPVRVYP[OH]), the N terminus of RNaseP
protein p30: ([NH2]AVFADLDRWGRPVGRRRRPVRVYP[OH]) both re-
presenting “classical” in vivo NatA substrates and the N terminus
of γ-actin: ([NH2]EEEIAALRWGRPVGRRRRPVRVYP [OH]).

Immunoprecipitation of hNatA and acetylation assay
from fibroblasts

Approximately 1–3 × 107 fibroblasts were harvested, washed in
cold PBS and lysed by incubation in 500 µl IPH lysis buffer on
ice for 15 min. Cell lysates were centrifuged at 15 700g for 5 min
and the supernatant collected. Fifty microliters of magnetic

Protein A/G-Agarose slurry (Thermo Scientific; 88 803) were
added to the supernatant and incubated for 2 h for pre-clearing
the lysate. The magnetic beads were removed and 15 µg anti-
hNaa15 was added to the supernatant and incubated for 2 h be-
fore 50 µl magnetic Protein A/G-Agarose slurry was added and
incubated for 16 h at 4°C. In each case, the magnetic Protein A/
G-Agarose beads were washed three times in cold lysis buffer
and two times in acetylation buffer. The amount of enzyme pre-
sent in each sample was determined by western blotting and
densitometry analysis by the use of ImageLab v3.0 with anti-
bodies against hNaa10 and hNaa15. Themeasured enzyme activ-
ity was adjusted according to hNaa15-levels or hNaa10-levels
present in the immunoprecipitates.

To analyze the interaction of exogenously expressed hNaa10
and hNaa15, 8 × 105HEK293 cells were seeded in 6-well plates and
incubated at 37°C for 24 h. Cells were transiently transfectedwith
2 µg pcDNA3.1/V5-His hNaa10-WT, pcDNA3.1/V5-His hNaa10-
S37P, pcDNA3.1/Myc-His hNaa15-WT and/or empty control vec-
tors. Cells were lysed 48 h posttransfection in 200 µl lysis buffer
(PBS, 0.2%, v/v, Triton X-100, complete protease inhibitor cocktail
(Roche)). Cellular debris was pelleted at 20 800 g for 10 min at 4°C.
The protein concentration was determined using advanced pro-
tein assay (Cytoskeleton, Inc.) and 600–800 µg total protein was
used for IP. Cell lysates were incubated with 1 µg anti-V5 or anti-
Myc antibody for 1 h under constant agitation at 4°C. Immune
complexes were precipitated with 30 µl 1 : 1 slurry Protein-A seph-
arose (Invitrogen) for 30 min at 4°C. Beads were pelleted by centri-
fugation at 2700 g for 2 min, washed three times with 300 µl lysis
buffer and protein complexes were eluted with 50 µl 2× SDS-sam-
ple buffer and analyzed by SDS–PAGE and western blotting.

Creation of eukaryotic expression plasmids using
gateway cloning

pOTB7 and pCMV-SPORT6 vectors (THOC7: cat n° IRATp970D0486D,
SAE1: cat n° IRATp970D0613D, OTU7B: cat n° IRATp970D03105D;
ELOA1: cat n° IRAUp969E1025D; RL13A: IRAUp969D105D, RZPD Ima-
genes) served as templates to generate attB-flanked PCR products of
WT constructs next to a series of N-terminalmutantswhere the se-
condamino acidwas replaced to Ser, Val, Pro orAsp. These PCRpro-
ductswere suitable for use in aGateway®BP recombination reaction
with a donor vector (pDONR221, Invitrogen; 12536–017) thereby cre-
ating an entry clone. The reverse primers were designed to fuse the
desired PCR products in framewith a C-terminal V5/His-tag. To cre-
ate the expression constructs, the cDNA inserts of the entry clones
were shuttled into the pEF-DEST51 destination vector (Invitrogen;
12285-011) using LR-clonase recombination (Invitrogen; 11791-020)
according to the manufacturer’s instructions. The correctness of
all cDNA sequences generated was confirmed by DNA-sequencing.
All constructswere C-terminally V5-/His tagged. Transient transfec-
tions of A431 cells were performed and cells were treated with the
proteasomal inhibitor MG132 or treated with the translation inhibi-
tor cycloheximide. The tagged proteins were detected by means of
western blotting using anti-V5 antibodies or subjected to immuno-
precipitation coupled to ISIL for downstream mass spectrometry-
based analyses of their Nt-acetylation status (30,62).

Transfection of constructs encoding N-terminal variants
of hNaa10-S37P-affected substrates

A431 cells, seeded 1 day prior to transfection at 12 × 104 cells/well
in a 12-well plate, were transfected for 24 h with 0.8 μg of eukary-
otic expression vector or co-transfected for 24 hwith 0.4 µg of eu-
karyotic expression vector and 0.4 µg pEF/GW-51/lacZ (served as
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an internal control of transfections efficiency) (Invitrogen; 12 285
011) using Fugene HD (Roche; 04 709 705 001) according to the
manufacturer’s instructions. 24 h after transfection, cells were
lysed on plate in 100 µl RIPA lysis buffer (50 m Tris–HCl, pH
7.8, 150 mNaCl, 1%NP-40 and protease inhibitor cocktail tablet;
Roche, 11 697 498 001), subjected to freeze–thaw lysis and centri-
fuged for 10 min at 16 000g. Sample-loading buffer was added to
the lysate supernatant and protein expression was analyzed by
western blotting as described previously.

Immunoprecipitation of overexpressed THOC7 variants

A431 cells were harvested and lysed in RIPA lysis buffer. Anti-V5
Antibody (Invitrogen, R960-25), diluted in PBS (pH 7.4) and 0.01%
Tween-20, was bound to magnetic protein G Dynabeads® beads
(Invitrogen; 1003D) at a ratio of 2 µg antibody per 15 µl beads in
100 µl PBS-Tween for 30 min at room temperature. Unbound anti-
body was removed and the antibody bound beads were washed
with PBS-Tween before addition of the cell lysate. Three hundred
andfiftymicrogramsofprotein lysatewere added to15 µl antibody
bound beads and incubated overnight at 4°C on a rotator. Follow-
ing incubation, three repetitive rounds of supernatant removal
andwashing in PBS-Tweenwere performed. Finally, the immuno-
precipitates were eluted with elution buffer (sample-loading buf-
fer in 50 m Tris–HCl, pH 8.0) by heating for 10 min at 95°C and
analyzed by western blotting and by ISIL followed by in-gel diges-
tion for the determination of their Nt-acetylation states (62).

Determination of the Nt-acetylation status using
ISIL followed by in-gel digestion

siCtrl and siNatA knockdown cell lysates were prepared as de-
scribed above and the samples were analyzed on a 4–16% gradi-
ent XT precast Criterion gel using XT-MOPS buffer (Bio-Rad). Gel
slices corresponding to the molecular weights (∼29 kDa) of the
tagged THOC7 variants (between 25 and 37 kDa) were cut from
the gel and ISIL was performed as described previously (62).
The resulting peptide mixtures were acidified (0.1% formic acid)
and analyzed by LC–MS/MS analysis. Peptide mixtures were in-
troduced into an Ultimate 3000 RSLC nano LC-MS/MS system
(Dionex, Amsterdam, The Netherlands) in-line connected to an
LTQ Orbitrap Velos (Thermo Fisher Scientific, Bremen, Germany)
as described previously (30). When operating the instrument in
Higher Energy Collision Dissociation (HCD), spectra were ac-
quired in the Orbitrap with an effective FWHM resolution >7500
around m/z 400. The extent of Nt-acetylation was calculated
from the peptide ion signals observed in the MS spectra (5).

NatA knockdown and THOC7 transgene expression

siRNA transfections were performed using HiPerFect (Qiagen)
and 20 n si-non-targeting control (Dharmacon; D-001810-10)
or a pool of 10 n sihNAA10 (Dharmacon, SMARTpool siGENOME
NAA10 siRNA; M-009606-00-0005) and 10 n sihNAA15 (custom
oligonucleotide, GGGACCUUUCCUUACUACAdTdT). For the siRNA
transfections, 2.5 × 105 A431 cells were seeded in 6-well plated and
reverse transfected. During the time-course of the experiment, the
pan-caspase inhibitor zVAD-fmk was added to the cells to a final
concentration of 10 µ and replenished after each transfection
step. Cells were re-transfected under the same conditions 48 h
after the first transfection. At 72 h, the cells were transiently trans-
fected for 24 h with the eukaryotic THOC7 expression constructs
using Fugene HD (as described above). At 96 h, cells were subjected

toaCHXchase for 15min, 30min, 1 h, 2 h, 4 hand6 handharvested
(as described above). Cell lysateswere analyzed bywestern blotting.

N-Terminal COFRADIC, LC–MS/MS analysis and data
storage

N-Terminal COFRADIC analyses were performed as described
previously (74). To enable the assignment of in vivoNt-acetylation
events, all primary protein amines were blocked making use of
(stable isotopic encoded) an N-hydroxysuccinimide ester at the
protein level (i.e. NHS ester of 13C2D3). The obtained peptide mix-
tures were introduced into an LC–MS/MS system, the Ultimate
3000 (Dionex, Amsterdam, The Netherlands) in-line connected
to an LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scien-
tific) and LC–MS/MS analysis was performed as described previ-
ously (1,5). The generated MS/MS peak lists were searched with
Mascot using the Mascot Daemon interface (version 2.2.0, Matrix
Science). Searches were performed in the Swiss-Prot database
with taxonomy set to human. 13C2D3-acetylation of lysine side
chains, carbamidomethylation of cysteine and methionine oxi-
dation to methionine-sulfoxide were set as fixed modifications
for the N-terminal COFRADIC analyses. Variable modifications
were 13C2D3-acetylation and acetylation of protein N termini.
Pyroglutamate formation of N-terminal glutamine was addi-
tionally set as a variable modification. For the differential N-ter-
minal COFRADIC analyses performed (fibroblast samples), a 12C6

-arginine versus 13C6
15N4 -arginine quantification option was

additionally selected for identification and quantification, and
carried out using the Mascot Distiller Quantitation Tool (version
2.2.1). Mass tolerance on precursor ions was set to 10 ppm (with
Mascot’s C13 option set to 1) and on fragment ions to 0.5 Da. En-
doproteinase semi-Arg-C/P (Arg-C specificity with arginine–
proline cleavage allowed) was set as enzyme allowing no missed
cleavages. The peptide charge was set to 1+, 2+, 3+ and instru-
ment setting was put to ESI-TRAP. Only peptides that were
ranked 1 and scored above the threshold score, set at 99% confi-
dence, were withheld. Quantification of the degree of Nt-acetyl-
ation was performed as described previously (5). In all cases,
two isotopic envelopes could clearly be distinguished [i.e. those
of the in vivo acetylated (Ac) and in vitro acetylated forms
(13C2D3)]. All data management were done in ms_lims (75).
The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the PRIDE partner repository with
the dataset identifier PXD000551 and 10.6019/PXD000551 and
PRIDE accessions 31944–31957 for the B cells and the dataset
identifier PXD001282 and 10.6019/PXD001282 for the fibroblasts.

Metabolic SILAC of fibroblasts

Primary and immortalized fibroblasts were cultured in MEM
SILAC growth medium supplemented with 10% dialyzed FBS
and either natural 12C6--arginine (Sigma-Aldrich; A8094) for BJ
control cells (WT or WT-hTERT cells) or 13C6

15N4--arginine
(Sigma-Aldrich; 608033) for hNaa10-S37P cells (S37P or S37P-
hTERT cells) at a concentration of 37.8 mg/l (i.e. 30% of the sug-
gested concentration present in EMEM at which arginine to
proline conversion was not detectable for S37P fibroblasts). Cells
were cultured for at least six population doublings (14 days) to en-
sure complete incorporation of the labeled arginine. All free N ter-
mini were in vitro labeled by 13C2D3-acetylation and this labeling
combinedwithdifferential -arginine SILAC allows for the calcula-
tion of the degree of Nt-acetylation and for the relative quantifica-
tion of N-terminal peptides between two samples (5,56,60). Cells
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(1–3 × 107)were lysed in50 m sodiumphosphate (pH7.5), 100 m

NaCl, 1% CHAPS, 0.5 m EDTA and 0.5 × complete protease inhibi-
tor cocktail (Roche) for 15 min one ice and centrifuged for 3 min at
16 000 g at 4°C, protein concentrations measured and equal
amounts of control and S37P cell lysate mixed together before
the lysates were subjected to N-terminal COFRADIC analysis and
LC–MS/MS analysis as previously described (74).

Cell proliferation and WST-8 metabolic activity

The proliferation and cell counting assaywas performed by seed-
ing 65 000WT- and S37P-hTERT fibroblasts into a 6 cmNunc dish
and the cells counted 1 week later. All cell seeding density pro-
liferation assays were performed at least in triplicate. Primary
fibroblasts, 2 × 104, HDFn (hNaa10-WT) and one Ogden boy
(S37P; III-6), at Passage 4 were plated in each well of two 12-well
plates, and left overnight to adhere. The cells were harvested
and counted every day for 7 days.

For the WST-8 assay, WT- and S37P-hTERT fibroblasts were
counted and seeded into 96-well plates with 1000, 5000 or
10 000 cells/well. Cell counting was done with the TC10tm Auto-
mated Cell Counter. Cell medium was changed every 24 h. Five
days later, the cells were incubated with CCVK-1 solution in a
1/100 dilution in cell medium. After 1 h incubation, the absorb-
ancewasmeasured at 450 nmwith an EpochMicroplate Spectro-
photometer. This was done according to the manufacturer’s
instructions (Colometric Cell Viability Kit I, cat.no PK-CA705-
CK04, PromoKine) and absorbance measured at 450 nm with an
Epoch Microplate Spectrophotometer. The increase in cell viabil-
ity was expressed as the ratio of absorbance (S37P-hTERT) versus
absorbance (WT-hTERT) multiplied by 100 [(abs S37P-hTERT/abs
WT-hTERT) × 100]. The absorbance of WT-hTERT was assumed
to represent 100% viability. The data for quantification of the cell
viability of WT- and S37P-hTERT are shown as the mean of at
least three independent experiments, each with at least three
technical replicates for each measurement. The P-values were
calculated using paired t-tests.

BrdU cell proliferation assay of primary fibroblasts

Primary hNaa10-WT fibroblasts (HDFn), 5 × 104 and one Ogden
boy (S37P; III-6) at passage 4 were plated in 12-well plates on
glass coverslips coated withmatrigel (Corning; 354230). Tomeas-
ure BrdU incorporation, the cellswere incubated for 5 hwith BrdU
label (Millipore; QIA58, 1 : 2000) at 46 h after seeding, then fixed
with 3.7% paraformaldehyde for 15 min at room temperature,
washed in PBS, treated with 0.07 NNaOH for 15 min at room tem-
perature, and blocked in 10% goat serum, 1% BSA and 0.3% Triton
X-100 for 15 min at room temperature before staining. The cells
were then stained with a BrdU antibody (1 : 100) for 1 h at room
temperature, washed and incubated with secondary antibody
(AlexaFluor goat anti-mouse 488, Life Technologies; A-11029, 1 :
1000) for 1 h at room temperature. Hoechst 33 342 was used as a
nuclear stain (Molecular Probes, Life Technologies; R37605).
Quantitative analysis was performed by counting, for each cell
types, the percentage of BrdU-positive nuclei on a total of
∼1000 cells, randomly observed in 15 microscopic fields from
WT fibroblasts and 22 microscopic fields from S37P fibroblasts.

Wound-healing (migration) assay

Fibroblastswere cultivated to a high density inwells of culture in-
serts (Ibidi) for live cell analysis. Culture inserts were removed at
time 0 indicating that the start of the cell migration/wound-

healing assay and growth medium was replaced either with
new medium containing FBS and -glutamine or -glutamine
containing medium without FBS or with media without both
FBS and -glutamine. Pictures were taken every 15 min for 48 h
and a time-lapse video was generated by 10 pictures/s.

Cell cycle analysis

Fibroblasts were washed, harvested by trypsination and cells
counted. Equal amount of cells (≥3 × 106 cells) were fixed with
70% ethanol at 4°C overnight. Cells were washed with 1× PBS be-
fore treatmentwith heat-activated RNase A (300 µg/µl) at 37°C for
30 min followed by propidium staining (300 µg/µl) for 5 min and
two washes. Samples were analyzed by use of BD LSR Fortessa
and further processed by FlowJo.

Supplementary Material
Supplementary Material is available at HMG online.
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