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Abstract

The receiver operating characteristic (ROC) curve can be utilized to evaluate the performance of 

diagnostic tests. The area under the ROC curve (AUC) is a widely used summary index for 

comparing multiple ROC curves. Both parametric and nonparametric methods have been 

developed to estimate and compare the AUCs. However, these methods are usually only 

applicable to data collected from simple random samples and not surveys and epidemiologic 

studies that use complex sample designs such as stratified and/or multistage cluster sampling with 

sample weighting. Such complex samples can inflate variances from intracluster correlation and 

alter the expectations of test statistics due to the use of sample weights that account for differential 

sampling rates. In this paper, we modify the nonparametric method to incorporate sampling 

weights to estimate the AUC, and employ leaving-one-out jackknife methods along with the 

balanced repeated replication method to account for the effects of the complex sampling in the 

variance estimation of our proposed estimators of the AUC. The finite sample properties of our 

methods are evaluated using simulations, and our methods are illustrated by comparing the 

estimated AUC for predicting overweight/obesity using different measures of body weight and 

adiposity among sampled children and adults in the US Hispanic Health and Nutrition 

Examination Survey.
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1. Introduction

The receiver operating characteristic (ROC) curve is frequently used to evaluate diagnostic 

tests in medical applications and research [1]. The ROC curve is a plot of sensitivity, or true 

positive rate (TPR) on the vertical axis vs. 1 - specificity, or false positive rate (FPR) on the 

horizontal axis across all the possible decision thresholds or cutoffs. The TPR is the 

proportion of patients who have the disease who test positive for it based on a diagnostic 
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test, and FPR is the proportion of people who do not have the disease who will test positive 

for it based on the same diagnostic test. The curve is useful in (1) evaluating the ability to 

discriminate between subjects with and without an abnormality of interest, (2) estimating the 

optimal cut-off point to minimize misclassifying diseased and non-diseased subjects, and (3) 

comparing of efficacy of two or more medical tests for assessing the same disease. There are 

several ways to summarize the ROC curve. A widely used summary index is the area under 

the ROC curve, denoted by AUC, which is bounded between 0.5 and 1. A larger AUC value 

usually presents a better discrimination of the test between diseased and non-diseased 

populations.

Both parametric and nonparametric methods have been developed to estimate and compare 

the AUCs [2-12]. As that parametric approaches require assumptions about the underlying 

distribution of the data, we will focus this paper on nonparametric methods for estimating 

the AUC for the ROC curve. Under simple random sampling, Bamber [2] was the first to 

show that the area under the empirically estimated ROC curve is equal to the Mann-Whitney 

U-statistic, using the fact that the AUC can be interpreted as the probability that a randomly 

chosen diseased individual will be larger than or equal to a randomly chosen normal 

individual. Variance estimation of the estimated AUC has been developed using different 

approaches [2, 4, 6]. The approach used by Hanley [4], which is based on Bamber's work 

[2], uses the variance estimation of the Mann-Whitney U-statistic when the observations are 

not necessarily from continuous distributions [13]. The variance estimation approach of 

DeLong et al. [6] is based on a structural components method [14], which is equivalent to a 

jackknife method.

The variances are usually underestimated for surveys with complex sample designs [15] 

when the sample design is not taken into account in analyses. For example for cluster 

sample designs ignoring the sample design can result in underestimation of variances 

because of extra variability from intraclass correlation among observations within the 

sampled clusters. Also if the sample weighting is improperly accounted for in the variance 

estimation then biased variance estimation can occur. Therefore, the standard statistical 

methods of estimation of AUC and its variance that assume simple random sampling are not 

suitable for data from complex samples. Our objective in this paper is to develop appropriate 

nonparametric methods for the estimating the AUC and its variance under different sample 

designs that range from stratified simple random samples to stratified multistage cluster 

samples.

In section 2, we extend the nonparametric method for estimating the population AUC to 

properly account for sample weighting under differing complex sample designs. Jackknife 

and balanced repeated replication (BRR) methods are utilized for variance estimation of our 

proposed estimator of AUC that account for complex sample design and sample weighting. 

In section 3, Monte Carlo simulation is performed to compare the accuracy of jackknife and 

BRR methods. We also discuss informative sample designs where the sample selection 

probabilities are related to the parameter of interest. We illustrate the estimation of AUC and 

its variance with an example using the Hispanic Health and Nutrition Examination Survey 

(HHANES) in section 4 and conclude with a discussion in section 5.
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2. Estimation of AUC for complex sampling designs

2.1. Standard nonparametric method

Suppose we have M diseased and N nondiseased subjects and a test applied to each subject 

where Xi denote the test values of i-th diseased subject, i = 1, 2, ..., M, Yj denote the test 

values of j-th diseased subject, j = 1, 2, ..., N. Following Bamber [2], the area under the 

empirical ROC curve can be expressed as the average over the kernel ψ as

(1)

where

For continuous test values, because the probability of obtaining ties is negligible, it follows 

that  where θ denotes the population AUC and the expectation is over 

the joint distribution of the random variables X and Y for test results without specifying the 

joint distribution. In other words for simple random samples  is an unbiased estimator of θ. 

This nonparametric formula (1) has been routinely applied for simple random samples, but 

does not directly apply to complex sample survey data where we need to take into account 

differential sampling rates and other aspects of the sample designs.

2.2. Estimation of AUC for stratified simple random samples

Stratified sampling is commonly applied in surveys where certain characteristics such as 

gender, race, income, or geographical locations are known for all the units in the population 

can be used to exhaustively divide the units into disjoint subgroups which are the strata. 

Stratified simple random sampling (SSRS) is when simple samples are independently 

selected from each stratum with specified sample sizes.

Suppose we have a finite population of T units (subjects) with strata, such that the number of 

subjects in the finite population in stratum h is Th, where Th = Nh + Mh. Nh and Mh are the 

number of diseased and nondiseased subjects, and . A simple random sample of 

th subjects is selected from stratum h so that the total sample size of subjects is . 

The th are fixed constants but the number of disease and nondiseased subjects in the sample 

in stratum h, mh, and nh are random, where th = nh + mh. In the comparison of diseased and 

non-diseased pairs of subjects both subjects in a pair may come from the same sampling 

stratum or from different strata. The joint inclusion probability that diseased and non-

diseased subjects will be included in sample s is denoted as π(hi,h′j), and the joint sample 

weight is defined as the inverse of joint inclusion probability, w(hi,h′j) = 1/π(hi,h′j). Let θ(h,h′) 
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denote the infinite population AUC for the diseased subjects in h-th stratum and the non-

diseased subjects in h′-th stratum, then the AUC can be described as a matrix:

A sample weighted estimator of stratum-pooled AUC for the finite population is:

(2)

where for subjects i and j from strata h and h′ respectively, w  (hi,h′j) is  if h = 

h′ or if h = h′, or , if h ≠ h′ is the indicator of inclusion of subjects hi and h′j in the 

sample, and δhi is the indicator that is equal to 1 for diseased subjects and 0 otherwise, 

, where , where . 

 denotes the estimated AUC for the diseased subjects in h stratum and the non-

diseased subjects in h′ stratum, and  is a H × H matrix estimating θ(H×H). Often the 

population size T is known or the sample weights are poststratified to known population 

totals, while the number of diseased subjects M and non-diseased subjects N are unknown 

but can be estimated by using the sample, i.e.,  and , 

and .

Note that the estimator, , for the AUC for the finite population is a ratio estimator, so it is 

biased but is design consistent for the population AUC because the denominator and 

numerator are unbiased estimators of the denominator and numerator of (1) for the 

population.

2.3 Estimation of AUC for stratified multistage cluster sampling

Stratified multistage cluster sampling is a commonly used complex sample design for 

national household surveys. This type of sample design was used for the HHANES. Without 

loss of generality we will consider stratified two-stage cluster sampling (STSCS) design 

since it reflects much of the complexity of three or more stage cluster sampling while 

allowing for more manageable notation.

We consider STSCS where the first stage cluster sampling is conducted independently for 

each stratum. The sampling rates within stratum can vary depending on the survey 

requirements. For example, when the population sizes of the first stage clusters, called 

primary sample units (PSU), are equal, it is reasonable to employ simple random sampling 

of the clusters and then an equal sample size simple random sample of second stage units 
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from the sampled PSUs. This type of sample design will result in a self-weighted sample. 

(i.e., where all the sampled second stage units have the same probability of inclusion in the 

sample). However when the PSU population sizes are unequal, an unequal probability 

sampling design of first stage may be employed, for example, probability proportional-to- 

size (population size of the cluster) sampling (PPS) of the PSUs with approximately equal 

sample size simple random sampling of seconds stage units from the sample PSUs. This 

design will also result in a self-weighted sample design. Self-weighted or nearly self-

weighted sample designs often produce estimates that have smaller variances than estimates 

from non-self-weighted sample designs [15].

Suppose the finite population has H strata, each stratum h has Kh PSUs and that the 

population size of subjects in PSU hg is Thg = Nhg + Mhg, where Nhg and Mhg are the 

number of diseased and nondiseased subjects, and kh is the number of PSUs sampled from 

stratum h, thg be the number of subjects sampled from PSU g in stratum h, and thg = nhg + 

mhg where nhg and mhg are the number of diseased and nondiseased subjects in the sample 

from sampled PSU hg.

Under a STSCS design, the joint inclusion probability for sampling a pair consisting of 

diseased and nondiseased subjects is the product of the probability of sampling the PSUs 

that these subjects belong to multiplied by the probability that these subjects are sampled 

from these sampled PSUs. For each pair of diseased and nondiseased sampled subjects, 

these sampled subjects can be sampled (1) from different strata and different sampled PSUs 

or (2) from the same stratum but different sampled PSUs or (3) from the same stratum and 

same sampled PSU. Each of these possible samplings of pairs of diseased and nondiseased 

subjects can have different joint inclusion probabilities. As before the joint sample weight is 

defined as the inverse of joint inclusion probability, for example, 

for the selection of i-th subject in g-th cluster within h-stratum and j-th subject in g′-th 

cluster within h′-stratum. The estimator of the AUC for the finite population, , is

(3)

where  if h = h′ and g = g′, or  if h = 

h′ and g ≠ g′, or  if h ≠ h′. The formula (3) also can be similarly 

rewritten in matrix notation as given in (2). Formula (3) can be easily extended for PPS 

sampling of the PSUs by replacing the inverse of the single inclusion probabilities and joint 

inclusion probabilities according to the PPS sampling scheme that is used.

2.4. Variance Estimation

In this paper we use a jackknife leaving-one-out method and a BRR method for variance 

estimation of our AUC estimators. A jackknife variance estimator for data from a STSCS 

design is:
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(4)

where kh PSUs are sampled from stratum h and the  are the estimators of the same 

functional form as , but computed from the reduced sample by omitting the g-th sampled 

PSU from stratum h [16].

If the STSCS design can be approximated by a design where two PSUs are sampled from 

each stratum, then as an alternative to the jackknife method is the BRR method for variance. 

The BRR variance estimator for our sample weighted estimator of AUC is

(5)

where L denotes the number of replicates which is the next multiple of 4 greater than the 

number of sampling strata H of the sample design and the  are estimated using half 

sample replicates determined by a L × L Hadamard matrix [16].

2.5. AUC estimation for domains

Our proposed methods can be extended to ROC curve analysis of domains by including in 

the estimators an indicator variable to determine whether or not each sampled subject 

belongs to the specific domain, e.g., for a sample of both males and females each gender 

would be a different domain. Note that the population structure and sample design remains 

the same in the domain estimation, so the sample weights are unchanged. We can apply the 

jackknife or BRR methods for variance estimation in the same way as before.

3. Simutation study

We conducted limited Monte Carlo simulations to study the empirical finite sample 

properties of our sample weighted estimators of AUC and the proposed jackknife and BRR 

variance estimators under SSRS and STSCS designs. In sections 3.1 and 3.2 the sample 

designs are noninformative for estimating the AUC because the sample weights in each 

stratum are not related to the stratum-specific AUCs. In section 3.3 we consider informative 

sample weighting. The simulations are repeated 1000 times where after each sample is 

selected from the finite population of diseased and nondiseased the finite population is 

regenerated for the next repetition of the simulation.

3.1. Estimation of AUC and Jackknife Variance Estimation under SSRS Designs

A finite population of size of T = 200,000 is generated with H = 8 strata. The population size 

of each stratum is set to be the same size (Th = 25,000). In the context of stratified sampling, 

we assume that stratum-specific infinite population AUC, θh, vary across the strata in the 

range of θh = θ ± 0.05. For example, θh are assigned values between 0.90 and 1.0 if θ = 0.95. 

Similar setups are used when we set the AUC for the infinite population at other values, θ = 

0.9, 0.8, 0.7, 0.6 or 0.55 respectively. Assume both diseased and nondiseased subjects' test 
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results are randomly generated as normally distributed with a mean of 5 for diseased 

subjects for each stratum and a mean determined by θh for nondiseased subjects, and the 

variance is set equal to 1 for both diseased and nondiseased for each stratum. We randomly 

selected th = 30, 60, or 120 samples from each stratum independently so that total sample 

size across all the sampling strata is t = 240, 480, or 960, respectively.

Table I summarizes the simulation results when the disease prevalence (d) is 0.3. It shows 

the unweighted estimates are less biased than the weighted estimates. As expected, the 

weighted jackknife standard errors are slightly and consistently larger than unweighted 

jackknife standard errors because sample weighting usually inflates the variances. With 

increasing sample size, the ratios of relative bias for weighted and unweighted standard 

errors become closer to 1, and the difference between weighted and unweighted RMSEs 

become smaller.

3.2. Estimation of AUC and Jackknife and BRR Variance Estimation under STSCS Designs

In this section, Monte Carlo simulations are performed to study the estimators of AUC and 

to compare the accuracy of jackknife and BRR methods for variance estimation of the 

estimated AUC under STSCS designs. To reflect the sample design of HHANES that we 

apply our proposed approach in the next section, i.e., we simulate STSCS datasets with 

unequal strata sizes of PSUs and unequal sizes of PSUs within each stratum. A finite 

population size T = 200,000 is generated with H = 8 strata (i.e., the number of strata in 

HHANES), and stratum sizes varying from 15,000 to 35,000. Each stratum is composed of 

10 unequal sized PSUs. We let the θh vary across the strata in the range of θh = θ ± 0.1, 

where θ is chosen from 0.9 to 0.6 by 0.1. Intra-cluster correlations (ICCs, ρ) for the PSUs 

vary from ρ = 0 or 0.2. The total sample sizes drawn from the population are, t = 400, 800, 

or 1200. At the first stage, 2 of 10 clusters are selected without replacement from each 

stratum by using probability proportional to size (PPS), where the size measure is the PSU 

population size and a specified number of subjects are chosen from the selected PSU within 

each stratum.

From Table II, we obtain similar findings as we got from Table I. In addition, we can see 

that the biases of the jackknife standard errors, particularly for weighted estimators, are 

consistently slightly smaller than the biases of the standard errors from BRR method. With 

increasing sample size, the bias of the standard errors decreases and the standard errors from 

BRR become closer to jackknife standard errors. Overall in this simulation, jackknife 

variance estimation performs better than BRR variance estimation, as indicated by the 

jackknife standard errors being closer to empirical standard errors than are the BRR standard 

errors. Simulations were done for larger numbers of strata i.e., H = 16 and 32, and as 

expected increasing numbers of strata, which increases the number of degrees freedom for 

variance estimation, show that both the jackknife and BRR methods perform better, and the 

BRR variances become closer to jackknife variances (data not shown).

3.3 Informative Sampling

In this section we consider informative sampling where the selection probabilities are related 

to the AUC, i.e., related to the level of sensitivity and specificity. The following simulation 
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study illustrates that unweighted analyses, i.e., ignoring the informativeness of the sample 

weights, can lead to biased AUC estimation. We consider a STSCS with equal size strata 

and equal size PSUs. The population parameters are set to: T = 200000, H = 8, K = 100, and 

θh = θ ± 0.1, where θ = 0.9, 0.8, 0.7, or 0.6, ρ = 0 or 0.2. The test results from diseased and 

nondiseased subjects are normally distributed. The mean for diseased subjects is equal 5 and 

the variance is equal to 1, while the mean of nondiseased subjects depend on θh and the 

variance is equal to 1.

Total sample size varies from t = 320, 400 to 800, respectively. First, 10 of 100 PSUs are 

randomly selected from each stratum, then within each stratum a fixed number of subjects 

are drawn from each selected PSU. The sample size for each stratum th is depended on the 

value of θh. In this simulation, we arbitrarily set the selection probabilities (SP) for each 

stratum differently, SP = (0.25, 0.25, 0.1, 0.1, 0.1, 0.1, 0.05, 0.05) for the 8 strata, where 

strata with high θh have larger sample sizes.

The results for informative survey sampling for STSCS show that the unweighted estimates 

of AUC are badly biased, which illustrates the critical role of sample weights in survey data 

analysis for informative survey sampling (table III). As expected, because of the large 

sample weights, the weighted standard errors are much larger than the unweighted standard 

errors.

4. Application

4.1. Hispanic Health and Nutrition Examination Survey (HHANES)

The HHANES was conducted by National Center for Health Statistics [17, 18], between 

1982 and 1984 to assess the health and nutritional status of Hispanic subjects aged 6 months 

to 74 years in specific area of the U.S. A four- stage sampling design was used: (1) PSUs 

consisting of counties or small groups of contiguous counties are sampled from each stratum 

at the first stage, (2) area segments (a city block or group of blocks in urban areas, or 

geographic subareas in rural areas) are selected within sampled PSUs at the second stage, (3) 

households are selected within sampled area segment at the third stage, and (4) subjects are 

sampled within sampled households at fourth stage of sampling [17]. The PSUs and 

segments were stratified prior to sample selection. The sample design had 8 pseudo-strata 

each with 2 pseudo-PSUs. We used the pseudo-strata as strata and pseudo-PSUs as PSUs in 

the variance estimation as recommended by the National Center for Health Statistics.

We compare the discrimination of three predictors, self-reported body mass index (BMI) 

and measured triceps skinfold and subscapular skinfold, for classifying subjects as 

overweight/obese using data from the Mexican-American portion of the HHANES. The 

measured BMI served as a gold standard [19, 20]. Overweight/obesity was determined for 

children (aged 2 to 18 years old) by using age- and sex- specific growth charts [21]. For 

adults (≥ 18 years old) overweight/obesity was defined as having a measure BMI, i.e., 

weight in kilograms divided by height in meters squared, of greater than or equal to 25.
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4.2. Joint inclusion probability

At the last stage of sampling in HHANES the probability of selection of an individual within 

a sampled household depended on age: 75% for from 6 months to 19 years, 50% for 20 to 44 

years and 100% for 45 to 74 years. Those subjects younger than 2 years old are excluded in 

this data analysis due to undetermined overweight/obese status. Thus, the conditional 

inclusion probabilities for the sampled subjects within j-th family in i-t PSU from stratum h 

were = 0.75, 0.5, or 1.0 aged from 2 to 19, 20 to 44, and 45 to 74 years respectively. The 

final sample weight for each sampled individual (whijs) is provided with the HHANES data. 

These sample weights take into account the inclusion probability at each stage of sampling, 

i.e., the unequal probability of selection and nonresponse and poststratification adjustments. 

Therefore, the sample weight for an individual will not equal to the inverse of the inclusion 

probability, i.e., . We approximated inclusion probabilities of the 

sampled household as [22]:

(6)

where mhij is the sample size of the hij sampled household. Given the household has been, 

the joint inclusion probabilities was approximated by assuming Poisson sampling as 

, where . Then the joint weight is:

(7)

4.3. Results

Table 4 compares the discrimination of three predictors for overweight/obese for both un- 

weighted estimators and weighted estimators. It shows that after taking into account the 

sample weights, the self-reported BMI (“BMIsf”) has the highest estimated AUC values 

among the predictors, although the unweighted AUC (“AUC1”) for subscapular skinfold 

(“SubScap”) is slightly higher than that of self-reported BMI. The triceps skinfold (“Tri- 

ceps”) has the lowest prediction in this application. Table IV also shows that the weighted 

jackknife standard errors are slightly larger than unweighted jackknife standard errors due to 

the sample weights being incorporated in the estimation. Overall the results across the 

unweighted and weighted estimators are very close, which indicates the sample weighting is 

not very informative in this example. However there is essentially little loss in precision by 

using the weighted estimation.

Figure 1 shows the ROC curve for self-reported BMI, subscapular skinfold and triceps 

skinfold. The ROC curve for subscapular skinfold lies completely above the curve for 

triceps skinfold, so that the results support that the subscapular skinfold is a better predictor 

of overweight/obese than the triceps skinfold. Upon examination of the figure, self-reported 

BMI is not a consistently better predictor across all decision thresholds although self-

reported BMI has a higher estimated AUC. The figure implies that self-reported BMI is a 
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better predictor in the range where the sensitivity is above 50% and simultaneously where 

the specificity is above 70%, which is often the range of interest.

We applied the extended formula for domain estimation to HHANES data to estimate AUC 

and its variance for domains of females and males who were 20 - 74 years old to see how 

prediction of overweight/obese status for our three predictors differ by gender-age-specific 

domains. Interestingly, all three predictors of overweight/obese for the female domain have 

better classification than the male domain, for both weighted and unweighted estimators, 

i.e., AUCs in female domain are larger than those in male domain, and the variances of these 

three predictors for both weighted and unweighted AUCs in female domain are also smaller 

(Table V). In both adult male and female domains, the self-reported BMI is the best 

predictor of overweight/obese among the three predictors in HHANES.

5. Discussion

In survey research, complex sample designs with sample weighting, sample stratification 

and cluster sampling are commonly implemented. Analyses that do not account for 

weighting and clustering effects that are induced by the complex survey sampling can be 

biased and have incorrect standard errors. In this paper, we proposed an extension of the 

nonparametric method for estimation of the population AUC for complex survey data. The 

proposed estimator is a ratio estimator, and is consistent for estimating the population AUC. 

Simulation results indicate that our approach provides consistent estimates of the population 

AUC and its standard error. Since the estimation is based on paired subjects, the joint 

sample weights are required, which can be difficult to obtain for complex survey designs, so 

some assumptions have to be made to derive the joint sampling weights from the sample 

design information described in the survey documentation. For example in the application of 

the HHANES data, we made an assumption of Poisson sampling of subjects within each 

sampled family in the HHANES. It would be desirable for survey organizations to provide 

on their public use files joint survey weights for estimation problems that require these 

weights. We applied replication methods for variance estimation, which are conceptually 

simple and easy to program, but computational intensive for surveys with large numbers of 

PSUs.

Previous work has considered stratified analyses to adjust the estimate of the AUC for 

important factors such as center effects in multicenter studies [23] and study effects in meta-

analyses [24]. In these papers stratum-specific AUC's are computed and then the AUC's are 

combined across strata by basically weighting by the inverse of the precision of the stratum-

specific AUC's. When the distribution of the test values differ between the stratum, the AUC 

that is estimated under this type of weighted estimation will, in general, be biased for 

estimating the AUC for the population, θ. In contrast for SSRS our estimator  differs in 

that we are obtaining approximately unbiased estimates of the AUC for the population from 

which the sample is selected. This is accomplished by using the joint and individual sample 

weights (i.e., the inverse of the joint and single inclusion probabilities) to obtain a weighted 

number of all pairs of test values of diseased and nondiseased sampled subjects and to obtain 

weighted numbers of sampled diseased and nondiseased subjects for the numerator and 
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denominator of  in (2), respectively. In other words our estimator  pools the 

observations across the sampling strata utilizing all pairs of diseased and nondiseased 

subjects to estimate the population AUC, where as the previous stratified AUC estimators 

utilize only the pairs of diseased and nondiseased observations for sampled subjects within 

each stratum for computing the stratum-specific AUC's. Thus  is not a weighted average 

of stratum-specific AUC's as are previous estimators [23, 24], and the previous estimators of 

AUC and  will asymptotically agree when the distributions of the test values of the 

diseased and nondiseased subjects are the same across the strata. Moreover our methods are 

applicable to more complex sampling designs that combine stratified and multistage cluster 

sample designs that are not considered by the aforementioned previous work.

In future work, we plan to consider other more computationally efficient approaches for 

variance estimation, such as Taylor linearization variance estimation. Also we plan on ex- 

tending the estimation of the AUC for the ROC curves to estimation based on parametric 

and semi-parametric disease prediction models that are fitted to data from complex sample 

designs.
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Figure 1. 
The comparison of area under ROC curves for self-reported BMI, subscapular skinfold and 

triceps skinfold.
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Table I

The bias for the estiamte results for SSRS, d = 0.3.

θ t
Bias1

*
Bias2

* Bias(JK1) Bias(JK2) RMSE1 RMSE2

0.95 960 −0.0015 −0.0033 1.0205 1.0205 0.0146 0.0150

480 −0.0039 −0.0071 1.0347 1.0347 0.0206 0.0214

240 −0.0071 −0.0129 1.0608 1.0606 0.0304 0.0324

0.9 960 0.0010 0.0019 1.0135 1.0089 0.0224 0.0224

480 −0.0039 −0.0056 0.9847 0.9877 0.0328 0.0331

240 −0.0063 −0.0096 1.0658 1.0655 0.0460 0.0468

0.8 960 −0.0016 −0.0014 1.0251 1.0282 0.0319 0.0319

480 −0.0039 −0.0065 1.0128 1.0128 0.0470 0.0474

240 0.0073 0.0100 1.0369 1.0367 0.0682 0.0688

0.7 960 −0.0003 0.0008 1.0347 1.0347 0.0375 0.0375

480 −0.0026 0.0030 1.0350 1.0349 0.0544 0.0545

240 0.0055 0.0084 1.0806 1.0802 0.0771 0.0777

0.6 960 0.0025 0.0031 1.0218 1.0218 0.0413 0.0414

480 0.0044 0.0046 1.0847 1.0863 0.0557 0.0558

240 0.0097 0.0123 1.2465 1.2468 0.0717 0.0724

0.55 960 0.0028 0.0034 1.1927 1.1927 0.0359 0.0360

480 0.0054 0.0088 1.3268 1.3260 0.0459 0.0465

240 0.0109 0.0142 1.4992 1.4983 0.0599 0.0609

Note:

, , Bias(JK1)=SE(JK1)/SE(EMP1), Bias(JK2)=SE(JK2)/SE(EMP2), SE = standard error, JK = jackknife 

variance estimate, EMP = empirical variance estimate, RMSE = root of mean squared error.

*
1 = unweighted estimator, 2 = weighted estimator.
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Table II

Simulation results for the comparison of jackknife method and BRR method for variance estimates under 

STSCS design, ρ =0 or 0.2.

θ t
Bias1

*
Bias2

* Bias(BRR1) Bias(BRR2) Bias(JK1) Bias(JK2) RMSE1 RMSE2

ρ = 0

0.9 1200 0.0002 0.0044 1.0103 1.1212 1.0103 1.0505 0.0097 0.0108

800 −0.0003 0.0070 1.0336 1.2195 1.0336 1.0894 0.0119 0.0142

400 0.0004 0.0172 1.1059 1.2813 1.0765 1.1711 0.0170 0.0254

0.8 1200 −0.0006 0.0032 1.0519 1.0949 1.0519 1.0730 0.0135 0.0141

800 0.0004 0.0069 1.0058 1.1086 1.0058 1.0457 0.0172 0.0188

400 −0.0008 0.0136 1.0398 1.1416 1.0199 1.0892 0.0251 0.0301

0.7 1200 0.0004 0.0037 1.0184 1.0606 1.0184 1.0424 0.0163 0.0169

800 0.0001 0.0056 1.0049 1.0870 1.0049 1.0531 0.0203 0.0215

400 0.0005 0.0122 1.0279 1.1677 0.9930 1.0968 0.0287 0.0333

0.6 1200 0.0023 0.0034 1.0479 1.0447 1.0060 1.0279 0.0169 0.0182

800 0.0042 0.0044 1.1472 1.0848 1.0508 1.0670 0.0201 0.0229

400 0.0134 0.0103 1.2370 1.1722 1.1575 1.1057 0.0287 0.0347

ρ = 0.2

0.9 1200 −0.0108 −0.0062 1.1715 1.2805 1.1102 1.2000 0.0160 0.0171

800 −0.0126 −0.0152 1.1750 1.3086 1.0809 1.2057 0.0185 0.0231

400 −0.0134 −0.0189 1.2751 1.3633 1.1005 1.2245 0.0231 0.0309

0.8 1200 −0.0115 −0.0066 1.1553 1.2623 1.0987 1.1882 0.0191 0.0197

800 −0.0121 −0.0168 1.2111 1.2963 1.1122 1.2130 0.0217 0.0273

400 −0.0137 −0.0176 1.2323 1.3115 1.1181 1.2230 0.0289 0.0352

0.7 1200 −0.0084 −0.0053 1.1219 1.2103 1.0698 1.1495 0.0191 0.0201

800 −0.0091 −0.0113 1.1900 1.2516 1.0950 1.1911 0.0220 0.0252

400 −0.0102 −0.0145 1.2610 1.4058 1.1397 1.2981 0.0291 0.0344

0.6 1200 −0.0027 0.0022 1.2108 1.2632 1.0723 1.1368 0.0168 0.0191

800 0.0083 −0.0038 1.2741 1.2937 1.1015 1.1429 0.0214 0.0241

400 0.0109 −0.0058 1.2857 1.3050 1.2231 1.1880 0.0274 0.0356

Note:

, , Bias(BRR1) = SE(BRR1)/SE(EMP1), Bias(BRR2) = SE(BRR2)/SE(EMP2), Bias(JK1)=SE(JK1)/

SE(EMP1), Bias(JK2)=SE(JK2)/SE(EMP2), SE = standard error, EMP = empirical variance estimates, RMSE = root of mean squared error.

*
1 = unweighted estimator, 2 = weighted estimator.
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Table III

Bias of unweighted estimator under informative sampling, ρ =0 or 0.2.

θ t
Bias1

*
Bias2

* SE(JK1) SE(JK2) SE(EMP1) SE(EMP2) RMSE1 RMSE2

ρ = 0

0.9 800 0.0329 0.0021 0.0104 0.0231 0.0087 0.0199 0.0339 0.0200

400 0.0335 0.0014 0.0132 0.0382 0.0109 0.0323 0.0352 0.0323

320 0.0336 −0.0027 0.0151 0.0396 0.0149 0.0353 0.0368 0.0354

0.8 800 0.0336 0.0014 0.0160 0.0259 0.0153 0.0238 0.0369 0.0239

400 0.0322 0.0017 0.0214 0.0408 0.0225 0.0376 0.0393 0.0376

320 0.0339 0.0023 0.0238 0.0392 0.0235 0.0360 0.0412 0.0361

0.7 800 0.0336 0.0027 0.0191 0.0278 0.0217 0.0304 0.0400 0.0305

400 0.0324 0.0026 0.0265 0.0399 0.0256 0.0351 0.0412 0.0352

320 0.0337 0.0046 0.0291 0.0424 0.0271 0.0394 0.0432 0.0397

0.6 800 0.0345 0.0026 0.0219 0.0283 0.0230 0.0304 0.0415 0.0305

400 0.0321 0.0029 0.0293 0.0454 0.0318 0.0410 0.0452 0.0411

320 0.0347 −0.0074 0.0333 0.0440 0.0320 0.0418 0.0472 0.0424

ρ = 0.2

0.9 800 0.0147 −0.0056 0.0127 0.0236 0.0118 0.0217 0.0189 0.0224

400 0.0173 −0.0065 0.0156 0.0356 0.0142 0.0321 0.0224 0.0327

320 0.0214 −0.0102 0.0172 0.0366 0.0154 0.0314 0.0264 0.0330

0.8 800 0.0169 −0.0067 0.0170 0.0264 0.0172 0.0243 0.0241 0.0252

400 0.0205 −0.0081 0.0236 0.0385 0.0218 0.0347 0.0299 0.0357

320 0.0218 −0.0113 0.0264 0.0409 0.0260 0.0400 0.0339 0.0416

0.7 800 0.0139 −0.0080 0.0198 0.0279 0.0181 0.0276 0.0229 0.0287

400 0.0202 −0.0083 0.0277 0.0399 0.0292 0.0371 0.0355 0.0380

320 0.0218 −0.0112 0.0307 0.0430 0.0309 0.0376 0.0378 0.0393

0.6 800 0.0213 −0.0065 0.0207 0.0285 0.0234 0.0308 0.0316 0.0315

400 0.0207 −0.0111 0.0289 0.0407 0.0272 0.0314 0.0343 0.0333

320 0.0224 −0.0118 0.0327 0.0444 0.0348 0.0447 0.0414 0.0462

Note:

, , SE = standard error, JK = jackknife variance estimate, EMP = empirical variance estimate, RMSE = root 

of mean squared error.

*
1 = unweighted estimator, 2 = weighted estimator.
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Table IV

Estimate of AUC for three predictors of overweight/obese.

Predictor AUC1
* SE(JK1) AUC2

* SE(JK2)

BMIsf 0.897 4.94E-03 0.911 5.59E-03

SubScap 0.899 3.57E-03 0.893 3.64E-03

Triceps 0.812 5.12E-03 0.789 5.51E-03

*
Note: 1=unweighted estimator; 2=weighted estimator.
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Table V

Estimate of AUC in adult male and female domains.

Male ≥ 20 yrs Female ≥ 20 yrs

Predictor AUC1* SE(JK1) AUC2* SE(JK2) AUC1* SE(JK1) AUC2* SE(JK2)

BMIsf 0.9348 6.68E-03 0.9362 6.80E-03 0.9645 4.10E-03 0.9652 4.19E-03

SubScap 0.8748 8.99E-03 0.8749 9.19E-03 0.8911 7.46E-03 0.8908 7.64E-03

Triceps 0.7714 1.18E-02 0.7609 1.27E-02 0.8706 8.31E-03 0.8653 8.53E-03

Note: 1=unweighted estimator; 2=weighted estimator.
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