Skip to main content
. Author manuscript; available in PMC: 2016 Apr 15.
Published in final edited form as: Stat Med. 2014 Dec 29;34(8):1293–1303. doi: 10.1002/sim.6405

Table I.

The bias for the estiamte results for SSRS, d = 0.3.

θ t Bias1* Bias2* Bias(JK1) Bias(JK2) RMSE1 RMSE2
0.95 960 −0.0015 −0.0033 1.0205 1.0205 0.0146 0.0150
480 −0.0039 −0.0071 1.0347 1.0347 0.0206 0.0214
240 −0.0071 −0.0129 1.0608 1.0606 0.0304 0.0324
0.9 960 0.0010 0.0019 1.0135 1.0089 0.0224 0.0224
480 −0.0039 −0.0056 0.9847 0.9877 0.0328 0.0331
240 −0.0063 −0.0096 1.0658 1.0655 0.0460 0.0468
0.8 960 −0.0016 −0.0014 1.0251 1.0282 0.0319 0.0319
480 −0.0039 −0.0065 1.0128 1.0128 0.0470 0.0474
240 0.0073 0.0100 1.0369 1.0367 0.0682 0.0688
0.7 960 −0.0003 0.0008 1.0347 1.0347 0.0375 0.0375
480 −0.0026 0.0030 1.0350 1.0349 0.0544 0.0545
240 0.0055 0.0084 1.0806 1.0802 0.0771 0.0777
0.6 960 0.0025 0.0031 1.0218 1.0218 0.0413 0.0414
480 0.0044 0.0046 1.0847 1.0863 0.0557 0.0558
240 0.0097 0.0123 1.2465 1.2468 0.0717 0.0724
0.55 960 0.0028 0.0034 1.1927 1.1927 0.0359 0.0360
480 0.0054 0.0088 1.3268 1.3260 0.0459 0.0465
240 0.0109 0.0142 1.4992 1.4983 0.0599 0.0609

Note:

*

1 = unweighted estimator, 2 = weighted estimator.

Bias1=θ^1θ, Bias2=θ^2θ, Bias(JK1)=SE(JK1)/SE(EMP1), Bias(JK2)=SE(JK2)/SE(EMP2), SE = standard error, JK = jackknife variance estimate, EMP = empirical variance estimate, RMSE = root of mean squared error.