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Abstract

Although angiotensin II subtype-2 receptor (AT2R) was discovered over two decades ago, its 

contribution to physiology and pathophysiology is not fully elucidated. Current knowledge 

suggests that under normal physiologic conditions, AT2R counterbalances the effects of 

angiotensin II subtype-1 receptor (AT1R). A major obstacle for AT2R investigations was the lack 

of specific agonists. Most of the earlier AT2R studies were performed using the peptidic agonist, 

CG42112A, or the non-peptidic antagonist PD123319. CGP42112A is non-specific for AT2R and 

in higher concentrations can bind to AT1R. Recently, the development of specific non-peptidic 

AT2R agonists boosted the efforts in identifying the therapeutic potentials for AT2R stimulation. 

Unlike AT1R, AT2R is involved in vasodilation via release of bradykinin and nitric oxide, anti-

inflammation and healing from injury. Interestingly, the vasodilatory effects of AT2R stimulation 

were not associated with significant reduction in blood pressure. In the kidney, AT2R stimulation 

produced natriuresis, increased renal blood flow, and reduced tissue inflammation. In animal 

studies, enhanced AT2R function led to reduction of cardiac inflammation and fibrosis, and 

reduced the size of the infarcted area. Similarly, AT2R stimulation demonstrated protective effects 

in vasculature and brain.

Introduction

The renin-angiotensin system (RAS) has been recognized for over a hundred years for its 

critical role in physiological regulation of arterial pressure, as well as sodium and fluid 

homeostasis. The octapeptide angiotensin II (Ang II) is the most powerful effector 

component of this system that functions mainly by binding to two major classes of G 

protein-coupled receptors, namely angiotensin II subtype-1 receptor (AT1R) and angiotensin 

II subtype-2 receptor (AT2R). These receptors have similar affinity to Ang II, but share a 

nucleic acid sequence homology of only 34% (1–3). Although the AT1R activities are 

known for many years, the AT2R was only discovered in the late 1980s (4–5) and many of 

its activities are not yet elucidated.

Beyond Ang II and its receptors, the RAS has other important bioactive peptides and 

receptors, most of them only recently described, such as Ang III, Ang IV, Ang- (1–7), 

pro(renin) receptor, and the Mas receptor. Ang II and Ang III have the highest relative 
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affinities for AT1R and AT2R respectively, while Ang IV and Ang (1–7) bind only to AT2R 

(6). Ang III is the most potent endogenous AT2R agonist resulting in effects such as 

natriuresis (7).

Most of the known pathophysiologic effects of Ang II are mediated by AT1R, including 

vasoconstriction and increased blood pressure, promotion of tissue inflammation and 

fibrosis, increased oxidative stress, and aldosterone production. RAS blockade by ACE 

inhibitors and AT1R antagonists is the main pharmacological tool consistently used for the 

treatment of hypertension, heart failure, and diabetic nephropathy. In contrast, the effects of 

AT2R activation are less well understood. The AT2R gene, located on human chromosome 

X, consists of three exons with an uninterrupted coding region confined to the third exon (9–

10). It encodes a protein containing 363 amino acids corresponding to a molecular weight of 

41 kDa (1). Multiple factors regulate AT2R gene expression. It is down regulated by 

increased intracellular calcium levels and activation of protein kinase C (11), while it is up 

regulated by interleukin-1β and insulin (12). It is also modulated by the presence of multiple 

growth factors, including epidermal growth factor, nerve growth factor, platelet-derived 

growth factor, and insulin-like growth factor (12–13).

AT2R activation counteracts most effects of AT1R by inhibiting cell proliferation and 

differentiation, promoting vasodilation, and reducing inflammation and oxidative stress. In 

the kidney, this receptor activation also opposes the vasoconstrictor actions of AT1R by 

promoting dilation of the afferent and efferent arterioles (14). Accordingly, the appropriate 

balance between AT1R and AT2R activation may therefore play a key role in regulating the 

physiological functions of the renal and cardiovascular systems. In addition, it seems likely 

that polymorphic variations in AT1R and AT2R gene expressions could play a role in 

development of cardiovascular diseases and hypertension. AT2R polymorphism was 

reported to associate with cardiovascular risk in hypertensive but not normotensive subjects. 

Similarly, AT1R genotype is associated with elevated cardiovascular risk irrespective of 

blood pressure (15).

In the current review, our main purpose is to provide an updated overview of AT2R 

activities and function in the kidney, cardiovascular system, and brain along with the 

potential beneficial use of AT2R agonists.

AT2R structure, regulation of its expression, and physiologic functions

There is ample knowledge in support of the concept that different components of the RAS 

play critical roles in kidney development. Presence of homozygous or compound 

heterozygous mutations in genes encoding renin, angiotensinogen, angiotensin converting 

enzyme, or AT1R led to renal tubular dysgenesis (16). Experimental studies in mice 

demonstrated that gene inactivation of AT1R, angiotensinogen, or angiotensin-converting 

enzyme was associated with delayed maturity of glomerular growth, hypoplastic papilla, and 

renal arterial hypertrophy (17–18). The presence of AT2R gene mutations in humans or its 

deletion in mice were associated with increased incidence of congenital abnormalities of the 

kidney and urinary tract, including duplicated ureters and collecting system, hydronephrosis, 

and vesicoureteral reflux (19–20).

Matavelli and Siragy Page 2

J Cardiovasc Pharmacol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



AT2R expression is very high in embryonic tissues and decreases shortly after birth in most 

organs though lower AT2R expression is maintained in adrenals, kidneys, uterus, ovaries, 

heart, and brain (20–21). Nevertheless, a recent study reported the presence of higher levels 

of AT2R protein in the brainstem, liver and kidney of adult rats when compared to its 

counterpart fetus or neonates (22). In the embryonic kidney, AT2R plays an essential role 

during early stages of ureteric bud morphogenesis. It is expressed in the ureteric bud 

epithelia, mesenchymal cells during metanephric development, and stroma followed by its 

appearance in interstitial mesenchyme, renal capsule, inner medulla, papillary and collecting 

ducts (3,20,23). In the adult kidney, AT2R is mainly localized to renal vessels, glomeruli, 

and tubules (24–25). A peculiar characteristic of AT2R is its increased expression in healing 

tissues such as skin wounds, neointima after vascular injury, and myocardial and renal 

tissues after ischemia (26–27). These AT2R effects are believed to act as a regulatory 

mechanism to increase neovascularization and promote tissue healing (28).

With the help of specific AT2R agonists and antagonists, this receptor cellular signaling 

pathways are now better understood (Figure 1). In contrast to AT1R which activates 

extracellular signal regulated kinase (ERK) leading to a mitogenic or hypertrophic response 

through activation of tyrosine kinase system, AT2R stimulates protein phosphotyrosine 

phosphatase and mitogen-activated protein kinase phosphatase-1 (MKP-1) and inhibits ERK 

activity (3,29–30), resulting in the reduction of mitogen-activated protein kinase (MAPK) 

activity and growth inhibition (31–32). Previously, we demonstrated in conscious rats that 

AT2R is involved in the regulation of renal nitric oxide (NO), guanosine cyclic 3′5′-

monophosphate (cGMP), and bradykinin production (33–35), indicating that it could be 

involved in induction of vasodilation. We further demonstrated the presence of a stable 

functional heterodimer between AT2R and bradykinin B2 receptor that contributed to 

increased NO and cGMP production (36). AT2R-induced vasodilation was further 

demonstrated in human resistance vessels accompanied by increased formation of NO-

cGMP-bradykinin cascade (37–38). Interestingly, the in vivo vasodilation effect of the 

AT2R activation did not lead to reduction in blood pressure (39–42). This finding could be 

explained by the counter regulatory vaso-constrictive effects of the highly expressed AT1R. 

Blockade of AT1R unmasks the vasodilatory effects of the AT2R in acute as well as chronic 

in vivo experiments (42–45). In these studies, AT2R-mediated vasodilation was inhibited by 

its antagonist PD123319, mainly through reduction in local production of NO and 

bradykinin, and suggests that AT2R may directly regulate vascular tone by counterbalancing 

AT1R-dependent vasoconstriction.

Taken together, these data demonstrate that AT2R plays a substantial role in organs 

embryogenesis and tissue regeneration, and that its cellular signaling pathways go in 

opposite directions to those of AT1R.

Pathologic conditions associated with reduced AT2R activity

Until recently, indirect tools were used to investigate AT2R activities. As described above, 

AT1R blockade enhances Ang II levels, leading to AT2R stimulation (3). Several tools were 

used to investigate this receptor function including the AT2R-null mouse model, the AT2R 

peptide agonist CGP42112, and the non-peptide antagonist PD123319 (46). Initial studies 
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provided the basis to conclude that AT2R plays an important role in renal physiology, and 

regulation of cardiovascular system and cerebral activities.

AT2R null mice exhibited significant elevation of blood pressure, increased vasopressor 

response to Ang II, attenuation of exploratory behavior, and exhibited lower body 

temperature, suggesting the contribution of AT2R to the regulation of systemic 

hemodynamics and central nervous system activities (47–48). The AT2R agonist CGP42112 

has been widely used in experimental studies although it has major limitations. It is a partial 

AT2R agonist that also binds to AT1R and cannot be given orally (49–50). Similarly, AT2R 

blockade with its specific nonpeptidic antagonist PD123319 provided significant 

information regarding this receptor activities and functions (51). PD123319 treatment 

reduced renal levels of NO, cGMP, and bradykinin (33–34), and inhibited sodium excretion 

in response to increased renal perfusion pressure (52). It ameliorated the blood pressure-

lowering effect of the AT1R blockade by abolishing the concomitant stimulation of AT2R in 

a renovascular hypertension rat model (53), and increased blood pressure in obese Zucker 

rats receiving low Ang II dose (54). In addition, AT2R blockade with PD123319 potentiated 

Ang II-induced contraction in coronary microarteries (55), increased the severity of both 

abdominal aortic aneurysms and atherosclerosis (56), and enhanced the Ang II contractile 

responsiveness in thoracic aorta under pressure-overload (57). Taken together, these data 

indicated a role for AT2R in diverse renal and cardiovascular pathologies.

Effects of direct AT2R stimulation and potential therapy

Major breakthrough in the investigations of AT2R activity began with the demonstration 

that minor substitutions to native angiotensin peptides could be a potential tool for 

development of new compounds to influence AT1R and AT2R activities as shown on Table 

1 (58–62). In 2004, a novel AT2R agonist named Compound 21 (C21) was developed (58). 

C21 is a non-peptidic compound, orally and systemically active with an oral bioavailability 

of 20% to 30%. It is highly selective for AT2R (6) and was recently reported to be in the 

final stage of preclinical development (59). If clinical studies confirm its efficacy, this 

compound could be useful for management of diverse cardiovascular and kidney diseases 

including heart failure, myocardial infarction, diabetic kidney disease, chronic inflammatory 

diseases, and neurological diseases such as ischemic stroke. More recently, additional AT2R 

agonist molecules were reported. The selective AT2R agonist lanthipeptide LP2 was shown 

to reduce alveolar septum and arterial wall thickness, and pulmonary inflammation in 

neonatal rats (60). Other compounds that exhibit AT2R affinity and induce vasorelaxation 

were synthesized by substituting a single β-amino acid in the sequence of the native ligand 

Ang II at the tyrosine or isoleucine residue (61), or by formation of pseudopeptides by 

incorporating gamma-turn mimetics into Ang II (62).

C21 is the most widely studied AT2R agonist. It is modeled on the C-terminal pentapeptide 

structure of Ang II with marked selectivity to AT2R (58,63). It lacks AT1R affinity and was 

demonstrated in human embryonic kidney cells to have 4000-fold selectivity to AT2R (6). 

However, its pharmacological activities are not totally elucidated as minor modifications in 

the central phenyl ring of C21 transform its agonistic activities into an AT2R antagonist 

even more potent than PD123319 (64).
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Influence of AT2R stimulation on heart and kidney

The benefits of AT2R stimulation with C21 in the kidney and cardiovascular system have 

been demonstrated in many experimental studies. The first in vivo study to investigate the 

effects of chronic AT2R stimulation with C21 on the heart was reported in 2008. In this 

study, 7-day treatment with C21 improved post-myocardial infarction systolic and diastolic 

ventricular function, accompanied by reduction in cardiac scar size, and diminished levels of 

inflammatory and apoptotic markers in the peri-infarct zone (39). C21 was also reported to 

reduce deposition of interstitial collagen in aortic wall, myocardial and aortic fibronectin 

content (65), and reduce norepinephrine production in heart failure by improving baroreflex 

sensitivity (66). Interestingly, preconditioning of the bone marrow mononuclear cells with 

the AT2R agonist CGP42112A before transplanting into a post-myocardium infarction zone, 

improved global cardiac function by enhancing vessel density in peri-infarct region, and 

reducing infarct size, cardiomyocyte apoptosis and inflammation (67). However, these 

observations still need to be confirmed considering that in one study, chronic treatment with 

C21, compared with candesartan therapy, failed to attenuate post-myocardium infarction or 

left ventricular remodeling in mice (68).

In the kidney, chronic AT2R stimulation with C21 in spontaneously hypertensive stroke-

prone rats fed a high-salt diet, prevented renal inflammatory cell infiltration and collagen 

accumulation, accompanied by delayed occurrence of brain damage, and prolonged survival 

without affecting blood pressure. These beneficial effects of C21 were abolished by 

concomitant administration of PD123319 (40). Recently, we evaluated the effects of AT2R 

stimulation in 2-kidney-1-clip hypertensive (2K1C) rat model (41). In the ischemic kidneys 

of control animals, there were increases in the renal inflammatory factors tumor necrosis 

factor alpha (TNFα), interleukin-6 (IL-6), and transforming growth factor-β1 (TGF-β1), and 

inflammatory cell infiltration, accompanied by reduced NO and cGMP levels. C21 treatment 

reduced renal levels of these inflammatory factors and cell infiltrates, and enhanced 

production of NO and cGMP in the ischemic kidneys (41). These effects were partially 

inhibited by AT2R antagonism with PD123319 and independent of changes in blood 

pressure. Interestingly, AT2R expression was increased in ischemic kidneys of untreated 

animals and C21 further enhanced this expression, suggesting that AT2R stimulation may 

have positive feedback on its expression (41). The anti-inflammatory effects of C21 were 

further explored in a study using human and murine dermal fibroblasts, which demonstrated 

reduced levels of TNFα-induced interleukin-6 by mechanisms that involved inhibition of 

nuclear factor kappa B, activation of protein phosphatases, and synthesis of 

epoxyeicosatrienoic acid (69). These effects were also inhibited by AT2R antagonism with 

PD123319 (69).

AT2R activities were also demonstrated to affect renal hemodynamic and tubular functions. 

Acute systemic blockade of AT2R with PD123319 was reported to shift downward 

pressure-natriuresis and to reduce renal blood flow (RBF) and glomerular filtration rate 

(GFR) (70). In contrast, AT2R stimulation with C21 enhanced RBF, reduced renal vascular 

resistance, and increased urinary sodium and fractional sodium excretions without affecting 

GFR. These changes were abolished by concomitant administration of PD123319 and 

independent of blood pressure changes (71). Similarly, AT2R stimulation with C21 in SHR 
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model increased renal vasodilation and natriuresis, which was even more pronounced in 

female rats, suggesting that AT2R could play a sexually dimorphic functional role in the 

kidney (72). This concept is supported by the fact that gender differences are known to 

affect RAS activities (73). In addition, the AT2R gene is expressed on the X chromosome 

(9) and its expression increases with estrogen (74), which may explain the enhanced AT2R 

activity observed in females.

Dose-dependent renal vasodilation was also observed in spontaneously hypertensive but not 

in normotensive rats treated with C21 after pretreatment with the angiotensin-converting 

enzyme inhibitor captopril, although blood pressure was not affected by C21 in both group 

of rats (75). These results suggest that the beneficial effects of C21 are blood pressure 

independent. In obese Zucker rats, chronic AT2R stimulation with CGP42112A increased 

natriuresis and reduced blood pressure without affecting renal blood flow and glomerular 

filtration rate, suggesting a direct effect of AT2R stimulation at the renal tubules level (76).

Altogether, these data demonstrated that AT2R stimulation could minimize the development 

of inflammation and oxidative stress in renal and cardiac tissues and contribute to regulation 

of renal hemodynamic and excretory functions.

Influence of AT2R stimulation on blood pressure

Many studies previously reported an association between AT2R stimulation and 

vasodilation in diverse vascular beds (37,43,77–79). However, the investigation of the 

effects of AT2R stimulation with C21 on cardiovascular system failed to demonstrate blood 

pressure reduction (39–42). An exception is a study that reported a mean arterial pressure 

reduction of 25 mmHg in anesthetized spontaneously hypertensive rats (58), although 

anesthesia could have played a role in this blood pressure reduction effect. However, the 

concomitant administration of a low-dose AT1R antagonist with an AT2R agonist was 

shown to cause further reduction in blood pressure in rats. This effect is likely due to direct 

AT2R stimulation since blood pressure reduction was reversed by the AT2R antagonist, 

PD123319 (80–81). These observations suggest that AT2R stimulation might potentiate 

vasodilation during concomitant AT1R blockade. In the brain, AT2R overexpression in the 

rostral ventrolateral medulla (82) or chronic infusion of C21 in this cerebral region (83) 

reduced norepinephrine secretion and blood pressure in conscious rats, suggesting a cerebral 

role for this receptor in blood pressure regulation as well.

In one study (64) C21 was demonstrated to induce both constrictor and relaxant responses in 

isolated coronary, iliac, and mesenteric arteries of rat, mouse, and human. The presence of 

vasodilation in response to C21 was observed at high concentrations, micromolar range, and 

was only partially blocked by PD123319, suggesting that C21-induced vasorelaxation could 

be also due to AT2R-independent mechanisms. These mechanisms were not directly 

determined in that study but seemed to be related to blockade of calcium transport into cells 

(62). This study (64) also demonstrated induction of vasoconstriction in the coronary 

vascular bed and iliac artery of the SHRs through an AT2R independent but AT1R-

dependent mechanism, since irbesartan blocked these effects (64). Another study (84) 

suggested that AT2R might contribute to vasoconstriction in aging through increased 

Matavelli and Siragy Page 6

J Cardiovasc Pharmacol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



production of reactive oxygen species. The combined vasorelaxant and vasoconstrictor 

properties of AT2R may explain its neutral effects on blood pressure.

AT2R agonists and vascular remodeling

AT2R stimulation was also recently reported to improve vascular remodeling and protection 

in vivo. In one study (85), pulse wave velocity and aortic remodeling were investigated in L-

NAME-induced hypertension rats receiving C21 or the AT1R antagonist olmesartan. The 

observed increase in blood pressure, pulse wave velocity, and aortic wall thickening in L-

NAME treated rats were prevented by combined olmesartan and C21 treatment. Compared 

to olmesartan therapy, complete reversal to normal of the aorta hydroxyproline deposition 

was only obtained with the combination therapy, independent of blood pressure changes, 

suggesting that AT2R stimulation could potentiate the AT1R blockade in reducing vascular 

stiffness (85).

Similar observations were reported in stroke-prone spontaneously hypertensive rats as C21 

alone or with the AT1R antagonist losartan improved endothelial function by reducing 

mesenteric artery stiffness, oxidative stress, and inflammatory cell infiltration, independent 

of blood pressure (65). In addition, chronic infusion of CGP42112 in apolipoprotein E-

deficient mice fed high fat diet improved endothelial function, attenuated atherosclerotic 

lesion progression, and improved plaque stability. These effects were reversed by infusion 

of PD123319 (86).

Taken together, these data suggest that direct AT2R stimulation may play an important role 

in regulation of endothelial function and in the reduction of vascular hypertrophy and 

fibrosis in hypertension.

Effects of AT2R agonists on brain function

Neuro-protective effects of AT2R were demonstrated in different models of brain injury. 

Acute occlusion of the middle cerebral artery in AT2R-deficient mice showed increased 

neurological deficit, reduced cerebral blood flow in the peri-ischemic area and increased 

production of superoxide (87). Intracerebroventricular administration of CGP42112 in 

stroke-induced SHR resulted in reduced cortical infarct volume, improved motor deficit, and 

increased neuronal survival. These effects were abolished by PD123319 (88). Interestingly, 

rats with transient cerebral artery occlusion demonstrated upregulation of AT2R expression 

in the peri-infarct zone, and reduced stroke-induced brain damage and neurological déficits, 

following AT1R blockade (89). This response was attenuated by infusion of PD123319, 

suggesting that the neuro-protective effects of AT1R blockade could be related to increased 

Ang II stimulation of the unblocked AT2R (89).

C21 treatment was demonstrated to increase cognitive function and cerebral flow in wild-

type mice and an Alzheimer disease mouse model, but not in AT2R-deficient mice, and also 

to increase neurite outgrowth in cultured hippocampal neurons (90). In a stroke model 

induced by permanent middle cerebral artery occlusion, systemic infusion of C21 reduced 

cerebral infarction in wild-type mice (91). These changes were accompanied by reduction in 

oxidative stress and inflammation (91). In a cerebral infarction SHR model, C21 treatment 
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initiated either before or after stroke decreased infarct area and improved motor deficit and 

neuronal survival, while pre-treatment with C21 also induced microglia activation (92). 

These changes were independent of blood pressure and were reversed by concomitant 

infusion of PD123319 (92). Moreover, the intra-cerebroventricular or systemic infusion of 

C21 into stroke-induced normal rats also reduced infarct size and neurological deficits 

accompanied by reductions in cerebral inflammation, effects that were suppressed by 

PD123319 (93). Collectively, these studies support the concept that AT2R stimulation could 

be a potential therapeutic tool for treatment of ischemic stroke or cerebral degenerative 

diseases.

Conclusions

AT2R expression is increased in tissue regeneration and its stimulation is associated with 

beneficial effects in the renal, cardiovascular, and brain systems. Studies using the novel 

AT2R agonist C21 in a variety of in vivo and in vitro models demonstrated encouraging 

results. AT2R stimulation promotes vasodilation, reduces inflammation and fibrosis in the 

kidney, heart, and vascular wall independent of blood pressure variations, and reduces 

stroke-induced cerebral damage (Figure 2). However, although highly specific to AT2R, the 

exact mechanisms involving C21 are not fully elucidated. AT2R stimulation could be a 

novel potential therapy to treat a range of diverse diseases.
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Figure 1. 
Brief scheme of the signaling pathways associated with AT2R. NO, nitric oxide; cGMP, 

guanosine cyclic 3′5′-monophosphate; MKP-1, mitogen-activated protein kinase 

phosphatase-1; NF-κB, nuclear factor-kappaB; ERK, extracellular-signal-regulated kinase; 

MAPK; mitogen-activated protein kinase.
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Figure 2. 
Illustrations of most known actions associated with AT2R stimulation in the cardiovascular 

system, kidney, and brain.
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TABLE 1

List of known AT2 receptor antagonist and agonists.

AT2R Antagonist PD 123,319

AT2 Agonists CGP 42112A
Compound 21 (Vicore Pharma, Gothenburg, Sweden) (58)
LP2 (Lanthio Pharma, Groningen, the Netherlands) (60)
β-Amino Acid Substituted Angiotensin Peptides (61)
Gamma-turn mimetics incorporated into Ang II (62)

J Cardiovasc Pharmacol. Author manuscript; available in PMC 2016 March 01.


