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Abstract

Swelling-activated pathways for myo-inositol, one of the most abundant organic osmolytes
in mammalian cells, have not yet been identified. The present study explores the SLC5A3
protein as a possible transporter of myo-inositol in hyponically swollen HEK293 cells. To ad-
dress this issue, we examined the relationship between the hypotonicity-induced changes
in plasma membrane permeability to myo-inositol P;,, [m/s] and expression/localization of
SLC5AS. P;,, values were determined by cell volumetry over a wide tonicity range (100—
275 mOsm) in myo-inositol-substituted solutions. While being negligible under mild hypoto-
nicity (200—275 mOsm), P;,,, grew rapidly at osmolalities below 200 mOsm to reach a maxi-
mum of ~3 nm/s at 100—125 mOsm, as indicated by fast cell swelling due to myo-inositol
influx. The increase in P;,, resulted most likely from the hypotonicity-mediated incorporation
of cytosolic SLC5A3 into the plasma membrane, as revealed by confocal fluorescence mi-
croscopy of cells expressing EGFP-tagged SLC5A3 and super-resolution imaging of immu-
nostained SLC5A3 by direct stochastic optical reconstruction microscopy (dSTORM).
dSTORM in hypotonic cells revealed a surface density of membrane-associated SLC5A3
proteins of 200-2000 localizations/um?. Assuming SLC5A3 to be the major path for myo-
inositol, a turnover rate of 80—800 myo-inositol molecules per second for a single transport-
er protein was estimated from combined volumetric and dSTORM data. Hypotonic stress
also caused a significant upregulation of SLC5A3 gene expression as detected by semi-
quantitative RT-PCR and Western blot analysis. In summary, our data provide first evidence
for swelling-mediated activation of SLC5A3 thus suggesting a functional role of this trans-
porter in hypotonic volume regulation of mammalian cells.
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Introduction

Most animal cells are able to regulate their volume in anisotonic media [1,2]. Efficient volume
regulatory mechanisms are essential for cell survival because they protect cells against excessive
osmotic shrinkage or swelling [3]. In general, cell volume restoration is achieved by activation
of volume-sensitive membrane pathways, which enable the cells to accumulate or to release os-
motically active substances. In hypertonic media, shrunken cells undergo regulatory volume
increase (RVI) via the uptake of extracellular electrolytes (e.g. NaCl) and osmotic water influx,
whereas hypotonically swollen cells release KCI and shrink via regulatory volume decrease
(RVD). A variety of channels and transporters are involved in the uptake or release of electro-
lytes (K™, Na™, CI, etc.) during cell volume regulation [4-8].

In addition to inorganic ions, a wide range of small organic osmolytes (SOOs), such as myo-
inositol, sorbitol, taurine, etc., are important for maintaining the osmotic balance of cells [9-
11]. A key role of these molecules in cell volume regulation is supported by the fact that various
cell types possess considerable pools of SOOs [12]. Moreover, many mammalian cell types re-
spond to hypertonicity by replacing cytosolic electrolytes with SOOs, thus avoiding detrimental
effects of high ionic strength on structure and function of cytosolic proteins [9,13]. During hy-
pertonic conditions, myo-inositol, as one of the most abundant SOOs, is synthesized by cells or
accumulated from extracellular medium by the sodium-dependent cotransporter SMIT
[1,5,14]. SMIT belongs to the solute carrier (SLC) superfamily and it is referred hereafter as
SLC5A3, according to the established nomenclature [15].

Long-term exposure of cells to hypertonic solutions upregulates the transcription of
SLC5A3 gene, which in turn leads to an increased SLC5A3-mediated uptake of myo-inositol
[16,17]. There is a body of evidence in the literature indicating that the hypertonicity-induced
expression of a battery of genes, including SLC5A3, crucial for the adaptation of mammalian
cells to hypertonic stress is regulated by the tonicity enhancer-binding protein (TonEBP) or
NFATS5 [18-21]. When expressed in Xenopus oocytes, SLC5A3 transports, besides myo-inosi-
tol, a wide range of substrates including glucose, galactose and others monomeric sugars and
carbohydrates [22]. Compared to the mechanisms operating under chronic hypertonic condi-
tions, the transport pathways involved in the release of myo-inositol and other SOOs from
hypotonically swollen cells are much less understood [5]. Particularly, the potential impact of
acute hypotonic stress on the expression and localization of SLC5A3 protein has not yet
been investigated.

In previous studies on several mammalian cell types [23,24], we have demonstrated two dis-
tinct swelling-activated mechanisms differing in their osmotic thresholds and molecular selec-
tivity. Particularly we have shown that moderate cell swelling under mild hypotonic conditions
(>200 mOsm) activates electrolyte pathways allowing the cells to accomplish RVD by releasing
cytosolic ions. Neither myo-inositol nor other tested monomeric carbohydrates are able to per-
meate through the electrolyte pathways. But upon excessive cell swelling in 100-mOsm media,
insertion of a yet-unknown pathway into the cell membrane from cytosolic vesicles renders it
highly permeable to monomeric carbohydrates, including myo-inositol, sorbitol, glucose, ga-
lactose, etc. [23-25].

In view of its broad substrate specificity and tonicity-modulated expression mentioned
above [16,17,22], the myo-inositol transporter SLC5A3 appears to be a promising candidate
for a swelling-activated pathway for small carbohydrates. To test this hypothesis in the present
study we analyzed the relationship between the amount of membrane-associated SLC5A3 pro-
tein and the hypotonically activated plasma membrane permeability to myo-inositol. To this
end, we evaluated the membrane permeability coefficients for myo-inositol P;,, over a wide to-
nicity range (100-300 mOsm), by analyzing the volumetric response of HEK293 cells to
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hypotonic myo-inositol-substituted solutions. In parallel experiments, we applied confocal
fluorescence microscopy to study cells expressing EGFP-tagged SLC5A3 and super-resolution
imaging by direct stochastic optical reconstruction microscopy (dSTORM) [26,27] to immu-
nostained cells to examine the hypotonically induced changes in the intracellular and plasma
membrane localization of myo-inositol transporters. In addition, we analyzed the impact of hy-
potonic stress on SLC5A3 gene expression using Western blot and semiquantitative RT-PCR.

Material and Methods
Cell culture

HEK293 cells were grown in DMEM with high glucose (4.5 g/L). The complete growth
medium (CGM) also contained 10% fetal calf serum, 2 mM glutamine, 100 U/mL penicillin,
100 pg/mL streptomycin and 1% non-essential amino acids (all purchased from PAA Labora-
tories, Linz, Austria) in a humidified atmosphere (5% CO,) at 37°C. The cells were kept in ex-
ponential growth by replating three times a week.

Hypotonic perfusion solutions and cell volumetry

myo-Inositol, sucrose and inorganic salts of the highest purified grade were purchased from
Sigma (Munich, Germany). For cell volumetry, perfusion solutions of varying osmolalities
(100, 125, .. ., 275, 300 mOsm) were used containing either myo-inositol or sucrose as the
major osmolyte. In addition to the organic solute ( ~ 85-285 mM), all perfusion solutions con-
tained 0.9 mM magnesium acetate, 0.1 mM calcium acetate, and 12 mOsm K,HPO,/KHPO,,
pH 7.4. The total osmolality of inorganic electrolytes was ~ 15 mOsm. The solution osmolality
was determined with a cryoscopic osmometer (Gonotec, Berlin, Deutschland).

Cell volume changes were monitored by video microscopy using a flow chamber designed
for rapid medium exchange [23,25]. The chamber, fabricated of PDMS, was mounted on a mi-
croscope slide and sealed with a poly-d-lysine coated glass coverslip. Before measurements,
cells were detached by shake-off without trypsin treatment. An aliquot of cell suspension in iso-
tonic CGM (~ 300 mOsm) at a density of ~ 10> cells/mL was injected into the chamber and
the cells were allowed to settle and to adhere to the chamber floor. The chamber was placed on
the stage of a microscope (Leica Leitz DMRM, Hamburg, Germany) and the cells were viewed
with a 20x objective in transmitted light.

Cell volume changes were induced by perfusing the chamber with an inositol- or sucrose-
substituted solution of varying osmolality (100-300 mOsm). The perfusion rate was set to
20 pL/s, using a syringe pump (KD Scientific, Holliston, USA). The cells were photographed
every 10 s, starting 30 s before and up to 60 min after medium exchange with a CCD camera
(uEYE, IDS GmbH, Obersulm, Deutschland) attached to the microscope. The response of cells
to a strongly-hypotonic sucrose-substituted solution is illustrated by a time-lapse video in the
Supporting material (S1 Video). The volume V of an individual cell was determined from its
cross-section area assuming spherical geometry, using the software Image] (National Institutes
of Health, Bethesda, Maryland). The cell volume was normalized to the original isotonic vol-
ume Vj as: v = V/V,. The mean v values (+ SE, N = 20-40 cells) were calculated from a se-
quence of up to ~ 360 microphotographs and plotted as functions of time. For each
experimental condition, measurements were performed on 2-6 separate cell passages.
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Derivation of the membrane permeability coefficients for myo-inositol

P ino

In addition to experiments involving a single perfusion, a separate set of measurements was
conducted in which the same cell sample was perfused twice. The first perfusion with hypoton-
ic sucrose solution (100-275 mOsm) gave rise, independent of the osmolality, to a rapid initial
cell swelling followed by RVD. The occurrence of RVD implies that the plasma membrane re-
mains impermeable to the disaccharide sucrose over the entire hypotonicity range. At different
time intervals after the first perfusion (e.g. 5, 20 . .. or 40 min) the sucrose solution was re-
placed by an inositol-substituted medium of the same tonicity.

The equiosmotic replacement of sucrose by inositol at tonicities below 200 mOsm not only
abolished RVD but also induced a considerable secondary cell swelling. Unlike the initial hypo-
tonic swelling caused by an osmotic shift (e.g. 300 — 100 mOsm), the secondary swelling oc-
curred under isosmotic conditions, i.e. no osmotic pressure gradient existed across the cell
membrane. In our experiments, the isosmotic cell swelling implies an influx of the major extra-
cellular solute myo-inositol into cells through swelling-activated pathways. In contrast, the is-
osmotic cell shrinkage during RVD involves the release of intracellular electrolytes.

As outlined in the Supporting Material (S1 Text), the isosmotic cell volume changes during
RVD and secondary swelling can be used for the evaluation of membrane permeability coeffi-
cients, respectively, for electrolytes P, and myo-inositol P;,,. From the slope of cell shrinkage
during RVD (dv/dtryp) in a sucrose-substituted solution, we first calculated the P value, for
each osmotic condition, by applying Eq. 1.

R, (Co+C) (d
Pg] — _70( el—’; suc) l (1)
3 C at)

suc

where Ry = 7.9 um is the mean radius of HEK293 cells; the extracellular concentration of elec-
trolytes and sucrose were, respectively, C3, ~ 15mOsm and C’,_ ~ 85 — 285mOsm, according
to the composition of perfusion solutions (see above).

We further determined the rate of secondary swelling dv/dt;,, induced by myo-inositol and

applied Eq. 2 to calculate P;,,:

) 0
"3 c dt

ino

— R_ (Cgl + Cino) (ﬂ) + Pel (2)

where C, ~ 15mOsm and C;, ~ 85 — 285mOsm. Equations 1 and 2 are derived in the Sup-
porting Material section (S1 Text) using the two-parameter formalism [28,29].

The calculated Py, values were plotted against the osmolality and fitted to a logistic sigmoid
function of the form:

P _P + Pmax_pmin (3)
ino min 1 + (C/C5O)W

where Pin, Prax and w are the parameters of the sigmoid. Cis osmolality and Csy is the osmo-
lality at which the myo-inositol permeability was of half-activated.

RNA-Extraction

RNA extraction from hypotonically treated cells was performed using a peqGOLD TriFast kit
(PEQLAB Biotechnologie GMBH, Erlangen, Germany). The adherently growing HEK293 cells
were seeded in 6-well plates (2* 10° cells/well) and grown to 80-90% confluence. To induce hy-
potonic stress, the isotonic culture medium was replaced with diluted CGM (100 mOsm), in
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which the cells were incubated for 10, 20 or 30 min at room temperature. For RNA extraction,
the hypotonic cell samples were lysed with 1 mL TriFast according to the manufacturer’s rec-
ommendations. The RNA pellets were dissolved in 50 pL of nuclease-free water (Sigma). The
concentration of RNA was determined with a NanoPhotometer Pearl (Implen, Munich, Ger-
many). After that, 1 u/uL of RNase inhibitor (RiboLock, Fermentas) was added to the samples
and RNA was immediately used for cDNA synthesis. Isotonic controls were treated similarly,
except for hypotonic treatment.

cDNA Synthesis

A 1-pg aliquot of freshly prepared RNA was reverse transcribed (RT) into cDNA using Rever-
tAid (Fermentas), following the manufacturer’s instructions. The reaction mixtures contained
0.5 mM dNTPs, 5X RT Buffer (Fermentas), 1 u/uL RiboLock Ribonuclease inhibitor (Fermen-
tas) and 25 ng/pL random hexamers (Promega). Prior to cDNA synthesis, RNA samples, ran-
dom hexamers and dNTP’s were incubated at 60°C for 5 min. The reaction was carried out at

42°C for 60 min in a C1000 Thermal Cycler (BioRad, Munich, Germany). After that, the sam-
ples were heated to 70°C for 10 min to denature the enzyme, and then cooled to 4°C.

Semiquantitative RT-PCR

The mRNA levels of the genes encoding SLC5A3 and SLC6A6 were semi-quantified by the
RT-PCR (reverse transcription PCR) method with respect to the mRNA level of transcripts of
B-actin. Freshly prepared samples of cDNA from hypotonically treated cells were used for am-
plification of the genes SLC5A3 and actin using, respectively, the following primer sequences:

SLC5A3 5°-GGATCC(BamHI) ATGAGAGCTGTACTGGACACAGCAGAC-3’ and
5- GGATCC(BamHI)GCTAAGGAGAAATAAACAAACATGAAAATTC-3

8- Actin 5’- GAATTC(EcoRI)GAAGCATTTGCGGTGGACG-3" and 5-GAATTC(EcoRI)
ATGGATGATGATATCGCCGCGCTC-3.

Two pL of cDNA products were typically amplified with 1 unit of Phusion DNA polymerase
(Finnzyme) in the 5x HF buffer provided by the manufacturer and in the presence of 0.25 uM
specific primers (purchased from biomers, Ulm, Germany) and 0.25 mM dNTPs. The opti-
mum temperature for annealing of SLC5A3 primers was determined using a temperature gra-
dient program. Reactions were carried out in a C1000 Thermal Cycler (BioRad, Munich,
Deutschland). A first cycle of 30 s at 98°C was followed by 10 s at 98°C, 20 s at 48°C (SLC5A3)
or 60°C (actin) and 50 s at 72°C for 26 cycles. A final extension step for 5 min at 72°C was fol-
lowed by cooling to 4°C.

The amplified fragments were analyzed using ethidium bromide stained 1% agarose gels in
sodium borate buffer [30]. A DNA molecular weight marker (FastRuler Middle Range DNA
Ladder, Fermentas) was run on every gel to confirm the expected molecular weight of the PCR
products. Images of the gels were acquired using a Gel iX-System (Intas, Gottingen, Deutsch-
land) and quantification of the actin bands intensities were determined by Image] software (US
National Institutes of Health). mRNA expression of SLC5A3 was normalized to B-actin. The
correctness of the amplified SLC5A3 PCR product was verified by sequence analysis (GATC,
Konstanz, Germany).

Cloning

For construction of SLC5A3-EGFP, the SLC5A3 DNA band (30 minutes after hypotonic stress)
from cDNA amplification was extracted from the agarose gel and blunt-end cloned into the

PLOS ONE | DOI:10.1371/journal.pone.0119990 March 10, 2015 5/22



@’PLOS | ONE

Swelling-Activated Myo-Inositol Transport

cloning vector pJET (Fermentas) using the CloneJET PCR Cloning Kit (Fermentas). After-
wards the insert was cloned into the vector pPEGFPN1 (Clonetech) in frame with the GFP cod-
ing sequence using the BAMHI restriction sites (restriction sites at the insert were delivered by
the amplification primers). The correctness of SLC5A3-EGFP construct was verified by se-
quencing (GATC, Konstanz, Deutschland).

Immunoblotting

Membrane protein extraction from hypotonically treated and isotonic cell samples was carried
out using Mem-PER Plus Membrane Protein Extraction Kit (Pierce, Perbio, Bonn, Germany).
The cells were seeded out into T25 cell culture flasks and grown to ~90% confluence. Hypo-
tonic stress was induced by substitution of the isotonic CGM with diluted 100-mOsm CGM.
The cells were exposed to hypotonicity for 10, 20, and 30 min at room temperature. Thereafter,
membrane proteins were extracted from isotonic and hypotonic samples, according to the
manufacturer’s recommendations. Protein concentrations were determined using the Roti-
Quant Universal assay (Roth, Karlsruhe, Germany). For each experimental condition, equal
amounts of protein (~ 10 pg) were subjected to SDS-PAGE on 10% polyacrylamide gels and
blotted onto a nitrocellulose membrane (life technologies, Darmstadt, Germany). After the
transfer, the membranes were stained with Ponceau-S solution (0.5% Ponceau-S in 1% acetic
acid) and analyzed as described elsewhere [31]. The Ponceau-S stained membranes were
scanned with a flatbed scanner (Canon LiDE 110), and the blot images were analyzed with the
Image] software. The blots were then blocked with 5% bovine serum albumin in TBST (1%
Tween-20 in TRIS buffered saline), for 1h at room temperature. Thereafter the blots were incu-
bated with the primary antibody rabbit anti-SLC5A3 (ab110368; abcam, Cambridge, UK;
1:1000) over night at 4°C. After washing, the blots were incubated for 1 h at room temperature
with a horseradish peroxidase conjugated anti-rabbit antibody (New England Biolabs; 1:2000).
Bound antibodies were visualized with tetramethyl benzidine (TMB) solution for immunoblots
(life technologies, Darmstadt, Germany). Western blots were scanned (Canon LiDE 110), and
band densities were determined using the ImageJ software. The results were corrected for back-
ground and protein loading differences (determined by Ponceau-S staining).

Confocal laser microscopy

HEK293 cells were transiently transfected with the SLC5A3-EGFP construct using FuGene HD
(Promega) according to the manufacturer’s instructions, in p-slide flow chambers (IBIDI, Mu-
nich, Germany). Microscopic analysis was performed ~ 30 hours after transfection.

Confocal fluorescence images were taken with an LSM 710 using a Plan-Apochromat 63x/
1.40 oil immersion objective (Zeiss, Jena, Germany) and argon laser light excitation at 488 nm.
Fluorescence intensity distribution was quantified using Image]J software. The cross section
through a hypotonic cell was selected to match that for isotonic conditions. Hypotonicity was
applied to cells by replacing isotonic CGM with 100-mOsm myo-inositol-substituted medium.
Confocal images were analyzed with the plot profile function of ImageJ software.

dSTORM (direct stochastic optical reconstruction microscopy)

To investigate the amount of native SLC5A3 protein present in the plasma membrane of
HEK?293 cells we used single-molecule based localization microscopy by dSTORM [26,27,32].
The experimental setup for ASTORM was described in detail previously [27,33]. Prior to the
measurements, 5*10* cells were seeded on poly-d-lysine coated eight-well Lab-Tek IT cham-
bered cover glasses (Nunc, Wiesbaden, Germany). Cells were detached by shake-off and rins-
ing with fresh CGM, without trypsin treatment. Cells were allowed to settle and to adhere for
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1 h at 37°C, and then washed twice with PBS. Hypotonic shock was applied by substitution of
isotonic PBS with 100-mQOsm inositol- (or sucrose-) substituted medium. Control isotonic
samples were incubated in PBS. Cell fixation without permeabilization was performed by treat-
ment with 4%(v/v) formaldehyde (Sigma) for 30 min.

Cells were then washed with PBS, and incubated for 1h at room temperature with 5% (w/v)
BSA (Sigma) in PBS to prevent nonspecific antibody binding. Afterwards, cells were incubated
for 30 min in 5% (w/v) BSA in PBS comprising 1:500 mouse mAB anti-SLC5A3 clone 3A6
(SAB1402920, Sigma) at room temperature. Specificity of the primary antibody was verified by
comparing the SLC5A3-EGFP-signal with the fluorescence signal derived from immunolabel-
ing with Alexa Fluor 568 (data not shown). According to the SLC5A3 protein structure pre-
dicted in [34] the primary antibody recognizes an extracellular epitope. The cells were then
washed thoroughly with PBS and incubated in Alexa Fluor 647-conjugated F(ab’)2 fragments
of goat anti-mouse-IgG (A-21237, Invitrogen) 1:200 diluted in 5% (w/v) BSA in PBS for
20 min at room temperature. The negative control sample was incubated with the secondary
antibody alone. Afterwards cells were thoroughly washed with PBS and post-fixated in 4%
(v/v) formaldehyde in PBS for 10 min.

dSTORM of Alexa Fluor 647 was performed in 100 mM B-mercaptoethylamine (MEA;
Sigma) in PBS, pH 7.4-8.0 (with KOH), containing an oxygen scavenger system of 5-10 u/ml
glucose oxidase (Sigma), ~ 120 u/ml catalase (Sigma) and 4% w/v glucose [27]. To illuminate
only a thin membrane layer highly inclined illumination mode was used. For excitation of
Alexa Fluor 647 a laser emitting at 639 nm (Genesis MX STM 640; Coherent, USA) was used.
For each dSTORM image, 15.000 frames were recorded with an exposure time of typically
15 ms and at a frame rate of ~ 65 Hz and constant irradiation intensity ranging between 1 and
5kW cm™.

For data processing and image reconstruction, the open access software for single-mole-
cule-based localization microscopy rapidSTORM 3.2 [35,36] was used as previously described
[27]. For analysis only fluorescent spots that contain more than 769 photons were used. Multi-
fluorophore events were identified by point-spread function analysis [36] and discarded. For
each cell, the density of Alexa Fluor 647 localizations was calculated as the number of localized
fluorophores per cellular membrane cross-section area, determined from the corresponding
transmitted light image.

Results
Swelling activated myo-inositol permeability

In agreement with previous studies on numerous mammalian cell lines [23,25], hypotonically
swollen HEK293 cells are capable of RVD in strongly hypotonic sucrose-substituted solutions
(Fig. 1). As seen in Fig. 1 (filled symbols), 100-mOsm sucrose solution caused the cells to swell
rapidly within ~ 2-3 min from their isotonic volume (v, = 1) to a transient maximum
Vmax=1.6. After that the cells shrank gradually and recovered their original isotonic volume
within ~ 20 min after hypotonic shock. The occurrence of RVD clearly shows that, despite
their permeability to cytosolic electrolytes, swelling-activated membrane pathways in HEK293
cells are impermeable to the disaccharide sucrose.

At different time intervals after application of 100-mOsm sucrose solution, i.e. during and
after RVD, cells were perfused with a myo-inositol-substituted solution of the same osmolality
(arrows in Fig. 1). Although no osmotic shift was applied, the equiosmotic replacement of su-
crose by myo-inositol during RVD gave rise to a rapid secondary swelling of cells, as illustrated
by the empty symbols in Fig. 1. The observed isosmotic swelling indicates that the myo-inositol
influx rate into cells exceeds that of the RVD-related efflux of intracellular solutes. The fastest
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Fig 1. Changes in the normalized volume v = V/V, of HEK293 cells in response to sequential application of sucrose and myo-inositol solutions of
the same osmolality of 100 mOsm. The cells were bathed initially (time < ~ 30 s) in isotonic growth medium (300 mOsm) and then exposed to a 100-
mOsm sucrose solution. The strongly hypotonic sucrose solution (filled symbols) caused fast cell swelling to a transient maximum volume v o« of ~ 1.6 within
the first 2-3 min. After the initial swelling, the cells underwent RVD, i.e. they gradually shrank to reach the original isotonic volume (vo =~ 1) within ~20 minin
the presence of sucrose. The replacement of sucrose by an equiosmotic amount of myo-inositol (arrows) abolished RVD and caused secondary cell swelling
(empty symbols). The rate of secondary swelling (Av/At;n, red fitted lines) decreased with time during and after RVD (7—-35 min). The addition of myo-inositol
40 min after hypotonic shock did not cause any significant cell swelling. Each data point represents the mean + SE of 25-42 individual cells measured in 2—-3
independent experiments. For each time point of myo-inositol addition, the rates of RVD Av/Atgyp (blue lines) and the rates of secondary swelling Av/At;,,
(red lines) were determined to calculate the permeability coefficients for myo-inositol P;,, by applying Egs. 1 and 2. The inset illustrates the decay of Pj,, with
time during RVD.

doi:10.1371/journal.pone.0119990.9001

secondary swelling with a rate Av/At;,, of ~1.8 10~ s™ occurred if inositol was added shortly
after the onset of RVD (t ~ 7 min). Thereafter, Av/At;,, progressively decreased the later inosi-
tol was applied, e.g. to ~ 1.5 107 s™" at 20 min. After ~40 min, 100-mOsm myo-inositol did
not cause any significant cell swelling. The Av/At;;,, values were determined from the slopes of
the red fitted lines (Fig. 1). The corresponding RVD rates Av/Atgyp (indicated by blue lines)
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were ~8 107%,2 10* and 0 s™', respectively, for the time intervals 7, 20, and 40 min after
hypotonic shock.

By applying Eqs. 1 and 2 to the Av/Atgryp and Av/At;,, data derived from the volumetric
curves shown in Fig. 1, we calculated P;,, values during RVD and plotted them against the
total time of hypotonic exposure (inset in Fig. 1). For these calculations we used a mean radius
of HEK293 cells Ry = 7.9 pm, C}, = 100mOsm, and C, = 15mOsm, according to our experi-
mental conditions. Shortly after the onset of RVD (¢ ~ 7 min), P;,, was ~ 3.3 nm/s. After that,
P, decreased steadily with time and vanished at ~ 40 min after hypotonic shock. These data
clearly show that after a transient activation of myo-inositol pathways by hypotonic swelling,
cells restore their original membrane impermeability to myo-inositol during RVD.

To analyze the impact of osmolality on swelling-activated membrane permeability to myo-
inositol, we conducted volumetric experiments by varying the tonicity of perfusion solutions
over a wide range, i.e. from mildly hypotonic (e.g. 275 mOsm) to strongly hypotonic conditions
(100 mOsm). In the experiments illustrated in Fig. 2A, the cells were first exposed to a hypo-
tonic sucrose solution, which was replaced, shortly after the onset of RVD (t ~ 5 min), by a
myo-inositol solution of the same osmolality. For comparison, Fig. 2B shows the volumetric
data of cells treated with hypotonic sucrose solutions only. Independent of osmolality, the di-
saccharide allowed RVD in HEK293 cells over the entire tonicity range studied (Fig. 2B).

Under mild hypotonic conditions of 200-275 mOsm, isosmotic replacement of sucrose by
myo-inositol had little, if any, effect on the RVD of HEK293 cells (open symbols in Fig. 2A).
But at osmolalities below 175 mOsm, myo-inositol not only abolished RVD but also induced
secondary cell swelling (filled symbols in Fig. 2A). The cells achieved the fastest swelling rates
(Av/At;,,) not immediately but with a delay of about 4-min after application of myo-inositol.
After that (t > 9 min), cell volume increased linearly with time. Therefore, we derived the Av/
Aty values for the time interval 9-14 min after hypotonic shock. At tonicities between 175
and 275 mOsm, cell swelling was negligible (Av/At;,, =~ 0), whereas at 150, 125 and 100 mOsm
the Av/At;,, values were 0.2 107, 1.8 107 and 1.9 10™* s, respectively. The corresponding
rates of RVD (Av/Atryp), derived from the data shown in Fig. 2B for the time interval 10 +
2 min, were ~4 107%,6.8 107%,7.8 10™*s™" in 150-, 125- and 100-mOsm sucrose solutions,
respectively.

By substituting the Av/Atgyp values into Eq. 1, we first calculated the permeability coeffi-
cients for electrolyte P, [nm/s] during RVD at different osmolalities. For these calculations we
used C'; = (100 — 275)mOsm and C’ = 15mOsm, according to our experimental conditions.
After that, the permeability coefficients for myo-inositol Py, [nm/s] were calculated by apply-
ing Eq. 2 and using the corresponding P, values and Av/At;,, data of myo-inositol-mediated
swelling. The dependence of P;,, on osmolality is illustrated in Fig. 3. In contrast to the inset in
Fig. 1, which illustrates the reduction of P;,, with time during RVD in 100-mOsm sucrose solu-
tion, Fig. 3 shows near-maximal P;,, values revealed shortly after the onset of RVD in cells ex-
posed to a wide range of tonicities (Fig. 2).

As seen in Fig. 3 (symbols), P;,, was relatively low, i.e. between ~0and ~ 0.3 nm/s, under
mild hypotonic conditions of 175-275 mOsm. But decreasing osmolality below 175 mOsm re-
sulted in a rapid increase of Py, €.g. to ~ 3 nm/s at 100 mOsm. Fitting the data to a sigmoidal
function (Eq. 3) yields a Csq value of 144 + 10 mOsm corresponding to the tonicity of half-
maximal activation of myo-inositol permeability. The inset in Fig. 3 shows the same P;,, data
plotted versus the cell volume v = V/V, during myo-inositol application. Fitting with Eq. 3
gives a vsq value of ~ 1.26, indicating that half-activation of P;,, was induced by an about 26%
increase in volume of hypotonically swollen cells.
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Fig 2. Volume changes of HEK293 cells in response to solutions of varying osmolality and
composition. Attime ~ 30 s, the cells were first transferred from isotonic growth medium to a sucrose-
substituted solution having osmolality of 100, 125, ... 250 or 275 mOsm. Thereafter, the hypotonic sucrose
solutions were replaced at time ~5 min with myo-inositol solutions of the same osmolalities (A). In contrast,
the cells were exposed for 20 min to sucrose solutions only (B). After the initial swelling in the presence of
sucrose, the cells were capable of RVD over the entire hypotonicity range (B). A nearly complete RVD also
occurred in slightly hypotonic solutions of myo-inositol (A, ~175-275 mOsm). Application of more diluted
myo-inositol solutions (100—150 mOsm; t =~ 5-9min) considerably inhibited cell shrinkage via RVD.
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Thereafter (t = 9—20 min) the cells exhibited sustained secondary swelling (A), which is indicative of myo-
inositol uptake by cells. For each tonicity, the rates of RVD Av/Atryp and secondary swelling Av/At;,, were
used to calculate the permeability coefficients for electrolytes P, and inositol by applying Egs. 1 and

2, respectively.

doi:10.1371/journal.pone.0119990.9002

Intracellular localization of SLC5A3-EGFP affected by hypotonicity

In the following experiments we address the solute carrier protein SLC5A3 as a possible candi-
date for a swelling-activated transporter of myo-inositol in cells exposed to severe hypotonic
conditions. We have shown previously [23-25] that transport pathways for a range of small
carbohydrate molecules including the polyols myo-inositol and sorbitol are inserted into the
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Osmolality, mOsm

Fig 3. Impact of hypotonicity on the myo-inositol permeability P;,,, in HEK293 cells. The P;,, values were calculated using Eq. 2 from the rates of
secondary swelling, using the volumetric data shown in Fig. 2A. The fit of Eq. 3 to the data yielded a Csq value of 144 £ 10 mOsm, i.e. the tonicity at which the
myo-inositol permeability was half-activated. In the inset, the same P;,, data are plotted as function of the cell volume at the time point of myo-inositol
application. Curve fitting (Eq. 3) shows that P;,, was half-activated as cells swelled by about 26% (vso = 1.26+0.02).

doi:10.1371/journal.pone.0119990.g003
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Fig 4. Confocal fluorescence imaging of HEK293 cells overexpressing the fusion protein SLC5A3-EGFP. The images A and B were taken,
respectively, under isotonic conditions and 10 min after application of a strongly hypotonic 100-mOsm myo-inositol-substituted solution. Hypotonic cell
swelling is clearly seenin (B). The insets and the intensity diagrams (C and D) illustrate the impact of hypotonic stress on the intracellular distribution of the
fusion protein. Comparison of the diagrams C and D reveals a marked hypotonicity-mediated depletion of the protein in the perinuclear regions along with its
increase in the peripheral cytoplasm. Together, these findings suggest that hypotonic swelling caused translocation of a large portion of SLC5A3-EGFP
towards the plasma membrane.

doi:10.1371/journal.pone.0119990.9004

plasma membrane from cytosolic vesicles via swelling-mediated exocytosis in strongly hypo-
tonic solutions (~ 100 mOsm). This finding prompted us to analyze the impact of hypotonic
shock on the intracellular localization of the myo-inositol transporter SLC5A3. To this end, we
constructed an SLC5A3-EGFP fusion protein and overexpressed it in HEK293 cells by tran-
sient transfection. Thirty hours after plasmid transfection, we evaluated the expression and lo-
calization of SLC5A3-EGFP in cells by confocal laser scanning microscopy. Endogenous
expression of SLC5A3 mRNA in HEK293 cells was proved in separate experiments using semi-
quantitative RT-PCR (see below).

As evident from the microphotographs shown in Fig. 4, the transfected cells express the fu-
sion protein mainly in the cytoplasm, whereas the nuclei are practically devoid of fluorescence.
Moreover, under isotonic conditions (Fig. 4A), the fluorescence is mainly localized in the endo-
plasmic reticulum and close to the nuclear envelope, which seems to be typical for
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overexpressed membrane proteins [37]. In contrast, the dim fluorescence of the peripheral cy-
toplasm suggests that only a small portion of the fusion protein resides in/near the plasma
membrane in control isotonic cells. The subcellular protein distribution in isotonic cells, pre-
sented by the intensity diagram in Fig. 4C (along the radial red-colored lines indicated in

Fig. 4A) clearly shows a major perinuclear peak with a magnitude of ~85 a.u. at x ~ 2.2 um
and a minor shoulder at x &~ 1.2 pm corresponding to the peripheral cytoplasm/

plasma membrane.

Besides the expected increase in cell size (compare Fig. 4B vs 4A), the exposure of cells to a
strongly hypotonic myo-inositol solution (100 mOsm) causes marked changes in the subcellu-
lar localization of SLC5A3-EGFP. Comparison of the radial intensity distributions revealed
that the perinuclear fluorescence (x~2 pm in Fig. 4C and 4D) decreases by ~50%, i.e. from the
isotonic 85 a.u. to the hypotonic 40 a.u. At the same time, the plasma membrane peak increases
from ~ 20 to 30 a.u. The intensity diagrams clearly show that hypotonic shock leads to consid-
erable displacement of SLC5A3-EGFP from the perinuclear area towards the plasma mem-
brane. This effect is also evident from the magnified views of the marked box areas given in the
insets of Fig. 4A and 4B.

Hypotonicity-induced changes in SLC5AS protein associated with the
plasma membrane

The fluorescence images in Fig. 4 suggest, but do not definitely prove, that hypotonic swelling
is accompanied by the insertion of SLC5A3-EGFP into the plasma membrane. Therefore, we
further analyzed the impact of hypotonic stress on the amount of native SLC5A3 protein asso-
ciated with the plasma membrane of HEK293 cells by super-resolution imaging. In the experi-
ments illustrated by Fig. 5, we exposed the cells to a 100-mOsm inositol solution for 10 and

20 min. Cells treated with isotonic PBS served as control. To ensure selective labeling of mem-
brane-associated SLC5A3 proteins, we used a primary antibody directed against an extracellu-
lar epitope of SLC5A3 protein. Prior to dASTORM imaging, we applied a secondary antibody
conjugated with the photoswitchable fluorescent dye Alexa Fluor 647.

As illustrated by the representative images in Fig. 5, hypotonic cells exhibit an increased
amount of membrane-associated SLC53A molecules, as compared to isotonic control. The
amounts of SLC53A localizations found in single cells, such as shown in in Fig. 5, were subject
to some variation. Therefore, we compared the mean numbers of SLC53A localizations per
unit membrane area (localization densities, [loc/ pmz]) from 8-16 individual cells for each os-
motic condition. As evident from the bar graph in Fig. 5, the mean density of SLC5A3 localiza-
tions in isotonic cells is comparable to the background level observed after staining with the
secondary antibody only.

Application of a strongly hypotonic myo-inositol solution for 10 and 20 min, respectively,
results in an ~ 3 and 6-fold increase in localization density. The observed increase with time
might have been associated with the continuous swelling of cells exposed to 100-mOsm myo-
inositol (see Fig. 2B), which was used for the ASTORM analysis illustrated in Fig. 5. The mem-
brane-associated SLC5A3 in cells undergoing RVD in 100-mOsm sucrose showed completely
different kinetics (Supporting information, S1 Fig.). Thus, comparison of the ASSTORM and
volumetric data reveals that 5 min after hypotonic exposure transiently swollen cells (V. =
1.6, Fig. 1B) exhibit the highest density of SLC5A3 localizations (1.5 10> loc/ um?, S1 Fig.). But
during RVD, e.g. 10 min after hypotonic shock, the level of membrane-associated SLC5A3 de-
creases to 0.4 10° loc/pm2 (S1 Fig.) as the cells shrink to v;o = 1.2 (see Fig. 1).
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Fig 5. dSTORM imaging of immunolabeled SLC5A3 protein in the plasma membrane of HEK293 cells under isotonic and hypotonic conditions.
Images of the same cells in transmitted light (TL) are also shown. From the dSTORM images (reconstructed from 15,000 single frames), the surface
membrane density of SLC5A3 localizations [loc/um?] were identified in individual cells. The bar graph shows the impact of hypotonic stress on the surface
membrane density of SLC5A3 protein localizations. The data are means (+SD) from 8—16 individual cells for each osmotic condition and hypotonic stress
duration. The differences in the mean values between the isotonic control and the two hypotonic samples were statistically significant (as denoted by *; P <
0.05), according to the Mann-Whitney test conducted using the Software Origin 9 (Microcal, Northampton, MA). The difference between the two hypotonic
samples (10 vs 20 min) was not significant (n.s.).

doi:10.1371/journal.pone.0119990.g005
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Impact of hypotonicity on the expression of SLC5A3

The results presented above clearly show that acute hypotonic stress induces massive changes
in the cell membrane permeability to myo-inositol within few minutes (Figs. 1-3). These
changes are very likely associated with a rapid incorporation of the myo-inositol transporter
SLC5A3 into the plasma membrane from the preexisting cytosolic pool (Figs. 4 and 5). To
prove whether SLC5A3 gene transcription and translation are also triggered by hypotonicity
we analyzed the impact of hypotonic treatment on the expression of SLC5A3 gene. Prior to
RNA and protein extractions, aliquots of HEK293 cells were exposed to hypotonic 100-mOsm
CGM. At different time intervals of hypotonic treatment (10, 20 and 30 min), the total mRNA
and membrane proteins were extracted and analyzed, respectively, by semiquantitative RT-
PCR and Western blot. As seen in Fig. 6 (upper part), the expression of mRNA for SLC5A3
was negligible in isotonic control cells, whereas Western blot analysis revealed a detectable iso-
tonic level of SLC5A3 protein.

Incubation of HEK293 cells in hypotonic solution for 10-30 min gave rise to a significant
upregulation of the expression of SLC5A3 mRNA (Fig. 6, upper part). Within the same time
interval, hypotonic stress also led to a moderate increase in the SLC5A3 protein level as illus-
trated by the representative Western blot in Fig. 6 (lower part). After hypotonic treatment for
10, 20 and 30 min, the normalized SLC5A3 protein band densities were increased with respect
to isotonic control, respectively, by 43+3%, 39+14%, and 21+4% (means+tranges of two
independent experiments). Together, the results in Fig. 6 demonstrate a significant hypotonic
activation of the SLC5A3 gene expression in HEK293 cells at both transcriptional and transla-
tional levels.
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Fig 6. Hypotonic stress-induced upregulation of SLC5A3 at the mRNA and protein level in HEK293 cells revealed by semiquantitative RT-PCR and
Western blot, respectively. Prior to RNA and protein extractions, the cells were incubated in 100-mOsm CGM for 10-30 min. Control cells were kept in
isotonic CGM. The SLC5A3 mRNA level in isotonic sample was negligible, whereas hypotonicity induced substantial amounts of SLC5A3 mRNA. As with
RT-PCR, Western blot analysis shows increased amounts of SLC5A3 protein (by up to ~40%, see text) in hypotonic samples. For RT-PCR, B-actin was
used as a template loading control (see Supporting information, S2 Fig., upper image). Prior to immunoblotting, reversible Ponceau-S protein staining has
been used as a loading control (S2 Fig., lowerimage).

doi:10.1371/journal.pone.0119990.g006
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Discussion

The volumetric data presented in Figs. 1 and 2A clearly show that below a tonicity threshold of
~200 mOsm myo-inositol causes marked secondary swelling of HEK293. In sharp contrast,
the disaccharide sucrose allows the cells to accomplish RVD even under severe hypotonic con-
ditions (Fig. 1 and 2B). The secondary swelling is a clear-cut indication of myo-inositol influx
through swelling-activated pathways. This explanation is consistent with previous reports
demonstrating that various small solutes, including monomeric carbohydrates, amino acids,
organic and inorganic ions inhibit RVD via swelling-activated uptake of these molecules by
cells [25,38,39].

As evident from Fig. 2A, a significant activation of myo-inositol permeability requires at
least a 50% reduction of external osmolality from 300 to 150 mOsm. This finding corroborates
the results of previous studies demonstrating that in various cell lines/types the transport of
myo-inositol, sorbitol and other monomeric carbohydrates usually occurs when cells are ex-
posed to strongly hypotonic solutions. For example, human neuroblastoma cells have been re-
ported to release >H-inositol at tonicities of 200 mOsm and below [40]. Similarly, the efflux
rate of *H-inositol from primary rat astrocytes has been found to increase rapidly with decreas-
ing osmolality from 180 to 100 mOsm [41], which agrees very well with our P;,, data presented
in Fig. 3. Consistent with the efflux studies, the influx of myo-inositol and sorbitol into Jurkat
lymphocytes has been activated by cell swelling in strongly hypotonic 100-mOsm solution, but
not at 200 mOsm [23,25]. Moreover, various monomeric sugars (glucose, deoxy-glucose, galac-
tose) and small polyethylene glycols (PEG300-400) also permeate the plasma membrane of a
wide range of cell types (e.g. Jurkat lymphocytes, human glioblastoma, human dendritic cells)
exposed to strongly hypotonic solutions of ~75-100 mOsm [24,42-44].

In the present study, the plasma membrane of HEK293 cells swollen by 60-70% (Vyax~21.6-
1.7; Figs. 1 and 2) in a 100-mOsm solution exhibits a permeability coefficient for myo-inositol
Py, of ~3 nm/s (Fig. 3). Interestingly, this P;,, value derived here from the kinetics of cell
swelling driven by myo-inositol influx agrees well with the permeability coefficient of ~ 1.5
nm/s obtained for the efflux of H>-labeled sorbitol from IMCD cells swollen by ~50% [45].
Moreover, transiently activated by cell swelling, the membrane permeability to both solutes de-
cays rapidly during RVD, as illustrated for myo-inositol by the inset in Fig. 1 and for H*-sorbi-
tol by Fig. 1 in [45].

Hypotonicity induced changes in the expression/localization of the myo-inositol transporter
SLC5A3 revealed here by confocal fluorescence microscopy (Fig. 4), dSTORM (Fig. 5) and
mRNA determination (Fig. 6) strongly suggests this protein as a possible pathway underlying
the swelling-activated membrane permeability to myo-inositol (Figs. 1-3). SLC5A3 protein,
aka Na" myo-inositol transporter SMIT, has been reported to be activated in response to hy-
pertonic conditions [13,46,47]. In the present study we provide the first evidence that acute hy-
potonic stress induces massive changes in the expression and intracellular localization of
SLC5A3. These changes include (i) the displacement of a large portion of the protein from the
cytosolic compartments towards the plasma membrane (Fig. 4), (ii) the incorporation of
SLC5A3 into the plasma membrane (Fig. 5), and (iii) upregulation of SLC5A3 gene expression
(Fig. 6). An important finding is that both the swelling-activated membrane permeability and
SLC5A3 protein displacement occurs on the same time scale, i.e. around 10 min, after
hypotonic shock.

dSTORM analysis of membrane-associated SLC5A3 reveals ~ 2 10° fluorophore localiza-
tions per um? in HEK293 cells exposed for 10 min to 100-mOsm myo-inositol (Fig. 5). Cells
treated with 100-mOsm sucrose exhibit a much lower SLC5A3 density (~2 10* loc/-ym?, S1
Fig.). The discrepancy is most likely due to the very different cell volume responses to strongly
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hypotonic myo-inositol and sucrose solutions, respectively, in which cells exhibit secondary
swelling (Fig. 2A) and accomplish RVD, during which the myo-inositol permeability rapidly
decays (Fig. 1).

Although fluorescence labeling of SLC5A3 with primary and secondary antibodies is neither
quantitative nor stoichiometric, the observed localization densities can serve as a first useful es-
timate for the number of transporter molecules per unite membrane area (ng;c). Assuming
that in our experiments the membrane-associated SLC5A3 provided the major route for the
uptake of myo-inositol by hypotonically swollen cells, we can assess the myo-inositol transfer
rate by a single SLC5A3 transporter. The transporter rate is denoted hereafter as k;;,, [myo-ino-
sitol molecules s™']. The following equation relates the molar myo-inositol flux J [mol s~' m ]
through the membrane to myo-inositol permeability P;,, [m s, transporter rate k;,, and
SLC5A3 surface density ngy c:

Jino = PingACiny = iyt /N, (4)
where N, stands for the Avogadro constant (6.02 10%* mol ™). Equation 4 transforms into the
following expression for ki

Kino = PingACi,oNoy /1, (5)
To calculate k;,,, we used a P;,, value of 3 nm/s and a membrane surface density of SLC5A3,
nsrc = (0.2-2)x10° proteins/ pmz, both derived for HEK293 cells, respectively, from the volu-
metric and dSTORM experiments (Figs. 3 and 5). The initial difference in inositol concentra-
tion across the membrane Ac;,, was ~ 85 mmol/L (see Materials and Method). Substitution of
these experimental data into Eq. 5 yields an estimate for the transporter rate k;,, of ~ 80-800
myo-inositol molecules/s.

Until now SLC5 proteins with known functions have commonly been analyzed by
electrophysiological techniques because these proteins can operate as electrogenic cotranspor-
ters [48]. Particularly, the SLC5A3 protein expressed in Xenopus oocytes has been reported to
cotransport myo-inositol with a K, of ~50 pM and Na™ with a K, in the 10-mM range
[15,48]. On the other hand, members of the SLC5 family are also known to behave as Na™ uni-
porters, solute and water channels [15]. In addition to the reported mechanisms, the results of
our volumetric experiments conducted in Na*-free solutions (Figs. 1-3) suggest the facilitated
diffusion (uniport) as the most likely mechanism for the SLC5A3-mediated influx of myo-ino-
sitol in the presence of large extracellular concentrations of this solute.

As pointed out elsewhere [49], the rate of solute translocation across the membrane is an
important experimental criterion distinguishing transporters from channels. Whereas a single
ion channel usually allows the passage of 10°~10° ions/s, a membrane transporter operates at a
much lower rate, typically within the range of 10?-10° solute molecules/s (see [49], p. 274).
Judging from the moderate transfer rate of 80-800 substrate molecules/s found here, SLC5A3
protein appears to function as a transporter rather than a channel.

Besides the effects on the membrane permeability and SLC5A3 localization discussed above,
hypotonic shock induces a marked increase in the expression of SLC5A3 gene at both tran-
scriptional and translational levels (Fig. 6). Interestingly, the increase in gene activity occurs on
a relatively short time scale within 10-20 min after hypotonic shock (Fig. 6), i.e. within the
same time range as the observed changes in membrane permeability (Figs. 1-3) and SLC5A3
protein localization density (Figs. 4-5). The short-term hypotonic upregulation of SLC5A3
gene expression observed here might be a transient phenomenon, since a long-term hypotonic
treatment (e.g. for 3-18 h) leads to a strong downregulation of SLC5A3 mRNA in mammalian
cells [19].
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Fig 7. A putative mechanism of SLC5A3-mediated myo-inositol release during RVD. A: Under isotonic conditions the SLC5AS protein is mainly
localized in the cytosolic vesicles and its mMRNA level is low. The plasma membrane permeability to SOOs and electrolytes is poor. B: Exposure of cells to a
strongly hypotonic solution, e.g. 100-mOsm sucrose, causes rapid volume increase followed by cell shrinkage via RVD (see Fig. 1). The swelling-associated
increase in the plasma membrane area is achieved (i) by unfolding of microvilli and (ii) by exocytotic fusion of cytosolic vesicles [23]. The fusion of vesicles
carrying SLC5A3 protein leads to the incorporation of this transporter into the plasma membrane. The SLC5A3-mediated efflux of myo-inositol and related
SOO contributes to cell shrinkage (RVD) and restoration of the original isotonic cell volume. C: During RVD, the cells recover the original membrane
impermeability to myo-inositol (Fig. 1), presumably, via the endocytosis of excessive plasma membrane along with reinternalization and, possibly, lysosomal
degradation of SLC5A3. The increased mRNA and protein expression of SLC5A3 (Fig. 6) suggest that de novo synthesis of SLC5A3 occurs to restore the
depleted cytoplasmic pool of the transporter.

doi:10.1371/journal.pone.0119990.g007

Taken together, our data provide several lines of evidence that the myo-inositol transporter
SLC5A3 is activated by an acute hypotonic shock. In view of the large cytosolic concentrations
of myo-inositol in mammalian cells (~1 mM) [25], this carrier protein can play an important
role in the RVD process in a variety of cell types and lines. During RVD, SLC5A3 can provide a
route not only for the release of cytosolic myo-inositol, but also for a wide range of related mo-
nomeric carbohydrates, including glucose, galactose, etc., as demonstrated for this protein ex-
pressed in Xenopus oocytes [22].

Based on the results presented here and previous studies [23,24] we propose the following
model for the involvement of SLC5A3 in the RVD process (Fig. 7). The model includes several
events triggered by the initial cell swelling in response to a tonicity decrease below a threshold
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of ~150 mOsm (Fig. 3). In the first step, the membrane area increases via the swelling mediat-
ed exocytosis (fusion) of cytosolic vesicles [23]. The incorporation of SLC5A3 proteins from
vesicles renders the plasma membrane permeable to myo-inositol. In the absence of extracellu-
lar SOOs, the cells undergo RVD by releasing myo-inositol and related compounds from the
cytosol. In 100-mOsm sucrose medium, the cells accomplish RVD within 20 min after hypo-
tonic shock (Fig. 1B). During RVD, the cells recover the original membrane impermeability to
myo-inositol (Fig. 3), presumably, via the endocytosis of excessive plasma membrane along
with re-internalization and, possibly, lysosomal degradation of SLC5A3.

Exocytosis and vesicular fusion appear to be common activation mechanisms among the
SLC family members. Many physiologically important SLC transporters, including the glucose
transporter GLUT4 (SLC2A4), as well as the neurotransmitter transporters SLC18A1,
SLC18A2 and SLC18A3 are known to be regulated by exocytosis [50,51]. The betaine-GABA-
transporter SLC6A12 (BGT-1), involved in the transport of the SOO betaine, has been shown
to be relocated from cytosol to the plasma membrane upon hypertonic stimulation [52]. Other
SLC-proteins operating as SOO transporters (e.g. SLC6A6, SLC6A12, etc.) can also be expected
to be activated during cell volume regulation via similar mechanisms involving exocytosis.

In conclusion, several experimental approaches, including cell volumetry, EGFP tagging,
immunocytochemistry, mRNA determination and Western blot analysis, confocal and super-
resolution fluorescence microscopy used here provided new insights into the mechanisms of
swelling-activated transport of the small organic osmolyte myo-inositol. Whereas the volumet-
ric data yielded information on the osmotic thresholds for membrane permeability, the combi-
nation of confocal and subdiffraction-resolution microscopy were useful for monitoring the
hypotonicity-induced changes in the intracellular distribution of the myo-inositol transporter
SLC5A3. Although this study focuses on the hypotonically induced uptake of myo-inositol,
similar regulatory mechanisms for the transport of structurally dissimilar organic solutes medi-
ated by different SLC transport systems can also be operational in a wide range of mammalian
cell types.

Supporting Information

S1 Fig. dSTORM imaging of immunolabeled SLC5A3 protein in the plasma membrane of
HEK?293 cells under isotonic (PBS) and hypotonic conditions. In these experiments, the cells
were treated with a strongly hypotonic 100-mOsm sucrose solution for 5 and 10 min. In con-
trast to the experiments with 100-mOsm myo-inositol presented in Fig. 5, the cells underwent
RVD in the presence of the disaccharide sucrose, as evident from Fig. 1B. (For further detail see
Legend to Fig. 5)

(TTF)

S2 Fig. Loading controls for semiquantitative RT-PCR (B-actin) and Western blot (Pon-
ceau-S staining) analyses. For further detail see text and Legend to Fig. 6.
(TIF)

S1 Video. A time-lapse video clip illustrating the response of HE293 cells to a strongly-hy-
potonic sucrose-substituted medium. The cells were bathed initially in isotonic growth medi-
um (300 mOsm) and then exposed (at zero time) to a 100-mOsm sucrose solution.

(AVI)

S1 Text. Model of swelling-activated myo-inositol transport
(DOCX)
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