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Abstract

Background—Although obesity is associated with breast cancer incidence and prognosis, the 

underlying mechanisms are poorly understood. Identification of obesity-associated epigenetic 

changes in breast tissue may advance mechanistic understanding of breast cancer initiation and 

progression. The goal of this study, therefore, was to investigate associations between obesity and 

gene methylation in breast tumors.

Methods—Using the Illumina GoldenGate Cancer I Panel, we estimated the association between 

body mass index (BMI) and gene methylation in 345 breast tumor samples from Phase I of the 

Carolina Breast Cancer Study, a population based case-control study. Multivariable linear 

regression was used to identify sites that were differentially methylated by BMI. Stratification by 

tumor estrogen receptor status was also conducted.

Results—In the majority of the 935 probes analyzed (87%), the average beta value increased 

with obesity (BMI ≥ 30). Obesity was significantly associated with differential methylation (false 

discovery rate q-value < 0.05) in just 2 gene loci in breast tumor tissue overall and in 21 loci 

among estrogen receptor (ER)-positive tumors. Obesity was associated with methylation of genes 

that function in immune response, cell growth, and DNA repair.

Conclusions—Obesity is associated with altered methylation overall, and with 

hypermethylation among ER-positive tumors in particular, suggesting that obesity may influence 

the methylation of genes with known relevance to cancer. Some of these differences in 

methylation by obese status may influences levels of gene expression within breast cells.

Impact—If our results are validated, obesity-associated methylation sites could serve as targets 

for prevention and treatment research.
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Introduction

Larger body size, including the body mass index (BMI) defined categories of overweight 

and obese, are associated with both the incidence and prognosis of breast cancer, though the 

risk varies by menopausal status and tumor subtype. In premenopausal women, an inverse 

association has generally been found between BMI and breast cancer incidence (1, 2) while 

increased BMI has been shown to increase the risk among postmenopausal women (3), with 

an estimated 3% increase in risk with each one unit gain in BMI (4). There is also evidence 

that obesity may increase incidence of estrogen receptor (ER)-positive but not ER-negative 

tumors, though these relationships differ by age and menopausal status (5, 6).

Beyond associations between BMI and breast cancer incidence, obesity is also associated 

with worse prognosis and outcome in both pre- and postmenopausal women (4). Obese 

breast cancer patients are more likely to be diagnosed with advanced stage at diagnosis (3), 

larger tumor size (1), nodal involvement (1), higher grade (4), and higher mitotic cell count 

(4). They are also at higher risk of experiencing recurrence (7), metastasis (1), and mortality 

(7).

The biological mechanisms underlying obesity's effects on carcinogenesis are poorly 

understood. Gene methylation, a mechanism for controlling the expression of genes (8), has 

the potential to influence the carcinogenic process during both tumor formation and 

progression. In normal tissues, methylation plays a role in whether cells are growing or 

senescent and how cells differentiate; if these patterns become abnormal, cancer may result 

(9). Abnormal methylation can also influence tumor invasiveness and metastasis (10).

Though obesity has been associated with increased methylation in several cancer-related 

genes (11, 12), previous research has been limited by the use of white blood cells instead of 

breast tissue (11, 12) or by focusing on only candidate genes (13). We sought to test whether 

obesity is associated with methylation in a panel of cancer-related genes in the tumor tissue 

of women diagnosed with breast cancer. Identifying genes that are differentially methylated 

by BMI can provide evidence for the underlying biological processes through which obesity 

influences breast carcinogenesis and may facilitate the development of chemoprevention and 

treatment targets.

Materials and Methods

Study Participants

Data from Phase I of the Carolina Breast Cancer Study (CBCS) was used to assess gene 

methylation in tumor tissue collected from women with breast cancer. The CBCS study 

design data collection methods have been previously described (14). Briefly, women 

diagnosed with breast cancer were recruited with randomized sampling between 1993 and 

1996 from the North Carolina Central Cancer Registry. African-American women and 
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women younger than 50 years of age were oversampled to comprise approximately 50% of 

the study population. Participation in the study was limited to English-speaking women aged 

20 to 74 years. Participants were interviewed in-person by trained nurses to collect 

demographic and breast cancer risk factor data. The University of North Carolina at Chapel 

Hill Institutional Review Board approved this study.

Tissue Specimens

Only participants with sufficient tumor block material for methylation analyses were 

included in the current study. CBCS pathologists verified the cancer diagnosis of all 

participants. The breast tumors were grossly dissected after review by a pathologist, who 

encircled areas of malignant cellularity. While some intratumoral stroma may be present 

among tumor cells, this sampling method ensured minimal contamination of our methylation 

signatures by profiles of adipose, stroma or normal epithelium. As a result, our findings are 

not likely to be driven by between-sample differences in tumor composition.

Gene Methylation Assessment

The Illumina Cancer Panel I platform (Illumina Inc., San Diego, CA), which consists of 

1,505 gene sites with known relevance to cancer (15), measures DNA methylation at 

cytosine-guanine dinucleotide (CpG) sites. The methylation level of each CpG site on the 

panel was measured as a beta value, which was calculated by comparing the fluorescent 

signal ratio of the methylated allele to the sum of the signals from the methylated and 

unmethylated alleles. The beta values range from 0 to 1, representing the fraction of 

methylated DNA, with 0 indicating no methylation and 1 indicating complete methylation. 

Of the 1,505 CpG sites on the platform, 570 were removed from the analysis due to poor 

performance or because the sites overlapped regions with SNPs or copy number variation, 

which may render them unreliable (16). The remaining 935 CpG sites (17) were assessed for 

association with BMI. The input sequence of all probes that were found to be significantly 

associated with BMI were checked against target sequences in the NCBI Blast database to 

determine if any of the probes ambiguously mapped to the genome (18). The array data have 

been deposited in Gene Expression Omnibus under accession number GSE51557.

In a previous study, the demographic and tumor characteristics were compared for those 

who were eligible for participation in the study and for those whose methylation values were 

successfully assessed (17). The only characteristic that reached statistical significance (p-

value < 0.05) was age, where the tumors of younger women were more likely to be 

successfully assayed. Age was included as a confounder in our analyses. There were no 

significant differences in tumor size or clinical stage.

Statistical Analyses

Linear regression, using limma with an empirical Bayes approach (19), was conducted to 

assess which CpG sites were associated with pre-diagnosis body mass index (BMI). The R 

statistical package (www.r-project.org/) was used to conduct all regression analyses. Pre-

diagnosis BMI was self-reported at the time of interview and was categorized as normal 

weight (18.5 ≤ BMI < 25), overweight (25 ≤ BMI < 30) or obese (BMI ≥ 30). Comparisons 

were 2-category contrasts (obese versus normal weight, with overweight women excluded) 
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for regression modeling based on previous studies and our own exploratory analyses that 

showed that the overweight class was highly heterogeneous with regard to obesity-

dependent gene expression (20). Therefore, to enhance our ability to detect obesity-

associated methylation, the intermediate overweight phenotype group was excluded. Use of 

a categorical rather than continuous coding for BMI also minimized potential bias due to 

underestimation of weight (21).

Statistical analyses were restricted to those of African-American or white race. Race and age 

(treated as a continuous variable) were considered confounders a priori and were included 

as covariates in all analyses. Other variables assessed for confounding included menopausal 

status, age at first full-term birth, parity, alcohol use, smoking status, physical activity, fruit 

and vegetable intake, income, and education status. Among these variables, only 

menopausal status was associated with both BMI (p-value <0.05) and gene methylation 

(false discovery rate (FDR) q-value <0.05), resulting in a final adjustment set that included 

age, race, and menopausal status. In addition to testing the association between BMI and 

gene methylation in breast tumor tissue overall, the relationship was also assessed among 

ER-positive tumors because prior research has shown that this subgroup of tumors may be 

more stable genomically than other tumor subtypes (22, 23). In a sensitivity analysis 

restricted to ER-negative tumors, there were no CpG sites associated with obesity in a 

regression model adjusting for age, race, and menopausal status.

An FDR q-value of <0.05 was used as the statistical significance cut-off for identifying 

differentially methylated genes.

Though we did not have data on gene expression for the tissue analyzed in this study, we 

assessed the correlation between methylation and expression in breast tumors that were 

collected through The Cancer Genome Atlas (TCGA; http://cancergenome.nih.gov/) for the 

methylation probes that were significantly associated with BMI in our study. The TCGA 

determined methylation in breast tumors using the Illumina HumanMethylation 450 

Beadchip panel (24) while the present study used the Illumina GoldenGate Cancer I Panel. 

Only seven of the BMI-associated probes in the present study matched directly with probes 

in the 450 Beadchip panel. For the remaining BMI-associated probes, we identified probes 

on the 450 Beadchip array that were within 200 base pairs, either up or downstream, of the 

GoldenGate probe. The correlation between methylation and expression was examined for 

all of the breast tumor tissue available in the TCGA and also for hormone-receptor positive 

tumors (the closest approximation to ER-positive tumors for which we had data access).

Results

Methylation Sites Associated with BMI

Of the 517 patients eligible for study participation, 492 had both pre-diagnosis BMI data and 

methylation data; of these, 345 were either obese or of normal weight (Table 1). The median 

age for the 492 study participants was 47 years. In unadjusted analyses, 30 CpG sites were 

differentially methylated by BMI status (obese vs. normal) at a q-value < 0.05; after 

adjustment for age, race, and menopausal status, two CpG sites remained significantly 

differentially methylated: SH3BP2_P771_R on the promoter region of the SH3BP2 gene, 
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which regulates transcriptional activity in immune cells, and Xist_seq_80_S95_R on the 

non-protein coding XIST gene. For both sites, the average methylation beta values were 

higher in the tissue of obese patients, when compared to those of normal weight.

Methylation in ER-Positive Tumors

In analyses restricted to ER-positive tumors (n=208), 21 probes were significantly 

associated with BMI (obese vs. normal) after adjustment for age, race, and menopausal 

status (Table 2). Twelve of the 21 significant sites were located in CpG islands. Three CpG 

sites mapped to chromosome 4 (SH3BP2_P771_R, SH3BP2_E18_F, and PKD2_P336_R), 

three mapped to the X chromosome (Xist_seq_80_S95_R, MCF2_P1024_R, and 

BTK_P105_F), and two each mapped to chromosome 10 (ERCC6_P698_R, 

BMPR1A_E88_F), chromosome 11 (TSG101_P257_R, SPI1_E205_F), and chromosome 12 

(IGFBP6_E47_F, ARHGDIB_P148_R). Two of the probes (BMPR1A_E88_F and 

TDGF1_P428_R) mapped to more than one chromosome; as such, these probes should be 

interpreted with caution. Figure 1 displays a volcano plot, a visual representation of the 

regression analysis wherein each circle represents a methylation site; circles with positive 

coefficients signify higher average beta values in the obese compared to those of normal 

weight, while circles with negative coefficients signify lower beta values in the obese. The 

majority of the sites were hypermethylated in the obese group, as were all of the probes that 

were significantly associated with obesity (circles above the horizontal line).

The methylation sites that showed the most significant changes in the beta values between 

obese vs. normal BMI patients were on the DNMT3B gene, which codes for a DNA 

methyltransferase; the IGFBP6 gene, which codes for an insulin-like growth factor binding 

protein; the ERCC6 gene, which codes for a protein that functions in excision repair; and the 

SH3BP2 gene.

Correlation with Gene Expression

The 21 methylation sites that were associated with BMI in the overall or ER-positive 

analyses were mapped to breast tumors collected by The Cancer Genome Atlas (TCGA) to 

assess the correlation between gene methylation and expression. Of the 21 sites, 20 matched 

to probes that were at least within 200 base pairs of the probe used in the TCGA data, and 

three sites matched to more than one probe (Supplemental Table 1). Approximately 60% of 

the 20 BMI-associated methylation sites were significantly and inversely associated with 

gene expression (correlation coefficient ≤ −0.20) in the full TCGA breast tumor tissue data 

set, and 55% were significantly and inversely associated with expression in the hormone-

receptor positive tumors. Though probes that were correlated with gene expression in both 

the full TCGA dataset and amongst hormone-positive tumors were more likely to be on CpG 

islands than probes that were not associated with gene expression, the associations were not 

significant at an alpha = 0.05 level (p-value = 0.36 and .17, respectively).

Discussion

Because methylation is a mechanism for controlling gene expression (8), exploring the 

relationship between obesity and methylation can provide insight on BMI-associated 
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expression of cancer-related genes. Our regression analyses suggest that BMI is associated 

with gene methylation in cancer-related genes overall and especially among ER-positive 

breast tumors. When assessing the correlation between methylation and expression for our 

BMI-associated methylation sites (from both our overall and ER-positive analyses) in breast 

tumors collected through The Cancer Genome Atlas, about 60% showed a significant 

inverse correlation between methylation and expression.

Previous research in breast tissue has demonstrated that BMI is associated with the 

differential expression of genes involved in pathways related to immune response and 

insulin-like growth factor availability (20, 25). In our study, BMI was associated with 

methylation of genes involved not only in immune response and insulin-like growth factor 

pathways, but also in DNA methylation and DNA repair. Notably, SH3BP2 was the most 

significant BMI-associated site in our overall analysis, while SH3BP2, IGFBP6, DNMT3, 

and ERCC6 were the most statistically significant BMI-associated sites among ER-positive 

tumors. All four of these genes were hypermethylated with obesity. The SH3BP2 gene codes 

for a protein that acts in the signal transduction of various immune response pathways (26). 

It has been implicated in responses involving neutrophils (27), B cells (28-30), and T cells 

(26), and it may function as a tumor suppressor gene (26). Our finding that SH3BP2 is 

hypermethylated in the tumor tissue of obese breast cancer patients suggests that obesity 

may confer an abnormal immune response in breast tissue. This is interesting in light of 

previous research also showing increased infiltration of macrophages in the breast tissue of 

obese women (20, 31). The IGFBP6 gene codes for a protein that binds with high affinity to 

insulin-like growth factor-2 (IGF-II) (32), which plays a role in cellular proliferation, 

differentiation, and migration, and is regulated by the IGFBP6 protein (32). Expression of 

IGFBP6 may be associated with cancer incidence (32), with studies finding lower 

expression of the protein in the serum of breast cancer patients when compared to the serum 

of those with benign breast disease (33, 34). Our finding of hypermethylation of IGFBP6 in 

obese patients suggests that obesity may lead to reduced expression in breast tissue via gene 

methylation. BMI may also impact broader mechanisms controlling methylation. For 

example, DNMT3 is a member of a family of DNA methyltransferases that code for 

enzymes involved in the methylation of promoter regions of genes (35), and DNMT3 

mRNA has been shown to be overexpressed in breast tumor tissue (35, 36) and cell lines 

(37). Finally, the ERCC6 protein, also known as the Cockayne syndrome complementation 

group B (CSB) protein, is involved in transcription-coupled nucleotide excision DNA repair 

(38).

Our study was strengthened by examining the association between BMI and methylation in 

breast tumor tissue rather than white blood cells (WBCs), as in most previous studies. 

Nonetheless, prior research has shown that differences in methylation between those with 

and without cancer may be driven by changes in the distribution of WBC populations (39). 

Obesity may also be associated with changes in the distribution of WBC populations, 

resulting in methylation differences by BMI status. In one study of WBCs, methylation was 

increased in those with higher BMI for three of four differentially methylated CpG sites 

(MMP9, PM20D1, and PRKG1) (12). Of those sites, only MMP9 was included in the 

methylation panel used in this study, and it was not associated with obesity either overall or 
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among ER-positive tumors. In another study of methylation in WBCs, BMI was associated 

with increased methylation of several sites on HIF3A, a gene that encodes for a protein 

involved in responses to hypoxia (11). However, in the latter study, the magnitude of change 

was not replicated when the HIF3A loci were examined in adipose tissue, underscoring the 

importance of tissue specific methylation. There were no CpG sites on the HIF3A gene in 

the methylation panel used for this study.

Given previous reports of differentially methylated genes associated with BMI in both 

genome wide and candidate loci studies (11, 12), it is interesting that studies examining 

global methylation in WBCs are inconclusive regarding the direction of methylation in 

response to increasing BMI. In a study of global methylation in 85 women, overweight and 

obese patients had non-statistically significant higher levels of methylation than those with a 

normal BMI after adjustment for variables including childhood smoking exposure, 

nulliparity, and age at 1st birth (40). When methylation of the repetitive element, LINE-1, 

was measured in the peripheral blood of men and women, those with a normal BMI had the 

lowest mean methylation percentage and those who were obese had the highest methylation 

percentages, though the results were not statistically significant in crude analyses (41). Other 

studies reviewed in Terry et al (42) did not find significant correlations between methylation 

values in the LINE-1 and ALU repetitive elements and BMI (43, 44), and one study 

examining BMI in women of childbearing age reported less LINE-1 methylation in those 

with higher BMI (45).

These aforementioned studies suggest that obesity may be weakly associated with an 

increase in methylation in WBCs, but do not address whether BMI may affect methylation 

in breast tissue. Given our emphasis on the tumor tissue, the most relevant previous research 

for our purposes are studies of breast tumor methylation and BMI (13, 46). In one study, Tao 

et al. examined the association between obesity and methylation in three candidate genes, E-

cadherin, p16, and RAR-β(2), in breast tumor tissue, and showed no statistically significant 

differences in percentage methylation by BMI status in their study population; regression 

analyses stratified by ER status were not reported (13). Though the three genes examined by 

Tao et al. (13) were represented on our methylation panel, we were unable to ascertain the 

exact CpG loci on which methylation values were measured. Given that DNA methylation 

levels can vary greatly within short base pair distances (47), we were unable to meaningfully 

compare our gene methylation results with those of Tao et al. In another study, Naudshad et 

al. examined the association between BMI and methylation in Ec-SOD, RASSF1, BRCA1, 

and BNIP3; all of the gene loci except for BNIP3 were significantly, increasingly methylated 

with higher BMI while BNIP3 was significantly, inversely associated with BMI (46). All but 

the BNIP3 gene examined by Naushad et al. (46) were represented on our methylation panel. 

However, there were no exact loci matches between the probes available on our methylation 

panel and the Ec-SOD and BRCA1 sites examined by Naushad et al.; we were unable to 

determine the location of the RASSF1 probe. Because gene methylation is loci-specific (47), 

we were unable to compare their reported methylation results to our findings.

Our study is novel in that it assesses the relationship between BMI and methylation in breast 

tumor tissue using a panel of cancer-associated genes. This enabled us to discern 

relationships between obesity and methylation that might not be apparent in WBCs or that 
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might be overlooked by focusing on a small number of candidate genes. Nonetheless, 

because the methylation array was limited to cancer-relevant genes, only a subset of genes 

that may be differentially methylated by obese status were analyzed. Thus, our results are 

biased towards methylation sites with established associations with cancer. Further, there is 

evidence that genes with known relevance to cancer can be either hypermethylated or 

hypomethylated relative to normal breast tissue (10, 48). However, the goal of our study was 

to determine the association between obesity and methylation status, regardless of the genes’ 

hyper- or hypomethylation status relative to normal tissue. Our analysis demonstrates that 

obesity is associated with the degree of methylation in some cancer-relevant genes, 

providing insight into which genes should be targeted by research for further exploration.

Though our study was strengthened by assessing the correlation between methylation and 

expression for our BMI-associated sites, we were unable to assess whether these differences 

in expression correlated with functional differences. Additionally, we were unable to 

validate our results in an independent dataset because we were not able to identify public 

data sources where both methylation and BMI were measured and reported. The Cancer 

Genome Atlas, for example, does not collect data on BMI. Our study, however, contributes 

data on both BMI and methylation status to the public domain, and future studies can seek to 

replicate our findings using these data.

Our analysis was also strengthened by analyzing ER-positive tumors, which have been 

shown to feature fewer chromosomal aberrations than other tumor subtypes (22, 23). 

However, there were some limitations associated with our analysis. Although tissue from 

ER-positive tumors may be more stable than that from other tumor subtypes, in the analysis 

of any tumor tissue, it is difficult to determine which methylation changes influence the 

carcinogenic process and which occur as a result of it (49). Furthermore, there may be 

heterogeneity within ER-positive tumors (i.e. some tumors are luminal A and others luminal 

B) that may have influenced our power to detect associations between methylation and 

obesity. A further limitation of the study design was the lack of power to adequately assess 

the association between BMI and gene methylation by menopausal status. Given the 

variability in the obesity-breast cancer association by menopausal status (1, 2), it is possible 

that different or additional genes would be associated with methylation by menopausal 

status. Finally, the motivating goal of this study was to explore whether there might be 

epigenetic biomarkers of the effect of obesity on epithelial tumor cells that can be used to 

direct research of targeted breast cancer therapies. However, a focus on normal breast tissue 

is also important for future research, as it can give insight into how obesity may influence 

cancer initiation and promotion.

In summary, our study provides evidence that obesity may be associated with increased gene 

methylation in breast tumor tissue and may play a role in the expression of genes associated 

with immune response, insulin-like growth factor availability, and other pathways involved 

in carcinogenesis. If obesity does act through methylation to control expression of 

carcinogenesis-related genes, differentially methylated sites could serve as targets for the 

chemoprevention and treatment of breast cancer in women with obesity as a risk factor.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Volcano plot of 935 methylation sites in estrogen receptor-positive tumors. X-axis: 

Coefficient from model regressing obesity on CpG site, adjusting for age, race, and 

menopausal status; Y-axis: -log10 of p-value from model regressing obesity on CpG site, 

adjusting for age, race, and menopausal status. Horizontal line indicates FDR q-value cut-off 

of 0.05. Each circle represents a CpG site.
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