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Abstract

L-selectin is constitutively expressed on leukocytes and mediates their interaction with endothelial 

cells during inflammation. Previous studies on the association of soluble L-selectin (sL-selectin) 

with cardiovascular disease (CVD) are inconsistent. Genetic variants associated with sL-selectin 

levels may be a better surrogate of levels over a lifetime. We explored the association of genetic 

variants and sL-selectin levels in a race/ethnicity stratified random sample of 2,403 participants in 

the Multi-Ethnic Study of Atherosclerosis (MESA). Through a genome-wide analysis with 

additive linear regression models, we found that rs12938 on the SELL gene accounted for a 

significant portion of the protein level variance across all four races/ethnicities. To evaluate 

potential additional associations, elastic net models were used for variants located in the SELL/

SELP/SELE genetic region and an additional two SNPs, rs3917768 and rs4987361, were 

associated with sL-selectin levels in African Americans. These variants accounted for a portion of 

protein variance that ranged from 4% in Hispanic to 14% in African Americans. To investigate the 

relationship of these variants with CVD, 6,317 subjects were used. No significant association was 

found between any of the identified SNPs and carotid intima-media thickness or presence of 

carotid plaque using linear and logistic regression, respectively. Similarly no significant results 

were found for coronary artery calcium or coronary heart disease events. In conclusion, we found 

that variants within the SELL gene are associated with sL-selectin levels. Despite accounting for a 

significant portion of the protein level variance, none of the variants was associated with clinical 

or subclinical CVD.

Keywords

atherosclerosis; cardiovascular disease; genetic epidemiology; single nucleotide polymorphism 
(SNP)

Introduction

Cardiovascular disease (CVD) is the main cause of morbidity and mortality in the United 

States (Go et al. 2014). Inflammation plays a pivotal role in atherosclerosis; in particular, the 
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adhesion of leukocyte to endothelial cells represents an early step of plaque formation 

(Libby 2002; Ross 1999; Williams and Tabas 2002). L-selectin is constitutively expressed 

on leukocytes and has an essential role on the initial steps of their adhesion to the 

endothelium during inflammation (Wedepohl et al. 2012). Given its activity during early 

recruitment of leukocytes at inflammatory foci, previous in vivo studies suggested a 

potential role of L-selectin in the development and progression of subclinical atherosclerosis 

(Eriksson et al. 2001; Galkina et al. 2006). L-selectin is enzymatically cleaved from the 

leukocyte surface (Humbria et al. 1994).

Endoproteolytic cleavage regulates both homeostatic and activation-induced changes in cell 

surface L-selectin density during inflammation. In particular, blocking L-selectin shedding 

resulted in enhanced cell-bound L-selectin expression and increase neutrophils migration to 

inflamed areas (Venturi et al. 2003). On the contrary, there is some evidence that soluble L-

selectin can competitively block other selectins receptors reducing leukocyte-endothelium 

interactions. Relatively high levels of soluble L-selectin (sL-selectin) were observed in the 

general population, suggesting a possible role of the shedding process in the physiologic 

surface-bound protein turnover (Ponthieux et al. 2004). In addition, previous studies 

observed a long half-life for sL-selectin in animal models, suggesting that levels may remain 

elevated for many hours after the protein has been shed (Tu et al. 2002).

Only a few case-control studies have assessed the association of sL-selectin with CVD, with 

results being inconsistent. Within the Multi-Ethnic Study of Atherosclerosis (MESA) cohort, 

we found no association between plasma or serum sL-selectin levels and subclinical or 

clinical CVD (Berardi et al. 2014). However, genetic variants associated with the protein 

levels may be a better surrogate of levels of sL-selectin over time, and exploring the 

association of these variants with clinical and subclinical CVD could shed light on the 

importance of this protein in the pathogenesis of CVD. This approach was previously used 

for P-selectin; in particular, multiple variants of the SELP gene were shown to be associated 

with circulating P-selectin levels in community-based samples (Lee et al. 2008; Reiner et al. 

2008). Similarly, several variants of the ICAM1 gene have been associated with soluble 

ICAM-1 levels (Bielinski et al. 2008; Bielinski et al. 2011).

Little is currently known about the genetic determinants of sL-selectin levels, with previous 

association studies limited to two relatively small studies evaluating candidate single 

nucleotide polymorphisms (SNP) in the local region of the L-selectin protein coding gene 

(SELL). Wei et al. identified a significant association with SELL missense SNP rs2229569 

(C>T; p.P226S) in a Chinese population, determining the SNP to also be associated with 

ischemic stroke (Wei et al. 2011). Russell et al. identified significant associations with SELL 

missense variant rs1131498 (previously denoted rs3177980; T>C, p.F206L) and 3′ 

untranslated region (UTR) SNP rs12938 (T>C) in a study of systemic lupus erythematosus 

(Russell et al. 2005). Hajilooi et al. additionally identified rs1131498 to be associated with 

coronary heart disease (CHD) in an Iranian population (Hajilooi et al. 2006). We sought to 

identify potential genetic surrogates of circulating sL-selectin levels in a large multi-ethnic 

population using comprehensive genetic data heavily enriched for protein coding variation. 

We investigated the importance of genetic variants in determining the levels of circulating 

sL-selectin and the association of these variants with clinical and subclinical CVD.
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Materials and methods

Multi-Ethnic Study of Atherosclerosis (MESA) population

The Multi-Ethnic Study of Atherosclerosis (MESA) is a multi-center population-based 

prospective cohort study initiated in July 2000 to investigate subclinical cardiovascular 

endpoints in 6,814 African, non-Hispanic white, Chinese, and Hispanic American men and 

women. MESA participants were examined at one of six field centers located in Baltimore, 

MD; Chicago, IL; Forsyth County, NC; Los Angeles County, CA; Northern Manhattan, NY; 

and Saint Paul, MN. Detailed methods have been described elsewhere.(Bild et al. 2002)

At each visit, information on demographics, cardiovascular risk factors, past medical history 

and co-morbidities, social history, family history, and medications was collected through a 

combination of self-administered questionnaires and interview-administered questionnaires. 

Height was measured while participants were standing without shoes, heels together against 

a vertical mounted ruler. BMI was calculated as weight (kg)/height2 (m2). Resting seated 

blood pressure was measured three times using an automated oscillometric method 

(Dinamap), and the average of the second and third readings are used in analyses. 

Hypertension was defined according to the Seventh Report of the Joint National Committee 

on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC 7) 

guidelines as systolic blood pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg, or 

use of anti-hypertensive medications (Chobanian et al. 2003). Diabetes was defined as any 

participant who self-reported a physician diagnosis, used diabetic medication, had a fasting 

glucose ≥126 mg/dL, or a non-fasting glucose of ≥200 mg/dL. Serum glucose was assayed 

by a hexokinase/glucose-6-phosphate dehydrogenase method. Triglycerides were measured 

in plasma by a glycerol blanked enzymatic method, and cholesterol was measured in plasma 

using a cholesterol oxidase method. HDL cholesterol was measured by the cholesterol 

oxidase method after precipitation of non-HDL-cholesterol with magnesium/dextran. LDL-

cholesterol was calculated in specimens having a triglyceride <400 mg/dL via the 

Friedewald equation.

Genetic association analysis sample

To identify genetic variants associated with circulating sL-selectin levels, a race/ethnicity 

stratified random sample of 2,880 individuals was used. At Exam 2, the first follow-up visit 

after enrollment (2002–2004), serum samples were available for 2,441 participants in the 

random sample. Of those, 38 individuals were excluded; 34 due to the occurrence of CVD 

prior to Exam 2, 1 due to cognitive impairment, and 3 due to inconsistencies between their 

self-reported race/ethnicity and the ethnic group that was actively enrolled by the field 

center. sL-selectin and DNA samples for the genetic analysis were therefore available in 

2,403 participants, about 600 of each race/ethnicity.

Blood samples were obtained from fasting participants as previously described (Bild et al. 

2002). Serum was obtained allowing blood samples to clot at room temperature for 40 

minutes. Samples were centrifuged at 4°C at 2,000g × 15 minutes or 3,000g × 10 minutes 

for a total of 30,000 g-minutes, serum was aliquoted and stored frozen at −70°C. A single 

aliquot was thawed at room temperature and circulating sL-selectin was measured 
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immediately by a quantitative sandwich enzyme-linked immunosorbent assay (ELISA) 

using the Human L-selectin/CD62L Immunoassay kit (R&D Systems, Minneapolis, MN). 

The inter-assay coefficient of variation of the MESA laboratory was 6.7% at a mean 

concentration of 943 ng/mL for an in-house serum pooled control and 7.9% at a mean 

concentration of 866 ng/mL for a lyophilized control. The manufacturer’s minimum 

detection level is 0.3 ng/mL.

Sample to test the association of SNPs with cardiovascular outcomes

The subset of the Exam 1 (2000–2002) population that gave informed consent for DNA 

studies (n = 6,317; 1,634 African, 764 Chinese, 2,491 non-Hispanic white and 1,428 

Hispanic Americans) was used to test the association of identified variants with clinical and 

subclinical CVD. Subclinical endpoints of interest were common carotid intima-media 

thickness (IMT) and presence of carotid plaque measured via ultrasound, and coronary 

artery calcium (CAC) measured via computed tomography. Standard protocols were used in 

each field center as previously described (Carr et al. 2005; Polak et al. 2013). In addition, 

incidence of CHD, defined as myocardial infarction (MI), resuscitated cardiac arrest, angina, 

and CHD death. Event ascertainment methods are detailed elsewhere (Folsom et al. 2008). 

In brief, public files (death certificates), medical records from hospitalizations, autopsy 

reports, and phone interviews from participants at 9–12 month intervals, and in some 

instances, interviews or questionnaires from their physicians, relatives, or friends were used. 

Information was reviewed by two independent reviewers for adjudication of an event.

Genetic data

The genetic data consist of four genotype panels: Exome chip,(Huyghe et al. 2013) Cardio-

Metabochip (Voight et al. 2012), i-Select.HG18 (IBC) (Keating et al. 2008), and MESA 

Candidate Gene (Illumina Golden Gate assay). The MESA Candidate Gene panel was run 

on a random sample of 720 participants from each race/ethnic group. All other SNP panels 

were genotyped using all MESA participants who consented for genetic studies (n = 6,323). 

Overall 417,752 SNPs in African Americans; 418,460 SNPs in Chinese; 417,771 SNPs in 

non-Hispanic whites; and 417,770 SNPs in Hispanics passed quality control procedures. All 

four panels had quality control performed on their genotype data prior to the merge. The 

data were merged in several steps using PLINK v1.07 (Purcell et al. 2007).

Statistical analysis

Participant characteristics were summarized using mean, standard deviation, and select 

percentiles for continuous variables, and number and percent for categorical variables within 

each race/ethnicity. These were compared across races/ethnicities using analysis of variance 

(Kruskal-Wallis) for continuous variables and the chi-square test (exact) for categorical 

variables. For this study a two-stage analysis approach was applied. First, the association of 

sL-selectin values with genome-wide genetic variants was assessed using linear regression 

under an additive genetic model using PLINK v1.07. Population stratification was assessed 

using STRUCTURE and using EigenStrat for participants with genome-wide SNP data 

(Patterson et al. 2006). Appropriate principal components (PCs) were included as covariates 

to adjust for population stratification.
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Following the genome-wide approach, we identified one genetic variant that was significant 

across all four races/ethnicities. To assess potential additional independent associations in 

the region of the originally identified SNP, we applied race/ethnicity-specific elastic net 

models using the glmnet package in R (Friedman et al. 2010). The elastic net is a penalized 

regression approach that combines LASSO and ridge regression to simultaneously perform 

parameter shrinkage and variable selection. For our models, the mixing parameter α was set 

equal to 0.95 to accommodate linkage disequilibrium (LD), while the penalty parameter λ 

was selected based upon 10-fold cross-validation of the mean-squared prediction error. Age, 

sex, and the originally identified SNP were included as unpenalized covariates, with the 

previously used PCs capturing population stratification excluded from this and all further 

regression analyses due to the poor correlation between global and local ancestry (Qin et al. 

2010). SNPs were modeled under an additive genetic model and missing genotypes imputed 

with mean observed values. Imputation was necessary for the penalized regression; 

however, the overall number of imputed SNPs was minimal as we used a SNP call rate 

threshold of at least 90%.

The association of genetic variants identified in the two-stage analysis with subclinical 

outcomes was assessed using linear regression for IMT, logistic regression for presence of 

carotid plaque, and the Tobit model (Fornage et al. 2004) for CAC score. The Tobit model 

accounts for the large percentage of zero measurements found in the CAC distribution. The 

association of genetic variants with time-to-CHD was assessed using Cox proportional 

hazard models. All regression models were stratified by race/ethnicity.

Results

For the first step of the analysis, the subset of the MESA population including 2,403 

individuals was used (Supplemental Figure S1); sample characteristics are presented in 

Supplemental Table S1. Genetic variants significantly (p < 10−5) associated with sL-selectin 

levels for each race/ethnicity after adjustment for age, sex, and principal components are 

listed in Supplemental Table S2. The majority of significantly associated SNPs are located 

in the genes encoding for L-selectin (SELL), P-selectin (SELP), and E-selectin (SELE). One 

common SNP in SELL, rs12938, was significantly associated in all four races/ethnicities 

(Figure 1).

In order to evaluate potential additional associations, in the second step of the analysis, 

variants located in the SELL/SELP/SELE region were assessed using elastic net models in 

each race/ethnicity. SNP rs12938 was the only variant that remained in the model for 

Chinese, non-Hispanic white, and Hispanic Americans. For African Americans, rs12938, 

rs3917768, and rs4987361 remained in the model (Table 1, Figure 2). The C allele of SNP 

rs12938 was associated with significantly lower sL-selectin levels and the SNP explained an 

additional 6%, 12% and 4% of the total protein variance after adjusting for age and sex in 

Chinese, non-Hispanic white, and Hispanic Americans, respectively. Among African 

Americans, the three SNPs associated with sL-selectin levels accounted for an additional 

14% of the total protein variance after adjusting for age and sex.
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The association of these genetic variants with clinical and subclinical CVD was assessed 

among Exam 1 participants who gave informed consent for genotype analysis (93%). Table 

2 summarizes the population characteristics, as well as the prevalence subclinical disease 

and incident events over a median follow-up of 10.1 years. As previously described, within 

this population, significant differences in the prevalence of traditional cardiovascular risk 

factors across races/ethnicities were observed. In addition, subclinical CVD was more 

prevalent among non-Hispanic whites. Within the Exam 1 population, no association was 

found between SNPs associated with sL-selectin and clinical or subclinical CVD. In non-

Hispanic white, Chinese, and Hispanic Americans, none of the investigated outcomes was 

associated with the SNP rs12938, after adjustment of the significance threshold using the 

Bonferroni method (accounting for four outcomes: 0.05/4 = 0.0125), as shown in Table 3. 

Similar results were found for rs12938, rs3917768 and rs4987361 within African Americans 

(Table 4).

Discussion

In this large, multi-ethnic population, we found that variants of the SELL gene are 

significantly associated with circulating levels of sL-selectin. In particular, we found that the 

C allele of SNP rs12938 is associated with lower levels of sL-selectin in all races/ethnicities. 

In African Americans two additional SNPs, rs4987361 and rs3917768, were identified using 

a penalized regression approach on the SELL/SELP/SELE region. Again, these variants are 

associated with lower levels of the circulating protein. However, none of these SNPs that 

account for a significant portion of the variance of sL-selectin levels was associated with 

subclinical or clinical atherosclerosis.

The SELL missense SNP rs1131498, previously reported to be associated with sL-selectin 

(Russell et al. 2005) was replicated in two of our racial subcohorts (Hispanic and non-

Hispanic white Americans) but was not significant in the remaining two (African and 

Chinese Americans). Additionally, as Figure 1 demonstrates, there is strong LD (r2 > 0.6) 

present between rs1131498 and rs12938 in the same two subcohorts that have significant 

rs1131498 association findings, yet modest LD (r2 < 0.2) for the two that do not. The 

context of these findings suggest that rs12938 may be the underlying causal variant, and that 

rs1131498 is tagging rs12938 in populations where LD is present between the two SNPs.

SNP rs12938 is located in the 3′ untranslated region (UTR) of the SELL gene on 

Chromosome 1 and has been associated with sL-selectin levels in one previous study that 

included 278 lupus cases and 230 control siblings of European descent (Russell et al. 2005). 

In that study, three SNPs were identified as potentially relevant in determining sL-selectin 

levels; in particular, rs1131498 was suggested to be the putative causative SNP. Although 

Russell et al. surmised that an independent effect of rs12938 on sL-selectin may be driven 

by post-transcriptional regulation, they limited their analysis to in silico prediction of the 

rs12938 alternate allele on mRNA stability (Conne et al. 2000; Russell et al. 2005), 

concluding that there was little evidence of such a mechanism in place and that SNP’s effect 

was likely modest relative to the missense variant rs1131498. However, an alternative 

proposition for the functional relevance of rs12938 would be RNA silencing through 

modification of micro-RNA (miRNA) binding sites. We queried PolymiRTS v3.0 
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(Bhattacharya et al. 2014), an online database for SNP effects on RNA silencing-based post-

transcriptional regulation, to evaluate the predicted impact of rs12938 on miRNA binding 

motifs. This analysis returned two putative miRNA binding sites created by the rs12938 C 

allele (Table 5), potentially inducing post-transcriptional down-regulation of SELL mRNA. 

Consistent with our results, previous expression quantitative trait loci (eQTL) studies 

reported rs12938 to be associated with SELL expression (Battle et al. 2014; Lappalainen et 

al. 2013; Xia et al. 2012). These previous eQTL association findings implicate this variant in 

the regulation of L-selectin mRNA levels, which in turn may correlate with protein 

expression on the leukocyte surface. The two additional SNPs identified in African 

Americans represent novel findings and have not been previously associated with sL-

selectin levels. Additionally, rs2229569, reported by Wei et al. (Wei et al. 2011), was not 

significantly associated for any race/ethnicity (p > 0.05 for all analyses).

SELL SNPs explained a significant portion of the variance of sL-selectin; however, there 

was no evidence of an association with subclinical atherosclerosis or CVD outcomes. These 

results are inconsistent with a previous study conducted within the Iranian population that 

found an association between the SNP rs1131498 on the SELL gene and CHD (Hajilooi et 

al. 2006). In fact, this SNP is in linkage disequilibrium with rs12938 among non-Hispanic 

whites in our study (r2 = 0.69). Several reasons could explain our results. First, the variance 

explained by the SNPs we identified ranged from 4% to 14% in the four race/ethnic groups. 

While statistically significant, the variation explained by SELL variants may be an 

insufficient surrogate of protein levels. Second, our ability to identify additional variants 

accounting for sL-selectin levels may be hindered by the inability of the circulating portion 

of sL-selectin to accurately reflect the cell-bound protein expression. There is some evidence 

suggesting that circulating L-selectin has a long half-life, and consequently does not 

correlate with the cell expression of the protein (Tu et al. 2002). Third, it is possible that, 

while the SNPs that we identified have some influence on the protein levels, other factors, 

genetic or not, may be more important and thus more closely related to the outcome. For 

example there may be non-synonymous SNPs that affect the protein structure and ultimately 

the function of L-selectin, but do not influence protein levels. Therefore, any SNPs that 

affect those characteristics may not be identified by looking for associations with circulating 

levels. Finally, these results could suggest a limited involvement of L-selectin in 

atherosclerosis. Other components of the selectin family may be more important in the 

initiation and progression on atherosclerosis compared to L-selectin.

Limitations and strengths

Some limitations need to be acknowledged. In this study we did not measure the cellular 

expression of L-selectin, as only frozen serum samples were available and these were not 

suitable for flow cytometry. In addition, while comprehensive genetic data have been used 

in our analysis, rare variants may not be captured. Finally, as the MESA population is a 

relatively young, the number of CVD events observed was lower than in other studies, 

which may have hindered our ability to fully explore the association between SELL genetic 

variants and clinical CVD. The main strength of our study is the large, multi-ethnic sample, 

coupled with the availability of comprehensive genetic data enriched for protein coding 

variation. Importantly, we demonstrate the utility of trans-ethnic analyses to provide 
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additional insight into likely causal variants. Furthermore, MESA includes a large 

population with a reasonably long follow-up time for ascertainment of CVD events.

Conclusion

In conclusion, we identified variants in SELL accounting for a significant portion of the 

variance of circulating sL-selectin. Using trans-ethnic analyses, we show that rs12938, a 

variant previously associated with the quantitative regulation of mRNA and protein 

expression, was associated with sL-selectin in all four race/ethnic groups. Despite 

accounting for significant variance of protein level, this SNP, or other SNPs associated with 

the soluble protein levels, were not significantly related to clinical or subclinical CVD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
LocusZoom plots of the SNP associations with soluble L-selectin in proximity to SELL 

polymorphism rs12938 by race/ethnicity. Color of each SNP is indicative of linkage 

disequilbrium with rs12938. Significance threshold (1e-05) is indicated by dashed gray line. 

SELL polymorpism rs1131498 (previously reported to be associated with CHD) is 

additionally labeled.
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Figure 2. 
LocusZoom plot of SELL/SELP/SELE genetic region for the African American cohort, with 

rs12938 the reference SNP. Additional SNPs selected by the elastic net model (rs, rs) are 

also labeled.
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Table 4

Association of SELL rs12938, rs3917768 and rs4987361 with subclinical and clinical cardiovascular disease in 

African Americans (Exam 1 data)

CAC, Agatston Score Beta (SE) p value

 Model 1

  rs12938 −15 (30) 0.61

  rs3917768 16 (29) 0.57

  rs4987361 −16 (32) 0.62

 Model 2

  rs12938 −14 (30) 0.64

  rs3917768 22 (29) 0.45

  rs4987361 −16 (33) 0.63

IMT, mm

 Model 1

  rs12938 −0.001 (0.01) 0.88

  rs3917768 0.01 (0.01) 0.38

  rs4987361 −0.001 (0.01) 0.89

 Model 2

  rs12938 −0.001 (0.01) 0.99

  rs3917768 0.01 (0.01) 0.46

  rs4987361 −0.002 (0.01) 0.85

Presence of Plaque OR (95% CI) p value

 Model 1

  rs12938 1.19 (1.0 – 1.41) 0.05

  rs3917768 0.99 (0.84 – 1.18) 0.98

  rs4987361 1.01 (0.84 – 1.22) 0.90

 Model 2

  rs12938 1.20 (1.0 – 1.43) 0.05

  rs3917768 1.02 (0.86 – 1.21) 0.81

  rs4987361 1.04 (0.86 – 1.26) 0.69

Coronary Heart Disease HR (95% CI) p value

  Model 1

  rs12938 0.96 (0.69 – 1.34) 0.82

  rs3917768 0.78 (0.56 – 1.10) 0.16

  rs4987361 1.14 (0.81 – 1.59) 0.46

  Model 2

  rs12938 0.96 (0.68 – 1.34) 0.80

  rs3917768 0.79 (0.56 – 1.11) 0.17

  rs4987361 1.15 (0.82 – 1.61) 0.41

CAC coronary artery calcium, HDL high-density lipoprotein, IMT intima-media thickness, LDL low density lipoprotein, SE standard error

An additive multivariable genetic model was fit modeling 0, 1, or 2 copies of the minor allele (MAF) rs12938 (C), rs3917768 (C), rs4987361 (C)

Model 1 = age and sex
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Model 2 = age, sex, Body mass index (BMI), smoking and alcohol use status, LDL and HDL cholesterol, triglycerides, and hypertension and 
diabetes status
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