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Abstract

In clinical studies with time-to-event as a primary endpoint, one main interest is to find the best 

treatment strategy to maximize patients’ mean survival time. Due to patient’s heterogeneity in 

response to treatments, great efforts have been devoted to developing optimal treatment regimes 

by integrating individuals’ clinical and genetic information. A main challenge arises in the 

selection of important variables that can help to build reliable and interpretable optimal treatment 

regimes since the dimension of predictors may be high. In this paper, we propose a robust loss-

based estimation framework that can be easily coupled with shrinkage penalties for both 

estimation of optimal treatment regimes and variable selection. The asymptotic properties of the 

proposed estimators are studied. Moreover, a model-free estimator of restricted mean survival 

time under the derived optimal treatment regime is developed and its asymptotic property is 

studied. Simulations are conducted to assess the empirical performance of the proposed method 

for parameter estimation, variable selection, and optimal treatment decision. An application to an 

AIDS clinical trial data set is given to illustrate the method.
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1. Introduction

Personalized medicine has received much attention in treating complex diseases, such as 

cancer, AIDS, and mental disorders. Numerous studies have been dedicated to finding 

optimal treatment regimes in the past. A treatment regime is a rule of assigning patients to a 

specific treatment according to their characteristics, such as demographic information, 

clinical measurements, genetic information, and etc. An optimal treatment regime is 

supposed to produce the best clinical outcome on average if all the patients are treated 

accordingly. Personalized medicine has aroused great interest among clinicians, statisticians, 

and public policy makers.
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In the literature, various approaches have been proposed to estimate optimal treatment 

regimes, such as Q-learning [1, 2] and A-learning [3, 4, 5]. Recently, [6] proposed a robust 

estimation method for the mean response under a given treatment regime based on the 

inverse probability of propensity scores weighted (IPW) estimation and extended it to the 

augmented IPW estimation with the double robustness. Then, an optimal treatment regime is 

obtained by directly maximizing the estimated mean response over all possible treatment 

regimes in a specified class. The outcome weighted learning (OWL) proposed by [7] 

transforms the problem of maximizing the estimated mean response over all possible 

treatment regimes into minimizing the associated weighted classification error, which is 

solved by weighted support vector machine. In addition, [8] proposed a general framework 

for estimating the optimal treatment regimes from a classification perspective.

In many clinical studies, a primary endpoint is time-to-event and a main interest is to find 

the best treatment regime to maximize patients’ mean survival time. For example, in our 

motivating study from the AIDS Clinical Trials Group Protocol 175 (ACTG175) [9], a 

primary endpoint was time to first ≥ 50% decline in CD4 count, an AIDS-defining event or 

death, recorded in days. Patients were randomized to four treatment groups and showed 

difference in survival between treatment groups. Moreover, in many clinical studies, a large 

amount of prognostic factors may be available, such as genetic information, clinical 

measures, as well as some social, environmental and behavior characteristics. However, not 

all of them are useful for selecting the best treatment for patients. This urges the need to 

integrate variable selection with optimal treatment regime estimation since it can lead to a 

parsimonious, interpretable and reliable treatment rule for practical use. In the context of 

classical regression settings, shrinkage methods, such as least absolute shrinkage and 

selection operator (LASSO) penalty [10], smoothly clipped absolute deviation (SCAD) 

penalty [11] and adaptive LASSO penalty [12], have been widely used for variable selection 

due to their superior empirical and theoretical properties. However, they are less studied in 

the estimation of optimal treatment regimes. One main challenge is that in the context of 

optimal treatment regimes, we are interested in the interaction between treatments and 

predictors, but not the baseline effects of predictors. Recently, there are a few developments 

for variable selection in deriving optimal treatment regimes. For example, [13] introduced 

the concepts for predictive variables (predictors with important baseline effects) and 

prescriptive variables (predictors interacting with treatments), and developed a ranking 

method for selecting qualitative interactions. [14] developed a l1-penalization method for 

selecting both predictive and prescriptive variables in a regression model and studied the 

theoretical properties of the obtained optimal treatment regimes. [15] proposed a least square 

loss-based selection framework for uncensored responses, which was shown to be robust to 

misspecification of the baseline effects of predictors and able to incorporate various 

shrinkage penalties naturally. To our knowledge, variable selection in optimal treatment 

regimes for censored survival outcomes has not been well studied in literature.

In this article, we extend the method of [15] to the estimation and selection of optimal 

treatment regimes for mean survival time. In particular, we propose an inverse probability of 

censoring weighted least squares estimation with adaptive LASSO penalty for variable 

selection. As in [15], the new method does not require the correct specification of the 
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baseline effects since it properly adjust for propensity scores as in the A-learning estimation. 

We further generalize the proposed optimal treatment regime learning scheme for two 

treatments to the case of multiple treatments. To evaluate the optimality of the estimated 

optimal treatment regime, we develop a model-free method to estimate the restricted mean 

survival time under the derived optimal treatment regime and study its associated inference.

The remainder of the paper is organized as follows. In Section 2, we introduce the proposed 

model, estimation and variable selection methods for deriving optimal treatment regimes. In 

addition, we develop a model-free estimator for the restricted mean survival time under the 

derived optimal treatment regime. The asymptotic properties of the proposed estimators are 

also presented. Section 3 assesses the empirical performance of the proposed estimators by 

simulation studies. Section 4 demonstrates the application of the method to a data set from 

the AIDS Clinical Trials Group Protocol 175 (ACTG175) [9]. We conclude the paper with 

discussions in Section 5.

2. Proposed Method

2.1. Notations and model assumptions

Let  = {0, 1, 2, …, k} represent the set of k + 1 available treatments. Consider a clinical 

trial with n subjects, each of whom receives one treatment from . Define Ai as the actual 

treatment received by the ith subject and A(j)i as the indicator of subject i taking treatment j, 

i.e., Aj,i = I(Ai = j), j = 0, ⋯, k. For subject i, let Yi denote the survival or log survival time of 

interest, Ci denote the corresponding censoring time, and Xi = (X1i, …, Xpi)T denote the p-

dimensional baseline covariates. The observed data then consist of (Ỹi, δi, Xi, Ai), i = 1, ⋯, 

n, where Ỹi = Yi ∧ Ci, δi = I(Yi ≤ Ci) and a ∧ b = min(a, b).

Let  be the potential survival or log survival time of subject i if he or she were given 

treatment j, j ∈ . Our goal is to find the optimal treatment regime to maximize the mean 

survival time. Here, a treatment regime g is a function that maps the sample space of X to 

. For any treatment regime g, we have . Therefore, 

the optimal treatment regime gopt is defined by

where  is the functional space for g.

As in [16], we make the following two commonly used assumptions:

(C1) (Consistency assumption) Y = ∑j∈  I (A = j)Y* (j);

(C2) (No unmeasured confounders assumption) A⊥{Y* (j)}j∈ |X.

Under conditions (C1) and (C2), we can show that
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It follows that gopt(x) = argmaxj∈ E{Y|A = j, X = x}.

To estimate the optimal treatment regime, we consider a semiparametric regression model 

for Yi,

(1)

where  and h0 is an unspecified baseline mean function. It is easy to show that 

the optimal treatment regime under model (1) is

(2)

where . Here, we restrict the optimal 

treatment regime to a class of linear functions of covariates for its simplicity and easy 

interpretation in practical use. However, the proposed idea can be extended to other 

functionals to meet the need of more complicated estimation and selection procedures.

2.2. Estimation and selection for optimal treatment regimes

When there is no censoring and only two treatments, [15] proposed a general framework for 

selecting important predictors in optimal treatment regimes. The approach does not require 

the correct specification of the baseline mean function and is therefore robust. In this work, 

we generalize their estimation framework to incorporate censoring and multiple treatments. 

Specifically, we handle censoring by the inverse probability of censoring weighted (IPCW) 

technique as widely studied in the literature [17, 18, 19, 20, 21]. As usual, we make the 

independent censoring assumption, i.e., C⊥(Y, X, A). Let G(·) denote the survival function of 

censoring times. We propose to estimate the optimal treatment regime by minimizing the 

following loss function:

(3)

with respect to β and γ, where πj(x) = P(Ai = j|Xi = x) is the propensity score, Ĝ(·) is the 

Kaplan-Meier estimator of G, and φ(x; γ) is a posited parametric function. Let (β̃, γ̃) denote 

the minimizer of (3) and β0 be the true value of β.

In some studies such as randomized clinical trials, the propensity scores are known by 

design. However, in non-randomized studies, the propensity scores are usually unknown and 

need to be estimated based on a posited model, e.g. a multinomial logistic regression. In this 

paper, we focus on the case with the propensity scores known in priori. Various parametric 
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functions can be used for φ(·; γ). Here, for simplicity, we consider the constant model φ(x; γ) 

= γ and linear model φ(x; γ) = γT x. As shown in the following theorem, regardless of the 

choice of φ(·; γ), the estimator β̃ is always consistent and asymptotically normal as long as 

the propensity scores are correctly specified.

The independent censoring assumption can be relaxed in (3), but it then needs to model the 

censoring time distribution, say by a proportional hazards (PH) model, and replace the 

Kaplan-Meier estimator by the survival function estimator obtained under the posited PH 

model. In our simulations, we conducted sensitivity analysis to assess the performance of the 

proposed estimators when the independent censoring assumption is violated. Based on our 

limited simulation study results, the proposed estimators are quite robust to the violation of 

the independent censoring assumption.

Theorem 1. Assume that the propensity scores are correctly specified and conditions (A1)–

(A5) in Appendix hold. We have that  as n → ∞.

The proof of Theorem 1 is given in Appendix. Based on Theorem 1, the optimal treatment 

regimes can be consistently estimated by g(X; β̃). When the dimension of covariates is high, 

selection of important variables for deriving optimal treatment regimes becomes crucial to 

achieve personalized medicine, since it can lead to more reliable and practically useful 

treatment rules. The proposed weighted loss function given in (3) can be easily coupled with 

various shrinkage penalties, such as LASSO [10], SCAD [11], adaptive LASSO [12, 22] and 

minimax concave penalty [23], for variable selection. Here we use the adaptive LASSO 

penalty and solve

(4)

where we set , j = 1, …, k, l = 0, …, p.

For computation, we point out that the proposed weighted loss can be represented as a least 

squared loss. Specifically, define  and 

. Then 

. Thus, the optimization in (4) is equivalent to a penalized 

least squares estimation with the adaptive LASSO penalty. The whole solution path of the 

proposed estimators can be obtained by the LARS algorithm [24]. Let β̂(λ) denote the 

resulting estimator for fixed λ. To choose the tuning parameter λ, we propose to use the 

BIC-type criteria as studied in [15], that is, choosing λ that minimizes Ln(β̂(λ), γ̃)/Ln(β̃, γ̃) + 

d(λ) log(n)/n, where d(λ) is the number of non-zeros in β̂(λ).

Denote the solution to (4) by β̂. Then the estimated optimal treatment rule is g(X; β̂). Next, 

we establish the asymptotic properties of β̂. Without loss of generality, write 
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, where β(1),0 is a vector of non-zero coefficients with length s and β(2),0 

= 0. Accordingly, write .

Theorem 2. Assume that conditions in Theorem 1 hold, and  and nλn → ∞ as n 

→ ∞. We have

i. (sparsity) P(β̂
(2) = 0) → 1;

ii. (asymptotic normality)  as n → ∞.

The expression of ΣS and the proof of Theorem 2 are given in the Appendix.

2.3. Nonparametric evaluation of estimated treatment regime

In practice, it is of great interest to nonparametrically estimate the mean survival time for a 

given treatment regime, since it can help to asses its optimality and compare with other 

treatment regimes. Under model (1), the mean survival time under the true optimal treatment 

regime is given by V0 = E{Y*(g(X; β0))}. However, for most clinical studies with limited 

follow-up time, the support of censoring times is usually shorter than that of survival times 

of interest. As a consequence, the mean survival time is not estimable based on censored 

survival data. Alternatively, it has been proposed to estimate the restricted mean survival 

time (RMST) since it is an easily interpretable and clinically meaningful measure for 

censored survival data [25, 26, 27]. Specifically, the RMST under a treatment regime g is 

defined by VL(g) = E{Y* (g) ∧ L}, where L is a constant such that P(Ỹ ≥ L) > 0. Therefore, 

the RMST is the mean of survival times for all potential study subjects followed up to time 

L.

Let . Given our estimated optimal treatment regime g(X; β̂), we 

now derive a model-free method to estimate . Recently, for uncensored responses, [6] 

proposed an inverse propensity scores weighted estimation method to estimate the mean 

response given a treatment regime g. Specifically, E{Y* (g)} can be consistently estimated 

by solving the following equation:

where . The above estimating equation for E{Y* (g)} does 

not require the model assumptions on the response variable Y. This motivates us to consider 

the following equation to estimate VL (g) with censored survival data:

(5)

where  and . Therefore, an estimator of 

VL (g) is given by
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This leads to an estimator of , denoted by . In the following 

theorem, we establish the asymptotic distribution of .

Theorem 3. Assume that conditions in Theorems 1 and 2 hold. We have, as n → ∞, 

.

The proof of Theorem 3 is given in Appendix. The asymptotic variance σ2 has a very 

complicated analytical form, and its estimation based on the usual plug-in method is difficult 

since  is not a smooth function of β̂. Here, we use the bootstrap method for 

estimating σ2 in our numerical studies. In addition, we can compare a given treatment 

regime g with the estimated optimal treatment regime g(X; β̂) in terms of , 

and use the bootstrap method to assess the significance of the difference.

3. Simulation Studies

3.1. Low dimensional examples with p = 10

We considered the following models with 2 or 4 treatments, i.e. k = 1 or 3:

• Model I: two treatments with quadratic baseline.

where γ1 = (1, −1, 08)T, γ2 = (1, 02, −1, 05, 1)T and β1 = (1, 1, 07, −0.9, 0.8)T.

• Model II: four treatments with quadratic baseline and common important factors 

across treatments.

where γ1 = (1, −1, 08)T, γ2 = (1, 02, −1, 05, 1)T, β1 = (1, 1, 07, −0.9, 0.8)T, β2 = (1, 

0.7, 07, 0.8, −1)T and β3 = (1, −1, 07, 1, 0.9)T.

• Model III: the same as model II but with different important factors across 

treatments, i.e., β1 = (1, 1, 07, −0.9, 0.8)T, β2 = (1, 02, 1, 0.8, 05,−0.9)T and β3 = (1, 

−0.9, 06, 1, 0.8, 0).

For each model, the covariate vector X = (X1, …, Xp)T is generated from a multivariate 

normal distribution with mean 0, variance 1 and correlation Corr(Xj, Xk) = 0.5|j−k|, and the 
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error term is from a normal distribution with mean 0 and standard deviation 0.5. In addition, 

subjects are randomized to one of the available treatments with equal probabilities. 

Therefore, the propensity score is 0.5 with two treatments and 0.25 with four treatments. 

Censoring times are generated as log(Ci) ~ unif(0, τc), where τc is chosen to achieve 15% 

and 40% censoring rates respectively. For each scenario, we run 500 replications with 

sample size of n = 400 and 800.

We consider two choices for the posited parametric function ϕ(X; γ):

• Choice 1 (constant model): ϕ(X; γ) ≡ γ.

• Choice 2 (linear model): ϕ(X; γ) ≡ γT X̃.

To evaluate the estimation accuracy of the proposed estimator, we report the mean squared 

error of β̂, i.e. MSE = ‖β̂ − β0‖2. To evaluate the variable selection performance, we report 

the number of non-zero coefficients incorrectly identified as zero (denoted by “Incor0”), the 

number of correct zero coefficients identified (denoted by “Corr0”), the proportion of 

exactly selecting the correct model (denoted by “Exact”) and the proportion of covering all 

the important variables (denoted by “Cover”). Note that the number of zero coefficients is 7 

under Model I, and is 21 under Models II and III. To assess the accuracy of the estimated 

optimal treatment regimes, we report the average percentage of making correct decisions 

(PCD) over 500 runs, where PCD is defined as . For 

comparison, we also report the average PCD for the estimated optimal treatment regime g(X; 

β̃) without penalization.

The estimation, selection and PCD results for Models I–III are summarized in Table 1. 

Based on the results, we have several observations. First, the estimation, selection and PCD 

results improve as sample size increases and the censoring rate decreases as expected. 

Second, when the censoring rate is low (15%), Incor0 are close to 0, Corr0 are close to the 

true number of zero coefficients, and the coverage frequencies (Cover) are high in most 

cases. The selection frequencies of the correct model (Exact) are also reasonable under 

Model I, but much lower under Models II–III. Under the higher censoring (40%) case, the 

overall selection performance becomes worse but is still reasonable with Choice 2. Third, 

Choice 2 with the linear model for ϕ(X; γ) generally shows better performance than Choice 

1 with the constant model, and the improvement may be substantial under the heavy 

censoring situation. Fourth, with regard to PCD, both the unpenalized and penalized 

estimates of optimal treatment regimes perform reasonably well, with PCD above 85% for 

all the cases. In addition, the penalized estimates generally have slightly better PCD than the 

unpenalized estimates, but the gain is not significant.

3.2. Large dimensional examples with p = 50

To show the effectiveness of the proposed method for high dimensional covariates, we 

consider the following model with p = 50. The estimation, selection and PCD results are 

summarized in Table 1.

• Model IV: two treatments with quadratic baseline.
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where γ1 = (1, −1, 048)T, γ2 = (1, 02, −1, 05, 1, 040)T and β1 = (1, 1, 07, −0.9, 0.8, 040)T.

In Model IV, the number of zero coefficients is 47. The proposed method still demonstrates 

competitive performance. Overall, we have observed the same patterns as in the low 

dimensional cases, except that the PCDs of the penalized estimators now exhibit 

considerable enhancement compared with those of the unpenalized estimators; it 

demonstrates the advantage of the penalization method when dealing with high dimensional 

covariates.

3.3. Sensitivity analysis

In our proposed method, the independence censoring assumption is made and Kaplan-Meier 

estimator is used for estimating the survival function of censoring times. However, this 

assumption may be restrictive for practical applications. To evaluate the performance of the 

proposed method when the independence censoring assumption is violated, we conduct 

sensitivity analysis. Specifically, we reran all the simulations under the same conditions 

except that censoring times are now generated from log(Ci) = τc + ηTXi + ei, where e follows 

the standard extreme value distribution, and τc is chosen to obtain the desired censoring 

rates of 15% and 40%. For Model I, we set η = (1, 02, 1, 06)T; for Model II and III, set η = 

(1, 04, 1, 04)T; for Model IV, set η = (1, 04, 1, 044)T.

The results from sensitivity analysis are given in Tables 2. The findings are very similar to 

those in independence censoring cases reported previously. Although the coefficient 

estimation and variable selection become slightly worse when the independence censoring 

assumption is violated, the PCDs of our proposed methods are very comparable to those 

given in Table 1. In summary, based on the limited sensitivity analysis we have conducted, 

the proposed method appears to be insensitive to the violation of the independence censoring 

assumption. However, in general, our method requires the independent censoring 

assumption for its validity.

3.4. Estimation of RMST

In this subsection, we conduct simulations to evaluate the performance of the proposed 

nonparametric estimator  of the MRST under the obtained optimal treatment 

regime given in Section 2.3. For simplicity, we choose L = τc, the log of the maximum 

follow-up time. We have  under the 15% censoring rate, and  under the 

40% censoring rate, which are calculated by simulating survival times of 400, 000 subjects 

following the true optimal treatment regime. We only present the results for Model IV with 

4 treatments, p = 10 and n = 800. For each case, 200 bootstrap samples are used for variance 

estimation. For each bootstrap sample, we recalculate the Kaplan-Meier estimator of the 

censoring survival function and the adaptive LASSO estimator of β0. The results are 

summarized in Table 3. We report the mean and standard deviation (SD) of our estimates, 

the estimated standard error (SE), and the coverage probability (CP) of Wald-type 95% 
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confidence intervals for . From the simulation results, we observe that our estimates are 

nearly unbiased for , the bootstrap standard errors are close to the Monte Carlo standard 

deviations, and the CPs are also reasonably close to the nominal level, when the censoring 

rate is low. When the censoring rate is 40%, the bootstrap standard error tends to be 

underestimated and the CPs are lower than the nominal level. One possible reason is that the 

bootstrap variance for the proposed adaptive LASSO estimator of β0 tends to be 

underestimated under heavy censoring.

4. Real Data Analysis

For illustration, we apply our method to the HIV data from AIDS Clinical Trials Group 

Protocol 175 (ACTG175) [9]. In ACTG175, 2137 HIV-infected subjects were randomized 

to receive one of the four treatments: zidovudine (ZDV) monotherapy (treatment 0), ZDV + 

didanosine (ddI) (treatment 1), ZDV + zalcitabine (treatment 2) and ddI monotherapy 

(treatment 3). The primary endpoint was time to the first ≥ 50% decline in CD4 count, an 

AIDS-defining event or death, recorded in days. Among 2137 subjects, 75.6% of them were 

censored due to the end of trial or loss to follow-up. In Figure 1, we plotted the Kaplan-

Meier survival curves for the four treatment groups. From the plots, it can be seen that 

treatments 1, 2 and 3 have clearly better survival than treatment 0; treatments 1 and 2 have 

very comparable survival curves, which are slightly better than treatment 3.

As in [28] and [29], besides the treatment indicators, we considered 12 covariates, including 

5 continuous variables: age (years), weight (kg), Karnofsky score (scale of 0–100), CD4 

count (cells/mm3) at baseline and CD8 count (cells/mm3) at baseline, and seven binary 

covariates: hemophilia (0=no, 1=yes), homosexual activity (0=no, 1=yes), history of 

intravenous drug use (0=no, 1=yes), race (0=white, 1=non-white), gender (0=female, 

1=male), antiretroviral history (0=naive, 1=experienced), and symptomatic status 

(0=asymptomatic, 1=symptomatic). The goals are to derive the optimal treatment regime to 

maximize the mean log survival time and to select important predictors that are needed for 

deriving the optimal treatment regime.

As in simulations, we consider both the constant model and the linear model for the baseline 

function ϕ(X; γ), and conduct variable selection using the adaptive LASSO estimation. The 

final estimated coefficients β̂ are given in Tables 4 and 5, respectively. For the constant 

model fit, the optimal treatment regime is determined by comparing the following four 

functions

a. 0;

b. 0.275 − 0.003 * wtkg − 9.83 × 10−5 * cd40 + 1.57 × 10−4 * cd80+ 0.316 * drugs;

c. −1.634 + 0.021 * karnof − 4.70 × 10−4 * cd40 + 0.080 * hemo + 0.048 * race;

d. −0.010 + 1.20 × 10−4 * cd80 − 0.100 * gender + 0.140 * str2;

while for the linear model fit, the optimal treatment regime is determined by comparing

a. 0;

b. 0.466 − 0.005 * wtkg + 9.64 × 10−5 * cd80 + 0.233 * drugs;
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c. −1.443 + 0.018 * karnof + 0.050 * hemo;

d. −0.021 + 1 × 10−4 * cd80 − 0.031 * gender + 0.144 * str2 − 0.099 * symptom.

The optimal treatment rule is

Based on the constant model fit, one would assign 1 subject to treatment 0, 729 subjects to 

treatment 1, 1216 subjects to treatment 2, and 193 subjects to treatment 3. Based on the 

linear model fit, one would assign 644 subjects to treatment 1, 1383 subjects to treatment 2, 

and 112 subjects to treatment 3. These results agree with the Kaplan-Meier curves given in 

Figure 1, since treatment groups 1, 2 and 3 have significantly better survival than treatment 

group 0, and treatment groups 1 and 2 are slightly better than group 3. Moreover, for 

comparison, we plot the Kaplan-Meier survival curve for patients whose received treatments 

agree with those given by the estimated optimal treatment regime with the linear model for 

baseline (denoted by “match”). From the plot, we note that the survival curve following the 

optimal treatment regime stays above all other four survival curves for individual treatment 

groups, confirming that the obtained optimal treatment regime can lead to better survival 

compared with each individual treatment.

In addition, we calculate the restricted mean log survival time following different treatment 

strategies based on the estimation method derived in Section 2.3. As in simulations, we take 

L as the log of maximum follow-up time. Specifically, the restricted mean log survival time 

under the estimated optimal treatment regimes with the constant fit and the linear fit are 

6.44(0.045) and 6.43(0.047), respectively. The numbers in the parentheses are the associated 

standard errors obtained via 500 bootstraps. For comparison, we also compute the restricted 

mean log survival time for treatment groups 0, 1, 2 and 3, which are 6.13(0.049), 

6.37(0.045), 6.38(0.054) and 6.30(0.049), respectively. The estimated restricted mean log 

survival time under the derived optimal treatment regimes are larger than the restricted mean 

log survival time of each individual treatment group. To assess whether the differences are 

significant, we obtain the 95% confidence intervals for the differences between the restricted 

mean log survival time under the optimal treatment regime  and the restricted mean log 

survival time of each individual treatment group (denoted by VL(j), j = 0, 1, 2, 3, i.e. g(X) ≡ 

j) via 500 bootstraps. Two types of confidence intervals are considered: Wald-type 

confidence interval and percentage based confidence interval (i.e. using the 2.5% and 97.5% 

quantiles of the bootstrapped differences). The results are given in Table 6. Based on the 

results, we observe that all the confidence intervals stay above 0, showing the significant 

increase of the restricted mean log survival time under the estimated optimal treatment 

regimes compared with each individual treatment.

In above analyses, the estimation of the optimal treatment regime and its associated 

evaluation used the same dataset, which may cause some overfitting. However, note that the 
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estimation and selection of the optimal treatment regime for the mean log survival time is 

based on the assumed semiparametric regression model, while the evaluation of the 

estimated optimal treatment regimes are fully nonparametric. Specifically, we used two 

measures: (1) Kaplan-Meier curves for matched subjects; (2) the nonparametric estimator of 

restricted mean survival time based on matched subjects. Both measures do not use the 

assumed model when comparing different treatment regimes, and thus can still provide fair 

comparisons. In addition, we conducted 10 random splits of the original data to half training 

and half testing data. Using the training data, we estimated the sparse optimal treatment 

regime based on the proposed method with the posited constant baseline effect. Then, we 

compared the estimated optimal treatment regime with other simple treatment regimes based 

on the estimated restricted mean log survival times using the proposed nonparametric 

estimators. The averages and standard deviations (given in parenthesis) are 6.40 (0.035), 

6.13 (0.047), 6.36 (0.035), 6.35 (0.049) and 6.33 (0.055) for the estimated optimal treatment 

regime, and treatment groups 0, 1, 2, and 3, respectively. This also supports that the 

estimated optimal treatment regime improves the restricted mean log survival time 

comparing with single treatment groups.

5. Discussion

In this paper, we propose an ICPW-based loss function to estimate the optimal treatment 

regime that maximizes the mean log survival time with multiple treatments. The proposed 

estimation method is robust in the sense that it can consistently estimate the optimal 

treatment regime regardless of the form of the posited baseline model as long as the 

treatment-covariates interactions and propensity scores are correctly specified. However, a 

more comprehensive choice for the baseline model usually can improve the estimation 

efficiency and accuracy. In addition, the new loss function can be easily coupled with 

shrinkage penalties, such as adaptive LASSO, to select important variables that are related to 

the optimal decision. The resulting sparse estimates can lead to parsimonious optimal 

treatment regimes with easy interpretation and can improve the accuracy of optimal 

treatment decision, especially in high dimensional cases.

In our current estimation framework, the adaptive LASSO penalties are added to each 

individual regression coefficient. With multiple treatments, i.e. k > 1, regression coefficients 

are naturally grouped. For example, coefficients βj,l, j = 1, ⋯, k are all associated with 

covariate Xl, l = 0, ⋯, p, where X0 ≡ 1 corresponding to the intercept. In practice, it is of 

great interest to consider variable selection with certain group structures. Specifically, we 

may consider the following penalized estimation:

The penalty in the above equation adopts the weighted group L1 norm, which encourages 

group selection and also allows the selection of individual covariates within groups, which 

shares the spirit of the group bridge penalty [30] and the hierarchical group lasso [31].
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Furthermore, in this paper, we focus on the estimation and selection of optimal treatment 

regimes at one decision point. For many complex diseases, such as cancer, AIDS and mental 

disorders, clinicians may make a series of treatment decisions based on patients’ evolving 

status of the disease, i.e. a dynamic treatment process. It is therefore of great interest to 

extend the proposed method to the estimation and selection for optimal dynamic treatment 

regimes, which is a challenging problem and warrants future study.
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Appendix

We need the following regularity conditions to establish the theorems.

(A1) The vectors (Yi, Ci, Xi, Ai), i = 1, …, n are independently and identically 

distributed. In addition, the censoring time Ci is independent of Yi, Ai and Xi.

(A2) The values of β and γ belong to a compact set, the vector of covariates X has a 

convex support, and ϕ(X, γ) is continuously differentiable with respect to γ.

(A3) There exists a constant τ such that P(C = τ) > 0, P(C > τ) = 0 and P(Y ≥ τ) > 0.

(A4)
The matrix 

is negative definite, and the equation  has a unique solution 

γ*, where the definitions of  and  are given by (6) and 

(7) in the proof of Theorem 1.

(A5) The matrix U defined in the proof of Theorem 1 is finite and non-singular.

Condition (A3) is assumed to simplify theoretical arguments and is satisfied in many clinical 

studies with an administrative censoring. In practice, τ can be chosen as the maximum of 

follow-up time. To ensure (A3) in general situations, as suggested by [21], an artificial 

censoring time L can be introduced to truncate censoring times, that is, C* = C ∧ L. Then 

(A3) is automatically satisfied with truncated censoring times. Conditions (A4) and (A5) are 

assumed to ensure the consistency and asymptotic normality of the proposed estimators.

7.1. Proof of Theorem 1

To simplify notations, define Vij = Aj,i − πj(Xi), Gi = G(Yi), Ĝi = Ĝ(Yi), and

(6)
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(7)

Since Ĝ(·) is a consistent estimator of G(·), we can show that

uniformly for β and γ in a compact set. Based on condition (A3), we have that for large n, 

(β̃T, γ̃T)T are the unique solutions to the equations , j = 1, …, k, and 

. In addition, it is easy to show that, for any γ, β0 are the unique 

solutions to the equations , for j = 1, …, k. Therefore, by (A3), β0 and 

γ* are the unique solutions to the equations , j = 1, …, k, and 

. This implies that  and .

Next, we prove the asymptotic normality. Define 

. By the first order Taylor 

expansion, the fact that  and some empirical process 

approximation techniques, we have

In addition, by the martingale integral representation of , we have
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where τ is the maximum follow-up time, Yi(u) = I(Ỹi ≥ u), 

 with 

Λc(·) being the cumulative hazard function for censoring time, y(u) = P(Ỹi ≥ u) and μ1(u, β0, 

γ*,G) = E{mi(β0, γ*, G)Yi(u)}.

Let U = E{−∂mi(β0, γ*,G)/∂(βT, γT)T}. After some algebra, we have

where U11 is a (p + 1)k × (p + 1)k matrix with the (ij)th block matrix being E[−πi(X){1 − 

πj(X)}X̃X̃T], i = 1, …, k, j = 1, …, k, and . Then, we have

By the central limit theorem,  converges in distribution to a normal 

random vector with mean 0 and variance-covariance matrix U−1ΩU−1.

7.2. Proof of Theorem 2

Recall that  and 

. Then 

. The optimization (4) becomes the penalized least squares 

estimation subject to the adaptive LASSO penalty. Since Ĝ(t) is a -consistent estimator 

of the censoring survival function G(t), and , following the similar arguments 

used in [12] and [22] for the adaptive LASSO estimation, we can prove the asymptotic 

results given in Theorem 2. The details are omitted here.
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7.3. Proof of Theorem 3

Recall that

By the first order Taylor expansion, the fact that  and some 

empirical process approximation techniques, we have

Define . Then

In addition, we have

Similarly, we have 

 and 

. Therefore,

In addition, by some empirical process approximation techniques, it can be shown that 

 uniformly for β in a compact set. Here, V (β) is a 

smooth function of β. By Theorem 2, we have P(β̂
(2) = 0) → 1 and 
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. Write  accordingly and let υ(β) denote the 

derivative of V (β) with respect to β(1). Then, we have

It follows that

Finally,

since . In addition, we can write 

, where ξi’s are i.i.d. mean-zero random vectors. 

Therefore,

which converges in distribution to a mean-zero normal random variable with the variance 

.
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Figure 1. 
The Kaplan-Meier survival curves for four treatment groups and patients following the 

estimated optimal treatment regime with the linear model for baseline.
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Table 4

Estimated coefficients for interactions using the constant model for baseline

Variable Name Treatment 1 Treatment 2 Treatment 3

intercept 0.275 −1.634 −0.010

age 0 0 0

wtkg −0.003 0 0

karnof 0 0.021 0

cd40 −9.83E-5 −4.70E-4 0

cd80 1.57E-4 0 1.20E-4

hemo 0 0.080 0

homo 0 0 0

drugs 0.316 0 0

race 0 0.048 0

gender 0 0 −0.100

str2 0 0 0.140

symptom 0 0 0
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Table 5

Estimated coefficients for interactions using the linear model for baseline

Variable Name Treatment 1 Treatment 2 Treatment 3

intercept 0.466 −1.443 −0.021

age 0 0 0

wtkg −0.005 0 0

karnof 0 0.018 0

cd40 0 0 0

cd80 9.64E-5 0 1E-4

hemo 0 0.050 0

homo 0 0 0

drugs 0.233 0 0

race 0 0 0

gender 0 0 −0.031

str2 0 0 0.144

symptom 0 0 −0.099
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Table 6

95% confidence intervals for the differences of restricted mean log survival time

constant fit

Wald (0.26, 0.52) (0.04, 0.26) (0.03, 0.26) (0.10, 0.33)

percentile (0.26, 0.51) (0.05, 0.27) (0.04, 0.26) (0.10, 0.34)

linear fit

Wald (0.25, 0.51) (0.03, 0.26) (0.03, 0.25) (0.09, 0.33)

percentile (0.25, 0.51) (0.03, 0.27) (0.03, 0.27) (0.09, 0.33)
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