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Introduction

Ovarian cancer (OC) is considered to arise from epithelial cells encapsulating ovaries, 

stromal cells, or ova, although recent evidence suggests origins in Fallopian tubes and other 

sites as well[1]. The great majority of OC are epithelial carcinomas and often present with 

advanced or metastatic disease. Although chemotherapy and surgical debulking can 

eliminate clinically apparent cancer, patients often succumb to chemotherapy-resistant 

tumor relapse within several years after initial remission. Immunotherapy for OC could be 

effective[2–9] as OC cells express immunogenic tumor-associated antigens that elicit 

detectable, specific immune responses[10–19]. The positive correlation between OC survival 
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and tumor infiltration with CD8+ T cells is compelling evidence that anti-tumor immune 

surveillance is a critical dictate of clinical outcomes in OC[20]. Despite abundant evidence 

that anti-tumor immunity in OC could be effective, immune-based OC therapies have 

generally been only modestly successful, at best. The first immunotherapy for OC used 

intraperitoneal injections of anti-human milk fat globulin-1 antibodies in 1987[21], which 

was also among the very first uses of monoclonal antibodies as cancer immunotherapy. 

Additional antibody approaches followed, most notably with failure of the anti-CA-125 

antibody oregovomab. Although there have been anecdotal reports of good clinical 

responses to newer immunotherapy approaches, there is no FDA-approved OC 

immunotherapy, as exists for other cancers. Nonetheless, recent data suggest that effective, 

tolerable OC immunotherapy could be developed in the near future. Recent advances in the 

understanding of OC immunopathogenesis, including understanding the immunopathogenic 

role of regulatory T cell, immature myeloid cells and dysfunctional immune co-signaling, 

help identify potentially more effective immunotherapy approaches. Combination 

immunotherapies appear more promising than individual immunotherapy agents, and 

immunotherapy could be combined with cytotoxic agents, small molecule inhibitors, 

radiation therapy or surgery based on rational concepts.

TREATMENT

• Standard of care treatment for advanced stage OC includes optimal surgical 

debulking combined with chemotherapy with a platinum plus taxane agent.

• Immunotherapies include passive cell transfers, active vaccinations, or cytokine, 

toxin or antibody infusions to stimulate antitumor immunity.

• Newer experimental approaches include combinations of immunoactive agents or 

combining immunotherapy with cytotoxic agents, small molecule inhibitors, 

surgery or radiation therapy.

Surgery

• Standard of care front line surgery consists of optimal tumor debulking where 

feasible, or debulking as much primary tumor as possible.

• Surgery is also used in recurrences and salvage settings, occasionally with curative 

intent, but more often for patient comfort or to preserve organ function.

• Surgical debulking as an adjunct to immunotherapy is in the exploratory phase.

Interventional procedures

Radiotherapy

• External beam irradiation is not typically front-line OC therapy, but is used to 

reduce surgically inaccessible tumors or for palliation.

• The efficacy of combined external beam irradiation with immunotherapy is under 

investigation in other cancers[22] but has not yet been reported in OC.
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Pharmacologic treatment

Chemotherapy as immunotherapy: This review of OC immunotherapy will not detail 

front-line and salvage chemotherapeutic agents, which are discussed in detail elsewhere[23]. 

Chemotherapy can serve as an adjunct to immune therapies through the reduction of 

immune suppressive factors or by increasing immune surveillance. Fludarabine[24] or 

cyclophosphamide[25] can deplete immunopathogenic regulatory T cells. 5-fluorouracil can 

deplete cancer-promoting myeloid-derived suppressor cells in preclinical models[26]. 

Anthracyclines can increase the immunogenicity of tumors through the uncovering of 

tumor-associated antigens by tumor lysis or release of danger signals, such as high-mobility 

group box 1[27]. There is a clear rationale to combine certain cytotoxic agents with immune 

therapies.

Monoclonal antibodies

Anti-milk fat globulin-1: The first therapeutic antibodies to treat human OC were anti-

human milk fat globulin-1 antibodies radiolabeled and injected into the peritoneum, reported 

27 years ago[21]. Treatment responses were positively correlated with irradiation doses and 

inversely correlated with tumor volumes. Additional antibodies continued to highlight the 

relative safety of intraperitoneal antibody injections, and produced occasional long-term 

clinical responses[28]. However, a phase II trial of 90yttrium-labeled anti-human milk fat 

globulin-1 antibodies did not show significant clinical benefits in 25 patients. Further dose-

escalations produced myelosuppression[29], limiting the approach.

A phase I/II trial using 90yttrium-labeled anti-human milk fat globulin-1 in 52 patients tested 

standard-of-care surgery plus chemotherapy at initial OC diagnosis, followed by 

intraperitoneal antibody[30]. Treatment was well tolerated and 21 of 52 patients had no 

detectable disease at the end of therapy. At 35 months median follow-up, survival was 

potentially better than historical controls, suggesting possible efficacy, which was 

corroborated by a longer-term survival analysis in 2000[31]. More recent trials of 

intraperitoneal 90yttrium-labeled anti- human milk fat globulin-1 suggest that whereas it can 

control local (intraperitoneal) disease, distant relapses could offset any overall survival 

benefits. Nonetheless, further study could be warranted[32].

Farletuzumab: Folate receptor-α is overexpressed in most OCs. Farletuzumab is a 

humanized anti-folate receptor-α antibody thought to function not through blocking folate 

transport but through antibody dependent cellular cytotoxicity. Safety and activity was 

demonstrated in phase I and II trials at doses from 12.5 – 400 mg/m2 in OC patients in 

platinum-resistant relapse[33, 34]. Grade 1–2 adverse events were noted in 80% of patients, 

with grade 3 fatigue reported in 2. The most common side effects were hypersensitivity, 

fatigue, diarrhea, and cough/dyspnea. Ultimately, farletuzumab failed to meet its endpoint of 

improving progression-free survival in a recent phase III trial of 1,100 platinum-resistant OC 

patients (http://www.eisai.com/news/news201305.html) although a post hoc analysis 

suggested a trend toward improved progression free survival in OC subsets, prompting 

additional analyses. In another trial [33], 54 OC patients received weekly farletuzumab 

alone or combined with carboplatin (AUC 5–6) plus paclitaxel (175 mg/m2) or docetaxel (75 

mg/m2). Cytotoxics were given every 21 days for 6 cycles, followed by weekly 
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farletuzumab until progression. 28 patients with asymptomatic CA-125 relapse got 

farletuzumab alone and were eligible for carobplatinum/taxane plus farletuzumab if they 

progressed on fareltuzumab alone. 26 patients with symptomatic relapse initially got 

cytotoxics plus farletuzumab and 21 additional patients had cytotoxics added after initial 

farletuzumab. Farletuzumab alone was well-tolerated and did not augment toxicities of 

cytotoxics. In the 47 patients on farletuzumab plus chemotherapy, 38 (80.9%) normalized 

CA-125. Complete or partial response rates were 75% with farletuzumab plus cytotoxics. 

Thus, farletuzumab alone might be poorly effective, but combination with carboplatin plus a 

taxane could merit additional consideration in platinum sensitive first relapse.

Catumaxomab: Catumaxomab is a trifunctional antibody that kills EpCAM-expressing 

tumor cells, the primary cause of malignant ascites. It is approved to treat malignant ascites 

in Europe but not the United States. It is administered as four 3-h intraperitoneal infusions. 

One case report describes complete remission in an OC patient that received 4 infusions of 

catumaxomab alone. The most frequent adverse effects are fever, nausea, vomiting and 

abdominal pain. In a phase IIIb study, 25 mg predinosolone reduced catumaxomab-related 

adverse events in OC patients receiving it for malignant ascites. There were non-significant 

trends for prednisolone to reduce time between paracenteses and for catumoxamab alone to 

increase overall survival, but the main finding was that prednisolone did not reduce 

catumaxomab-related adverse events[35].

Ipilimumab: Immune checkpoint blockade with antibodies is emerging as potentially 

effective immunotherapy in many cancers[36]. Ipilimumab and tremelimumab are fully 

human IgG1 or IgG2 antibodies, respectively, that antagonize the CTLA-4 immune 

checkpoint. Ipilimumab is FDA-approved to treat metastatic or unresectable melanoma and 

is the first standard-of-care immune checkpoint inhibitor. Anecdotal reports of OC responses 

to ipilimumab and pre-clinical findings prompted an ongoing phase II trial of ipilimumab for 

platinum-resistant OC (NCT01611558). Ipilimumab can cause significant autoimmune side 

effects. Tremelimumab (in phase III trials for melanoma) could have similar efficacy with 

reduced toxicities.

Anti-PD-L1: Various clinical and preclinical studies support PD-L1 as a cancer treatment 

target[37]. BMS-936559 is a fully human IgG4 monoclonal antibody that blocks PD-L1 

from binding its two known receptors PD-1 and CD80 (http://www.onclive.com/web-

exclusives/the-role-of-anti-pd-l1-immunotherapy-in-cancer/6#sthash.NSf1zUJC.dpuf). It 

was safe in a phase I trial that included 17 OC patients[37] in doses of 0.3 – 10 mg/kg by 

intravenous infusion. Adverse events of any grade were reported in 91% of 207 patients. 

Only 12 patients (6%) discontinued therapy for treatment-related adverse events. Common 

side effects included fatigue, infusion reactions, diarrhea, arthralgia, pruritis, rash, nausea, 

and headache. Potential immune adverse events (rash, hypothyroidism, hepatitis, 

sarcoidosis, diabetes mellitus, endophthalmitis, myasthenia gravis) were observed in 81 

patients (39%). Only OC patients at the 10 mg/kg dose achieved objective responses: 1 (6%) 

with a partial response and 3 (18%) with stable disease lasting ≥24 weeks.
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Oregovomab: CA-125 is a tumor-associated antigen used to monitor OC treatment 

responses. CA-125 was targeted in vivo by the murine IgG1 monoclonal antibody 

oregovomab. Antigen-antibody complexes prime dendritic cells[38] to activate T cells[39]. In 

a pivotal phase III study of 373 OC patients[40], oregovomab maintenance was used after 

front-line therapy. No difference in clinical outcome was identified, although treatment was 

well tolerated. The future for this monoclonal antibody was uncertain although interest 

remained. It is currently in a phase II randomized study (NCT01616303) in combination 

with first-line chemotherapy consisting of carboplatin plus paclitaxel versus carboplatin plus 

paclitaxel alone in advanced OC. As prior work suggested immune boosting effects[38–40], 

this trial will study anti-CA-125 immunity in addition to clinical end points.

Abagovomab: Abagovomab is an anti-idiotypic CA-125 murine monoclonal antibody[41] 

that induces anti-CA-125 antibodies. In a phase I trial, 42 OC patients were randomized to 

abagovomab vaccination with 2 or 0.2 mg by intramuscular versus subcutaneous vaccination 

four times every 2 weeks, plus two additional monthly vaccinations. The most common 

adverse events were minor injection site pain, myalgia, and fever. No >grade 2 

immunization-related toxicities were noted. Human anti-mouse antibodies were elicited in 

all patients in addition to anti-CA-125 antibodies, which were unrelated to vaccine dose or 

administration route[42], prompting additional study. In a recently completed phase III trial 

of abagovomab maintenance therapy (the MIMOSA study) in 888 patients with stage III or 

IV OC[43] in complete clinical remission after front line surgery plus platinum/taxane-based 

chemotherapy, patients were randomized to abagovomab 2 mg or placebo every 2 weeks for 

6 weeks as induction, followed by maintenance vaccinations every 4 weeks until recurrence. 

Patients were treated a mean of 450 days. Side effects were similar to the phase I trial. 

Vaccinations induced robust anti-CA-125 antibodies, but without increase in recurrence free 

or overall survival.

Volociximab: Volociximab is a chimeric IgG4 monoclonal antibody against AAB1, a 

component of α5β1 integrin that is anti-angiogenic[44]. A phase II study of weekly 

volociximab was conducted in 16 patients with platinum-resistant, advanced epithelial OC 

or primary peritoneal cancer[45]. Volociximab 15 mg/kg intravenously was given weekly 

until disease progression or treatment intolerance. One patient had stable disease at 8 weeks 

whereas the others progressed. Common adverse events included headache and fatigue in 

75% of patients. Possible study-related serious adverse events in 3 patients were reversible 

posterior leukoencephalopathy syndrome, pulmonary embolism, and hyponatremia. This 

trial has prompted further assessments.

Amatuximab: Mesothelin is a tumor differentiation antigen over-expressed in certain 

cancers including those of ovary, pancreas and mesothelium[46]. MORAb-009 (amatuximab) 

is a chimeric anti-mesothelin monoclonal antibody that was tested in a phase I trial of 24 

patients with mesothelin-expressing tumors including patients with OC[47]. Eleven subjects 

experienced stable disease prompting an ongoing phase II trial in mesothelioma patients.

Siltuximab: IL-6 in an important immunopathologic cytokine in distinct tumors[48] and 

plays diverse immunopathogenic roles in OC[49, 50]. Siltuximab is an anti-IL-6 antibody 
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being tested as treatment for various carcinomas, hematologic malignancies and tumor 

cachexia[51].

Tocilizumab: Tocilizumab is a humanized anti-IL-6 receptor antibody being tested for 

cancer cachexia[52] and is used to mitigate cytokine release symptoms in adoptive T cell 

therapy[53]. In vitro studies of tocilizumab have been reported with human OC cells but 

there are no reported clinical trials. Additional anti-IL-6 and anti-IL-6 receptor antibodies 

are in trials, including for cancer.

Anti-CD137: CD137 (4-1BB) is a stimulatory T cell co-receptor that enhances T cell 

proliferation and cytolytic activity. In mouse OC models, combining anti-CD137 plus anti-

Tim3[54] or anti-PD-1[55] improved immune and clinical responses. Anti-CD137 has moved 

into phase I human clinical trials that include patients with OC[56].

For additional information on antibody therapy for cancer, see a recent review[57].

Additional approaches: We recently reported that the fusion toxin denileukin diftitox 

reduces regulatory T cells in human cancer and improves anti-tumor immunity, including 

OC, and induced a significant partial response in one patient with metastatic OC in a phase I 

trial. We tested denileukin diftitox 12 μg/kg every 3–4 weeks in a phase II trial of 28 OC 

patients. It was well-tolerated with no more than grade 2 toxicities (most commonly fatigue, 

fever, myalgias) but failed clinically[58]. Our recent pre-clinical findings that immune 

checkpoint blockade greatly enhances denileukin diftitox clinical efficacy, including in 

OC[59] has prompted additional ongoing studies of combination strategies. In other pre-

clinical studies we showed that anti-CD73 improves clinical effects of adoptive T cell 

transfer in OC[60] and demonstrated that age[61] and sex[62] alter immunotherapy outcomes, 

factors generally not taken into account in immunotherapy trial design.

Cytokines

Interferon-α: Type I interferons (primarily interferons α, β and ω) were originally identified 

as anti-viral proteins[63]. Soon after their discovery, they were found to block malignant cell 

proliferation. Interferon-α is the principal type I interferon tested for human anti-cancer 

activity. Studies have focused on high doses that directly inhibit tumor cell replication, but 

these high doses elicit significant toxicities that limit clinical applications[64]. Intraperitoneal 

interferon-α to treat OC was first assessed in the early 1980’s, with only modest 

efficacy[65, 66]. A phase II study of 14 patients showed that interferon-α could be 

administered intraperitoneally in combination with cis-platinum as OC salvage therapy 

when optimal surgical debulking was not achieved. The approach was tolerable with hints of 

clinical efficacy[67]. Intraperitoneal interferon-α is ineffective against malignant OC 

ascites[68].

In a mouse OC model, interferon-α improved paclitaxel clinical efficacy[69]. Interferon-α 

upregulates OC cell human leukocyte antigen class I in vitro[70] suggesting possible 

beneficial immune modulation. However, interferon-α down-regulated molecules HMFG1 

and HMFG2, antigens that could be OC immune therapy targets. These results illustrate the 
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concept that treatments effects can be multi-faceted, which must be taken into account when 

designing combination therapies.

We found that interferon-α at low immune modulating doses improved the immune and 

clinical efficacy of denileukin diftitox used to deplete regulatory T cells in a mouse OC 

model, and in 2 of 3 OC patients with manageable toxicities[71], prompting ongoing studies. 

Gene therapy with adenoviruses engineered to express interferon-β was used in an early 

phase clinical trial that included two OC patients[72]. One of the two had stable disease two 

months after treatment ended, but both died within five months of treatment. Interferon-β 

levels decreased after the second adenovirus infusion, because neutralizing anti-adenovirus 

antibodies developed, a well-known limitation of repeated adenovirus administrations. 

Nonetheless, anti-tumor antibodies were also generated. Finally, interferon-α reduces 

proliferation in human OC stem cells[73], suggesting additional mechanisms of action.

Interferon-γ: Interferon-γ was used to treat OC by 1992[74], and by 1996, intraperitoneal 

interferon-γ elicited some encouraging preliminary results[75]. Interferon-γ plus front line 

chemotherapy improved OC survival[76]. Interleukin-2 plus interferon-γ was studied with 

infusion of tumor filtrating lymphocytes in OC. Interferon-γ either alone or combined with 

interleukin-2 upregulated tumor cell human leukocyte antigen class I and class II 

expression[77], suggesting augmented tumor immunogenicity. Of the 22 OC patients 

receiving cytokine treatments, two also received tumor infiltrating lymphocyte adoptive 

transfer after ex vivo expansion. One of these two had disease stabilization >6 months. 

Interferon-γ plus IL-2 therapy activated CD8+ T cells but also induced potentially 

immunosuppressive IL-10 and TGF-β.

In a phase I trial, 25 potentially chemotherapy-sensitive OC patients with recurrent 

measurable disease got subcutaneous GM-CSF (starting at 400 μg/day) for 7 days plus 

subcutaneous IFN-γ (100 μg) on days 5 and 7 in attempts to boost antibody dependent 

cellular cytotoxicity, before and after carboplatin (AUC 5, intravenous). Blood myeloid cells 

activated monocytes increased but without clear effects on antibody dependent cellular 

cytotoxicity[78].

In mouse xenograft models, interferon-γ treatment significantly improved survival of OC 

tumor-challenged mice. Carboplatin did not enhance the survival benefit of interferon-γ, 

whereas survival was enhanced by the matrix metalloprotease inhibitor batimastat[79]. In 

four human OC lines studied in vitro, interferon-γ downregulated Her2 and impeded cell 

proliferation[80]. In another in vitro, study, interferon-γ rendered OC cells more susceptible 

to cytotoxicity mediated by CD8+ CA-125 (tumor)-specific T cells[81].

Interleukin (IL)-2: IL-2, a T cell growth and activator factor, exerts modest anti-cancer 

activity in melanoma and renal cell carcinoma, among other cancers[82]. IL-2 at low doses 

was combined with retinoic acid in an OC trial[83]. Five-year progression-free survival and 

overall survival rates were 29% and 38%, respectively in 65 evaluable OC patients. Immune 

effects included decreased vascular endothelial growth factor and statistically significant 

increases in lymphocytes and natural killer cells. In a phase II trial of 31 OC patients with 

platinum-resistant or platinum-refractory disease[84], intraperitoneal IL-2 elicited hints of 
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clinical efficacy in addition to being relatively well tolerated. In 24 patients so assessed, 

there were four complete responses and two partial responses. Survival was positively 

correlated with total and interferon-γ+CD8+ T cell numbers

IL-2 plus erythropoietin was tested in peripheral blood stem cell transplants for breast cancer 

and OC. Myeloid cell recovery was improved but there were no significant immune 

benefits[85]. Therapeutic IL-2 infusions modulate Treg numbers and trafficking in OC[86], 

but the clinical significance is uncertain. However, because IL-2 is a Treg growth and 

differentiation factor, combining IL-2 with Treg depletion could be useful.

Tumor necrosis factor (TNF)-α: TNF-α can directly induce apoptosis of cancer cells and 

promote anticancer immune responses. TNF-α fused to the tri-peptide asparagine-glycine-

arginine (NGR-hTNF) binds selectively to CD13, which is overexpressed on tumor blood 

vessels. Preclinical studies showed that NGR-hTNF exhibits higher potency than native 

TNF-α and circumvents its toxicities. 37 patients with platinum-resistant OC were given a 

median of 4 cycles of NGR-hTNF[87]. Partial responses were observed in 8 (23%) and stable 

disease in 15 (43%). Weakness, anemia, leukopenia, nausea, neutropenia, vomiting, chills, 

and constipation were the most common side effects. Febrile neutropenia was observed in 

one patient (3%). However, <10% of adverse events were attributable to NGR-hTNF.

IL-18: Recombinant IL-18 (SB-485232) is an immunostimulatory cytokine that boots 

antitumor immunity in combination with pegylated liposomal doxorubicin in mouse models. 

In a phase I study, SB-485232 was combined with pegylated liposomal doxorubicin in 

patients with recurrent OC. 16 patients received four cycles of pegylated liposomal 

doxorubicin (40 mg/m2) every 28 days, plus dose-escalated SB-485232 on days 2 and 9 of 

each cycle plus additional discretionary pegylated liposomal doxorubicin monotherapy. 

Most patients (82%) were platinum-resistant or refractory, and heavily pre-treated. 

SB-485232 up to 100 μg/kg was well-tolerated. Pegylated liposomal doxorubicin did not 

alter SB-485232 biologic activity and SB-485232 did not affect doxorubicin toxicities. Ten 

of 16 subjects (63%) completed study and five (31%) progressed on treatment. 6% had a 

partial response and 38% had stable disease[88].

A summary of recent clinical trials using antibodies, immunotoxins, or cytokines is 

summarized in Table I.

Other treatments

Peptide vaccines: Many OC patients have easily detectable numbers of functional tumor 

antigen specific T cells, suggesting that augmenting tumor-specific immunity could lead to 

improved clinical benefits. A number of tumor-associated antigens have been detected in 

OC, any of which potentially could help elicit beneficial anti-tumor- immunity. These 

tumor-associated antigens include HER2/neu[5], MUC1[10], NY-ESO-1[11], membrane 

folate receptor[12], folate binding protein (gp38)[13], TAG-72[14], mesothelin[15, 16], sialyl-

Tn[17, 18], milk fat globulin-1[21] and OA3[19].

Peptide vaccines help to define the magnitude and kinetics of specific immune responses, 

but are limited clinically in that they are generally recognized by a single major 
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histocompatibility complex molecule as they are relatively short in length. Peptide library 

vaccines could help overcome this shortcoming[89] but have not specifically been tested in 

OC to our knowledge.

NY-ESO-1: NY-ESO-1 is highly expressed in OC. It was expressed in vaccinia or fowlpox 

viruses and tested in 22 patients with advanced OC in clinical remission[90]. Patients were 

given one intradermal dose of NY-ESO-1-vaccinia vector followed by monthly 

subcutaneous NY-ESO-1-fowlpox vector. Vaccination increased NY-ESO-1 specific 

antibodies, or CD4+ or CD8+ T cells. The median duration of progression-free survival was 

21 months and median overall survival was 4 years. No adverse events higher than grade 2 

were observed and the most common side effect was injection site pain.

A phase I trial used decitabine as an epigenetic modifier for NY-ESO-1 vaccine and 

liposomal doxorubicin liposome in 12 patients with relapsed OC. The regimen was safe with 

manageable toxicities. Vaccination increased NY-ESO-1-specific antibodies and T cells and 

antibodies to additional tumor antigens were elicited. Stable disease or partial clinical 

response was noted in 6/10 evaluable patients[91] prompting additional studies.

P53: p53 overexpression is common in many distinct cancers, including OC. Vaccination 

with p53 peptide plus IL-2, GM-CSF and montanide adjuvant was tested in patients with 

stage III, IV or recurrent p53-overexpressing OC without evidence of disease at vaccination. 

Subcutaneous vaccination improved anti-p53 immunity (interferon-γ production and p53-

containing MHC tetramers) in nine of thirteen patients[92]. Subcutaneous vaccination was 

compared to intravenous infusion of p53-pulsed dendritic cells using IL-2 as an adjuvant/T 

cell enhancer. Both strategies elicited comparable immunity[92]. Thus, the logistically 

simpler subcutaneous approach could be the best path forward, according to study 

investigators. OC recurrence and survival data were not reported. IL-2 administration 

increased blood Treg numbers significantly, which could impede anticancer immunity, an 

issue that requires further investigation. Another phase II trial tested a synthetic long p53 

peptide in patients with recurrent OC and found that it induced antigen-specific T cells, but 

did not improve clinical outcomes as a stand-alone approach, or when tested with secondary 

chemotherapy[93].

Natural cancer peptides: DPX-0907 (DepoVax) is an oil-based peptide adjuvant. In a phase 

I trial of patients with advanced-stage cancers of breast, ovary or prostate, a vaccine of 

DPX-0907 plus naturally occurring HLA A2-expressed cancer peptides derived from cell 

lines was well-tolerated and immunogenic[94]. Injection site reactions were the most 

common adverse event. Vaccination induced polyfunctional T cells, including in OC 

patients, prompting additional studies.

Carcinoembryonic antigen glypican-3 (GPC3): A phase II trial tested a GPC3-derived 

peptide vaccine in incomplete Freund’s adjuvant. OC patients received vaccination biweekly 

for 6 injections and then every 6 weeks until disease progression. Two OC patients with 

chemotherapy-refractory disease achieved partial clinical responses in this ongoing trial[95].
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Carcinoembryonic antigen (CEA) and MUC1: CEA and MUC-1 are overexpressed many 

carcinomas. 25 patients were primed with a vaccinia virus expressing CEA and MUC-1 plus 

the costimulatory molecules CD80, intercellular adhesion molecule 1, and lymphocyte 

function-associated antigen 3, PANVAC-V) and boosted with fowlpox expressing these 

molecules (PANVAC-F). Vaccination was well tolerated with no grade 2 toxicity in more 

than 2% of the cycles, except local vaccine reactions. MUC-1 and/or CEA-specific 

immunity was generated in 9 of 16 patients. One patient with clear cell OC had a durable 

(18-month) clinical response[96].

In a follow-up study[97], 26 patients were vaccinated with PANVAC monthly. Side effects 

were largely injection-site reactions. Of the 14 OC patients, median time to progression was 

2.0 months (range 1–6) and median overall survival was 15.0 months. Patients with limited 

tumor burden with minimal prior chemotherapy seemed to derive the most benefit from the 

vaccine. An OC patient from the prior trial cited above[96] progressed after 38 months. 

Additional studies are underway.

Adoptive cell transfers

Dendritic cells (DC): The role of DC in cancer therapy has been reviewed[98]. Adoptive 

transfer of tumor antigen-pulsed DC increases antitumor immunity by activating anti- tumor 

T cells. In a phase I/II trial, 11 advanced-stage OC patients received DC loaded with Her2/

neu, telomerase, and pan T helper cell stimulating (PADRE) peptides ± low dose 

cyclophosphamide to deplete Tregs[99]. Cell infusions were well tolerated and the most 

common side effects were low grade hypersensitivity reactions with no treatment-related 

grade 3 events. Only modest immunity was elicited by the vaccine (antigen-specific T cell 

cytokines or tetramer labeling). However, of 11 patients, only 1 died within 3 years of 

vaccination. Of the remaining 10, 3 experienced chemotherapy-responsive recurrences and 

the rest remained disease-free. Another recent trial used autologous whole tumor lysate-

pulsed DC plus bevacizumab, cyclophosphamide, and autologous tumor lysate-primed T 

cells in recurrent OC patients[100]. Transfusions were well tolerated with no grade 3 or 

higher events. 2 of 6 patients experienced partial responses, and 2 exhibited stable disease. 

There were reduced circulating Tregs and increased tumor-specific T cells at study end in 

the 4 patients that experienced clinical benefit.

Very recently, a phase II trial of 10 OC patients with minimal residual disease tested 

subcutaneous autologous DC pulsed with tumor lysate and keyhole limpet hemocyanin as an 

adjuvant plus adjuvant low-dose IL-2[101]. 3 of 10 patients maintained complete remissions 

for 38–83 months and a third with complete remission relapsed after 50 months. In patients 

that experienced clinical benefit, multiple measures of antitumor immunity increased, such 

as natural killer cell activity, interferon-γ+ T cells, TH1-stimulating IL-12, and 

immunosuppressive TGF-β declined.

DC/tumor cell fusions: Reinfusion of autologous DC fused to OC cells could induce more 

efficient presentation of the wide array of tumor antigens versus tumor alone. DC/tumor cell 

fusion has been tested in various preclinical models[102, 103], but not in human OC trials.
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T cells: The goal of adoptive T cell transfer in cancer immunotherapy is to increase numbers 

of activated, cancer-specific cytotoxic or helper T cells. Recent technologies have been 

reviewed[104]. In a pilot study, 7 subjects with recurrent local OC were given multiple cycles 

of intraperitoneal infusions of autologous MUC1 peptide-stimulated cytotoxic T 

lymphocytes[105]. Infusions were well tolerated, multiple infusions did not offer greater 

benefit over one, and clinical benefit was seen in only one patient who was disease free >12 

years.

Most recent adoptive T cell transfers use T cell receptor (TCR) transgenic or chimeric 

antigen receptor (CAR) T cells. Recombinant TCRs give a T cell fixed MHC-dependent 

specificity. CAR T cells express tumor-antigen specific antibody fragments on their surface, 

fused to intracellular activation proteins (e.g., CD3ζ, 4-1BB, OX40) and recognize antigen 

independent of MHC. A preclinical study showed NKG2D-specific CAR T cells provide 

protection and establish memory against distinct OC tumors where only 7% cells express 

NKG2D[106]. Despite inducing complete remissions in leukemia patients, the efficacy of 

CAR T cells in solid tumors has been more limited due to inefficient tumor homing. 

However, folate receptor-α-specific CAR T cells expressing CD3ζ plus CD137 co-

stimulatory domains protected against established OC in immunodeficient mice, 

underscoring the importance of the intracellular activation proteins. A phase 1 trial of OC 

patients with recurrent OC used autologous folate receptor-α –specific CAR (CD3ζ-CD137) 

T cells is planned[107].

Oncolytic viruses: Myxoma virus is non-pathogenic in humans but infects human cancer 

cells and exhibits oncolytic activity in preclinical models, reviewed elsewhere[108]. Myxoma 

virus possesses oncolytic activity against ascites-derived human OC cells in vitro[109]. 

However, there are currently no reported OC clinical trials with myxoma virus. Reovirus is 

also oncolytic against human OC cells in vitro[110]. Neutralizing antibodies in malignant 

ascites can inactivate reovirus oncolytic activity, which can be overcome by loading reovirus 

onto immature DCs or lymphokine-activated killer cells[111]. A phase I trial of reovirus in 

platinum-resistant OC patients is ongoing (NCT00602277).

A summary of recent clinical trials using vaccines, adoptive cell transfers, and oncolytic 

viruses is summarized in Table II.

Conclusion

Recent advances in understanding cancer immunotherapy and in developing novel agents 

has led to significant improvements in immunotherapy, most notably in malignant 

melanoma, but also in other cancers. There is currently no FDA-approved immunotherapy 

for OC, but there is much promise from leads developed in ongoing trials in OC and other 

cancers. Over the next several years we expect that important advances in OC 

immunotherapy will be made, leading to important phase II and III trials. Because of a lack 

of curative salvage treatment options for relapsed or refractory OC, clinicians should 

consider referrals to early phase clinical trials, including OC immunotherapy trials.
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Opinion Statement

All work referenced herein relates to treatment of epithelial ovarian carcinomas, as their 

treatment differs from ovarian germ cell cancers and other rare ovarian cancers, the 

treatments of which are addressed elsewhere. Fallopian tube cancers and primary 

peritoneal adenocarcinomatosis are also generally treated as epithelial ovarian cancers. 

The standard of care initial treatment of advanced stage epithelial ovarian cancer is 

optimal debulking surgery as feasible plus chemotherapy with a platinum plus a taxane 

agent. If this front-line approach fails, as it too often the case, several FDA-approved 

agents are available for salvage therapy. However, because no second-line therapy for 

advanced-stage epithelial ovarian cancer is typically curative, we prefer referral to 

clinical trials as logistically feasible, even if it means referring patients outside our 

system. Immune therapy has a sound theoretical basis for treating carcinomas generally, 

and for treating ovarian cancer in particular. Advances in understanding the 

immunopathogenic basis of ovarian cancer, and the immunopathologic basis for prior 

failures of immunotherapy for it and other carcinomas promises to afford novel treatment 

approaches with potential for significant efficacy, and reduced toxicities compared to 

cytotoxic agents. Thus, referral to early phase immunotherapy trials for ovarian cancer 

patients that fail conventional treatment merits consideration.

Drerup et al. Page 18

Curr Treat Options Oncol. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Drerup et al. Page 19

T
ab

le
 I

Se
le

ct
ed

 r
ec

en
t c

lin
ic

al
 tr

ia
ls

 in
 O

C
 th

at
 u

se
 a

nt
ib

od
ie

s/
im

m
un

ot
ox

in
s 

or
 c

yt
ok

in
es

.

C
lin

ic
al

 t
ri

al
 a

pp
ro

ac
h

C
lin

ic
al

 t
ri

al
# 

O
C

 p
at

ie
nt

s
O

bj
ec

ti
ve

 r
es

po
ns

es
R

ef
er

en
ce

 o
r 

T
ri

al
 

ID

A
nt

ib
od

ie
s 

an
d 

Im
m

un
ot

ox
in

s

Ph
as

e 
II

 tr
ia

l o
f 

fa
rl

et
uz

um
ab

 (
an

ti-
fo

la
te

 r
ec

ep
to

r)
 ±

 c
ar

bo
pl

at
in

 
or

 a
 ta

xa
ne

, 2
01

3
54

44
 –

 C
R

/P
R

10
 –

 P
D

 o
r 

N
A

33

Ph
as

e 
I 

tr
ia

l o
f 

fa
rl

et
uz

um
ab

, 2
01

0
25

9 
– 

SD
15

 –
 P

D
1 

– 
N

/A
34

Ph
as

e 
II

 tr
ia

l o
f 

ip
ili

m
um

ab
 (

an
ti-

C
T

L
A

-4
) 

on
go

in
g

N
/A

N
/A

N
C

T
01

61
15

58

Ph
as

e 
I 

tr
ia

l o
f 

B
M

S-
93

65
59

 (
an

ti-
PD

-L
1)

, 2
01

2
17

1 
– 

PR
3 

– 
SD

13
 -

 P
D

37

Ph
as

e 
II

 tr
ia

l o
f 

or
eg

ov
om

ab
 ±

 p
ac

lit
ax

el
 o

r 
pa

cl
ita

xe
l/

ca
rb

op
la

tin
, o

ng
oi

ng
N

/A
N

/A
N

C
T

01
61

63
03

Ph
as

e 
II

I 
tr

ia
l o

f 
ab

ag
ov

om
ab

 (
an

ti-
C

A
-1

25
 id

io
ty

pe
),

 2
01

3
88

8
N

o 
ch

an
ge

 in
 r

ec
ur

re
nc

e 
fr

ee
 o

r 
ov

er
al

l s
ur

vi
va

l
43

Ph
as

e 
II

 tr
ia

l o
f 

vo
lo

ci
xi

m
ab

 (
an

ti-
α

5β
1 

in
te

gr
in

),
 2

01
1

16
1 

– 
SD

15
 -

 P
D

45

Ph
as

e 
I 

tr
ia

l o
f 

am
at

ux
im

ab
 (

M
O

R
A

b-
00

9,
 a

nt
i-

m
es

ot
he

lin
),

 
20

10
4

0 
– 

C
R

/P
R

47

Ph
as

e 
0/

I 
tr

ia
l o

f 
de

ni
le

uk
in

 d
if

tit
ox

 (
IL

-2
/d

ip
ht

he
ri

a 
fu

si
on

 
to

xi
n)

, 2
00

5
4

1 
PR

 (
tr

ia
l d

id
 n

ot
 h

av
e 

th
er

ap
eu

tic
 in

te
nt

 a
nd

 o
th

er
 

pa
tie

nt
s 

w
er

e 
no

t e
va

lu
at

ed
 f

or
 c

lin
ic

al
 e

nd
po

in
ts

)
58

Ph
as

e 
II

 tr
ia

l o
f 

de
ni

le
uk

in
 d

if
tit

ox
, 2

01
1

28
26

-P
D

2-
SD

58

Ph
as

e 
I 

tr
ia

l o
f 

si
ltu

xi
m

ab
 (

an
ti-

IL
-6

 r
ec

ep
to

r)
, o

ng
oi

ng
N

/A
N

/A
N

C
T

00
84

11
91

C
yt

ok
in

es

Ph
as

e 
II

 tr
ia

l o
f 

N
G

R
-h

T
N

F+
 d

ox
or

ub
ic

in
, 2

01
2

35
8 

– 
PR

15
 –

 S
D

7 
– 

PD
87

Ph
as

e 
I 

tr
ia

l o
f 

IL
-1

8 
+

 p
eg

yl
at

ed
 li

po
so

m
al

 d
ox

or
ub

ic
in

, 2
01

3
15

1 
– 

PR
6 

– 
SD

8 
- 

PD
88

Ph
as

e 
II

 tr
ia

l o
f 

de
ni

le
uk

in
 d

if
tit

ox
 p

lu
s 

su
bc

ut
an

eo
us

 p
eg

yl
at

ed
 

in
te

rf
er

on
-α

, 2
01

1
3

2-
SD

1-
PD

71

A
bb

re
vi

at
io

ns
: P

D
, p

ro
gr

es
si

ve
 d

is
ea

se
; I

R
, i

ni
tia

l r
es

po
ns

e;
 C

R
, c

om
pl

et
e 

re
sp

on
se

; C
C

R
, c

on
tin

ue
d 

cl
in

ic
al

 r
es

po
ns

e;
 P

R
, p

ar
tia

l r
es

po
ns

e;
 S

D
, s

ta
bl

e 
di

se
as

e;
 N

E
D

, n
o 

ev
id

en
ce

 o
f 

di
se

as
e;

 N
R

, n
o 

re
sp

on
se

; N
/A

, n
ot

 a
va

ila
bl

e;
 P

FS
, p

ro
gr

es
si

on
-f

re
e 

su
rv

iv
al

; O
S,

 o
ve

ra
ll 

su
rv

iv
al

.

Curr Treat Options Oncol. Author manuscript; available in PMC 2016 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Drerup et al. Page 20

T
ab

le
 II

Se
le

ct
ed

 c
lin

ic
al

 tr
ia

ls
 in

 O
C

 th
at

 u
se

 v
ac

ci
ne

s,
 a

do
pt

iv
e 

ce
ll 

tr
an

sf
er

s 
or

 o
nc

ol
yt

ic
 v

ir
us

es
.

C
lin

ic
al

 t
ri

al
 a

pp
ro

ac
h

C
lin

ic
al

 t
ri

al
# 

O
C

 p
at

ie
nt

s
O

bj
ec

ti
ve

 r
es

po
ns

es
R

ef
er

en
ce

 o
r 

T
ri

al
 

ID

V
ac

ci
ne

s

Ph
as

e 
II

 tr
ia

l o
f 

re
co

m
bi

na
nt

 v
ac

ci
ni

a 
an

d 
fo

w
lp

ox
 v

ac
ci

ne
s 

ex
pr

es
si

ng
 N

Y
-E

SO
-1

, 
20

12
22

21
 m

os
 P

FS
4 

ye
ar

 O
S

90

Ph
as

e 
II

 tr
ia

l o
f 

su
bc

ut
an

eo
us

 p
53

 p
ep

tid
e 

va
cc

in
at

io
n,

 2
01

2
13

4.
2 

m
os

 P
FS

41
 m

os
 O

S
92

Ph
as

e 
I 

tr
ia

l o
f 

p5
3-

sy
nt

he
tic

 lo
ng

 p
ep

tid
e 

va
cc

in
e,

 2
01

2
20

N
o 

in
cr

ea
se

 in
 O

S
93

A
do

pt
iv

e 
C

el
l T

ra
ns

fe
rs

Ph
as

e 
II

 tr
ia

l o
f 

p5
3-

pu
ls

ed
 d

en
dr

iti
c 

ce
lls

 v
ac

ci
ne

, 2
01

2
6

8.
7 

m
os

 P
FS

29
.6

 m
os

 O
S

92

Ph
as

e 
I/

II
 v

ac
ci

na
tio

n 
tr

ia
l o

f 
H

er
2/

ne
u,

 te
lo

m
er

as
e,

 a
nd

 P
A

D
R

E
 p

ep
tid

e-
pu

ls
ed

 D
C

s 
±

 
cy

cl
op

ho
sp

ha
m

id
e,

 2
01

2
11

90
%

 3
 y

ea
r 

O
S 

N
E

D
 in

 6
 p

ts
 a

t 3
 y

rs
99

Ph
as

e 
I 

tr
ia

l o
f 

au
to

lo
go

us
 tu

m
or

 ly
sa

te
-p

ul
se

d 
de

nd
ri

tic
 c

el
ls

 +
 b

ev
ac

iz
um

ab
, 

cy
cl

op
ho

sp
ha

m
id

e,
 a

nd
 a

ut
ol

og
ou

s 
tu

m
or

 ly
sa

te
-p

ri
m

ed
 T

 c
el

ls
, 2

01
3

6
2 

– 
PR

2 
– 

SD
2 

- 
PD

10
0

Pi
lo

t s
tu

dy
 o

f 
M

U
C

1-
pr

im
ed

 c
yt

ot
ox

ic
 T

 ly
m

ph
oc

yt
e 

tr
an

sf
er

, 2
01

2
7

1 
– 

C
R

6 
- 

PD
10

5

Ph
as

e 
I 

tr
ia

l o
f 

an
ti-

m
es

ot
he

lin
 C

A
R

 T
 c

el
ls

, o
ng

oi
ng

N
/A

N
/A

N
C

T
02

15
97

16

Ph
as

e 
I 

tr
ia

l o
f 

an
ti-

m
es

ot
he

lin
 C

A
R

 T
 c

el
ls

 +
 c

he
m

ot
he

ra
py

, o
ng

oi
ng

N
/A

N
/A

N
C

T
01

58
36

86

Ph
as

e 
I 

tr
ia

l o
f 

an
ti-

V
E

G
FR

2 
C

D
8+

 C
A

R
 T

 c
el

ls
 +

 c
he

m
ot

he
ra

py
, o

ng
oi

ng
N

/A
N

/A
N

C
T

01
21

88
67

O
nc

ol
yt

ic
 v

ir
us

es

Ph
as

e 
I 

tr
ia

l o
f 

C
A

-1
25

- 
or

 N
a/

I 
sy

m
po

rt
er

-e
xp

re
ss

in
g 

m
ea

sl
es

 v
ir

us
, o

ng
oi

ng
N

/A
N

/A
N

C
T

00
40

85
90

Ph
as

e 
I/

II
 tr

ia
l o

f 
N

a/
I 

sy
m

po
rt

er
-e

xp
re

ss
in

g 
m

ea
sl

es
 v

ir
us

 in
fe

ct
ed

 m
es

en
ch

ym
al

 s
te

m
 

ce
lls

, o
ng

oi
ng

N
/A

N
/A

N
C

T
02

06
87

94

Ph
as

e 
II

 tr
ia

l o
f 

th
ym

id
in

e 
ki

na
se

-i
na

ct
iv

at
ed

 v
ac

ci
ni

a 
vi

ru
s,

 o
ng

oi
ng

N
/A

N
/A

N
C

T
02

01
76

78

Ph
as

e 
I/

II
 tr

ia
l o

f 
on

co
ly

tic
 a

de
no

vi
ru

s,
 o

ng
oi

ng
N

/A
N

/A
N

C
T

02
02

81
17

Ph
as

e 
II

 tr
ia

l o
f 

on
co

ly
tic

 r
eo

vi
ru

s,
 o

ng
oi

ng
N

/A
N

/A
N

C
T

02
02

81
17

A
bb

re
vi

at
io

ns
: P

D
, p

ro
gr

es
si

ve
 d

is
ea

se
; I

R
, i

ni
tia

l r
es

po
ns

e;
 C

R
, c

om
pl

et
e 

re
sp

on
se

; C
C

R
, c

on
tin

ue
d 

cl
in

ic
al

 r
es

po
ns

e;
 P

R
, p

ar
tia

l r
es

po
ns

e;
 S

D
, s

ta
bl

e 
di

se
as

e;
 N

E
D

, n
o 

ev
id

en
ce

 o
f 

di
se

as
e;

 N
R

, n
o 

re
sp

on
se

; N
/A

, n
ot

 a
va

ila
bl

e;
 P

FS
, p

ro
gr

es
si

on
-f

re
e 

su
rv

iv
al

; O
S,

 o
ve

ra
ll 

su
rv

iv
al

.

Curr Treat Options Oncol. Author manuscript; available in PMC 2016 January 01.


