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Abstract

Background—Between- and within-person variation in DNA methylation levels are important 

parameters to be considered in epigenome-wide association studies. Temporal change is one 

source of within-person variation in DNA methylation that has been linked to aging and disease.

Methods—We analyzed CpG-site-specific intra-individual variation and short-term temporal 

trend in leukocyte DNA methylation among 24 healthy Chinese women, with blood samples 

drawn at study entry and after 9 months. Illumina HumanMethylation450 BeadChip was used to 

measure methylation. Intraclass correlation coefficients (ICC) and trend estimates were 

summarized by genomic location and probe type.

Results—The median ICC was 0.36 across nonsex chromosomes and 0.80 on the X 

chromosome. There was little difference in ICC profiles by genomic region and probe type. 

Among CpG loci with high variability between participants, over 99% had ICC > 0.8. Statistically 

significant trend was observed in 10.9% CpG loci before adjustment for cell type composition and 

in 3.4% loci after adjustment.

Conclusions—For CpG loci differentially methylated across subjects, methylation levels can be 

reliably assessed with one blood sample. More samples per subject are needed for low-variability 

and unmethylated loci. Temporal changes are largely driven by changes in cell type composition 

of blood samples, but temporal trend unrelated to cell types is detected in a small percentage of 

CpG sites.
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Introduction

Epigenetic modifications such as DNA methylation of cytosine residues at CpG 

dinucleotides have been extensively examined for their potential association with disease 

and aging in humans. DNA methylation marks are stable indicators of tissue lineage, thus 

different tissues have fundamentally different methylation patterns. DNA methylation 

profile is established at neonatal stage and undergoes rapid change at the early age and 

further modifications throughout lifespan. Changes of methylation patterns have been seen 

in normal human aging process and aberrant methylation changes in tissues such as blood 

have been linked to a number of diseases including cancer (1–5). A link has also been 

established between age-related and cancer-related methylation changes. Important cancer 

related genes become hypermethylated during aging, including key developmental genes 

and those encoding the estrogen receptor, insulin growth factor and E-cadherin (1, 6). 

Further, the acquisition of methylation changes during aging could underlie the development 

of age-related pathological conditions (7).

Research into the role of DNA methylation in disease is affected by variability in measured 

methylation levels, which can be attributed to a number of sources: differences among study 

participants due to demographic, environmental and genetic factors; random and systematic 

variation between samples taken from the same individual, which may result from 

differences in tissue sample composition or timing of sample collection; technical variability 

due to measurement error and limited precision of analytic tools. The relative proportion of 

between- and within-person variability in the total variability is typically described by the 

intraclass correlation coefficient (ICC). The ICC varies between 0 and 1, with high (low) 

proportion of within-person variation represented by values close to 0 (respectively, 1). Low 

values of ICC signify lower data reliability and may affect validity of analysis results. A 

number of studies (8–11) have analyzed within-person variability of different blood 

biomarkers; however, we are unaware of any reports on that in DNA methylation, although 

the importance of this aspect for epigenome-wide association studies has been recognized 

(12).

In the present study of leukocyte DNA methylation among 24 healthy women, we examined 

CpG-site-specific intra-individual variation in DNA methylation and analyze short-term 

temporal changes in DNA methylation using Illumina HumanMethylation450 BeadChip 

(13). This array has been reported to have low technical variability and high reproducibility 

(13), although a number of issues have been pointed out (14). The BeadChip contains 

485,577 loci that include 482,421 (99.35%) CpG dinucleotides, 3,091 (0.64%) CNG targets, 

and 65 (0.01%) single nucleotide polymorphism (SNP) sites. The array covers 96% of 

known CpG islands (CGI) and 99% of NCBI Reference Sequence (RefSeq) genes, with an 

average of 17 CpG sites per gene distributed across the upstream of the transcription start 

sites (TSS)1500, TSS200, 5′ untranslated regions (UTR), first exon, gene body, and the 
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3′UTR. Because the function of DNA methylation seems to vary by functional location and 

by proximity to CGIs (15), we also sought to describe the distribution of high-low variability 

CpG sites across functional locations in the genome, and identify whether such changes are 

more likely to occur in specific types of genomic regions. To assess a potential effect of X 

chromosome inactivation on methylation variability, separate analyses were conducted for X 

chromosome CpG sites.

Materials and Methods

Study population and sample collection

Study participants were drawn from the Shanghai Physical Activity (SPA) study subcohort 

of the Shanghai Women’s Health Study (SWHS). SWHS a prospective cohort study of 

74,943 women aged 40–70 years who were recruited from 7 communities in Shanghai, 

China, between 1997 and 2000 (16). SPA subcohort of SWHS comprises 300 women from 

two communities (17), who provided blood samples at study entry and after 9 months. 

Twenty-four women from the SPA subcohort were randomly selected for the present 

analysis.

For each consented participant, a 10-ml blood sample was drawn into an EDTA vacutainer 

tube and kept in a portable Styrofoam box with ice packs at 0–4°C. Within 6 hours of 

collection, samples were processed and separated into 2-ml aliquots of plasma (4), buffy 

coat (2), and red blood cells (2). Samples were then stored at −80°C until DNA extraction.

Laboratory analysis

DNA extraction and bisulfite conversion—DNA was extracted from buffy coats 

using a QIAamp® DNA Blood Mini Kit (Qiagen Inc, Valencia, CA). The quality and 

quantity of extracted DNA was examined by NanoDrop-2000 spectrometer (Thermo 

Scientific, Wilmington, DE). Bisulfite conversion of 500 ng of DNA was performed on each 

sample according to manufacturer’s recommendations for the HumanMethylation450 

BeadChip using the EZ DNA Methylation kit (Zymo Research, Irvine, CA). The treatment 

protocol included 16 cycles of denaturing at 95°C for 30 sec, incubation at 50°C for 60 min, 

and holding at 4°C for a minimum of 2 hours.

Illumina methylation platform—Four μl of bisulfite-converted DNA was hybridized 

onto and analyzed using HumanMethylation450 BeadChip (Illumina, San Diego, CA). 

Hybridization protocol consisted of a whole genome amplification step followed by 

enzymatic endpoint fragmentation, precipitation and resuspension. Resuspended samples 

were hybridized onto the BeadChip for 16 hours at 48°C. After hybridization, unhybridized 

and non-specifically hybridized DNA was washed away, followed by single nucleotide 

extension using the hybridized bisulfite-treated DNA as a template. The Illumina iScan SQ 

scanner was used to create images of the single arrays. Image intensities were extracted 

using GenomeStudio (v.2011.1) Methylation module (v.1.9.0) software.
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Data quality assessment and pre-processing

Data normalization was performed in GenomeStudio using ‘Background Subtraction’ and 

‘Normalization to Internal Controls’ methods and has been described elsewhere (18). 

Briefly, background subtraction values were derived from built-in negative control bead 

signals and subtracted from probe intensities. Normalization was performed using internal 

control probe pairs designed to target the same region within housekeeping genes. The 

methylation score for each CpG site was represented by a β-value, calculated according to 

normalized probe fluorescence intensity ratios between methylated and unmethylated signals 

and varying between 0 (fully unmethylated) and 1 (fully methylated). Data quality control 

(QC) analyses performed on β-values included principal component analysis, to assess 

potential batch effects, and sample histograms for signal distributions (data not shown). 

Probes with detection p-value above 0.05 were excluded.

Statistical analysis

Statistical analyses were performed using methylation levels represented by M-values, 

computed as logit of β-values: M = log2(β/(1-β)). Because the distribution of M-values is 

closer to normality, they are widely used as a measure of DNA methylation in association 

studies (19). For every CpG locus, we estimated variance components that correspond to 

within-person  and between-person  variation using a mixed model with study 

participants as random effects:

ICCs were then computed as . To summarize patterns of variability by 

functional genomic location, by type of probe and for known differentially methylated 

regions (DMR), we computed the percentage of CpG loci with high (>0.8), midrange (0.5 – 

0.8) and low (<0.5) ICC for each of these groups. The estimated between- and within-person 

variance components were converted to the β-scale as follows:

where  is the mean M-value across all study subjects. For 14,248 CpG loci with very low 

mean methylation, ICCs could not be estimated and were set to 0, as the worst possible case. 

The short-term temporal trend in DNA methylation across all CpG loci was examined using 

a mixed model with time since study entry (years) as a fixed effect, and study participants as 

random effects:
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To assess the influence of quantile normalization on ICC and trend, all models were fit with 

untransformed and quantile normalized M-values. All analyses were adjusted for cell type 

composition using the cell mixture deconvolution method of Houseman et al. (20). which 

establishes DNA methylation signature panels for each cell type and uses constrained 

optimization to map methylation profiles of interest onto the signature panel and to predict 

proportions of cell types in a blood sample.

A number of recent reports define meaningful difference (14) in methylation as Δβ value (a 

measure of average difference in methylation level at a particular CpG site between study 

subjects) being above a certain threshold. A threshold of 0.2 on the β-scale is commonly 

used. To assess the impact of intra-individual variation on such high-variance CpG loci, we 

summarized ICC and trend by genomic location and probe type for high-variance (Δβ ≥ 0.2), 

mid-variance (0.1 ≤ Δβ < 0.2) and low-variance loci (Δβ < 0.1). We estimated the Δβ value 

for every CpG site as twice the between-person standard error: . All analyses were 

conducted using R 3.0.3 software and Bioconductor package nlme 3.1–117.

Results

The median age at study entry among the 24 study participants was 54.5 years (range: 46.5 – 

68.8 years). Across the 483,880 CpG loci that passed data QC, the ICCs ranged from 0 to 

0.999, with a median of 0.37. For the majority of loci, the within-person variance component 

tended to be smaller than and uncorrelated with the between-person component (Figure 1). 

The ranges of  and  were 0 – 0.42 and 0 – 0.36, respectively.

Table 1 lists proportions of low, mid and high-ICC loci by genomic location, probe type and 

locus variability for nonsex chromosomes. The median ICC across all CpG loci was 0.36 

(interquartile range (IQR): 0.13 – 0.63). Over 64% loci had low ICC, while 23% had mid-

range ICC, and 13% had high ICC. Among the low-variability loci, the proportions of low 

and mid-range ICC were comparable, while only 8.1% loci exhibited high ICC. On the other 

hand, over 90% of moderate-variability loci (0.1 ≤ Δβ < 0.2) and over 99% of high-

variability loci (Δβ ≥ 0.2) had high ICC, while <1% loci in these two groups had low ICC. 

This latter result was observed across all genomic locations.

Among the CpG loci in known DMR (13), ICCs tended to be higher than across the entire 

genome, with median 0.49 (IQR: 0.24 – 0.72), and 51.5%, 31.8% and 16.7% loci exhibiting 

low, mid-range and high ICC, respectively. Across loci from CGIs, shores and shelves, the 

median ICC ranged from 0.34 to 0.43, with the proportion of high-ICC loci highest in CpG 

shores (overall and among low-variability sites) and CGIs (moderate-variability sites). The 

ICC profiles across different functional locations were similar, with median ICC between 

0.29 and 0.36, and the percentage of high-ICC loci 7.8% – 12.4% overall, 5.2% – 8.2% 

among low-variability sites and 92.0% – 96.2% among moderate-variability sites. There was 

also little difference in ICC profiles by probe type. CpG loci with methylation measured by 

Infinium I probes, compared to Infinium II probes, had lower proportion of high-ICC loci 

overall (11.3% vs. 13.5%), among low-variability sites (6.6% vs. 8.7%) and among 

moderate-variability sites (92.7% vs. 94.7%).
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The distribution of ICCs on the X chromosome (Table 2) differed substantially from that on 

nonsex chromosomes, with the median ICC of 0.80 (IQR: 0.60–0.89) overall and nearly half 

of the X chromosome CpG loci having high ICC. The main difference from nonsex 

chromosomes in the distribution of ICCs was found among low-variability sites, where 

27.8–51.1% loci had high ICC. Of all genomic locations, lineage-defining DMRs appeared 

the most stable, with 61.6% loci having high ICC. CGIs and shores and functional locations 

on the promoter side of gene coding regions contained more high-ICC loci than CGI 

shelves, gene body and 3′UTR locations. The proportion of high-ICC loci measured by 

Infinium II probes was somewhat higher than that among Infinium I probes. ICC estimates 

without cell type composition adjustment were very similar (Supplementary Tables S1–S2).

A summary of temporal trend estimates by genomic location, probe type and locus 

variability is presented in Table 3. Less than 4% CpG loci exhibited a statistically significant 

trend overall and for most functional locations, with the exception of 5.3% loci with trend 

for 3′UTR on the X chromosome. There was little difference in the proportion of CpG sites 

with temporal trend between low-, mid- and high-variability locus groups (data not shown). 

The proportion of sites with negative trend was somewhat higher in most functional 

locations. The proportion of loci with positive trend among Infinium II sites on the X 

chromosome was about 1.5 times that for Infinium I sites. Without adjustment for cell type 

composition, the proportion of loci with significant negative trend was several times higher 

across functional locations, 8–17.5% on nonsex chromosomes and 5.2–9.4% on the X 

chromosome (Supplementary Table S3). We estimated the effect of quantile normalization 

transformation on ICC profiles and trend estimates of CpG loci. Across all genomic 

locations and probe types, the application of quantile normalization to DNA methylation 

data had no noticeable effect on the proportion of high-ICC loci, but lowered the proportion 

of mid-ICC loci and, correspondingly, increased the proportion of low-ICC loci (Figure 2A). 

This effect was observed in both nonsex chromosomes and the X chromosome (data not 

shown). In temporal trend analysis, quantile normalization had the effect of equalizing the 

proportions with negative and positive trend, and an overall increase in the proportion of loci 

with trend (Figure 2B).

Figure 3 presents a comparison of temporal trend estimates from untransformed and 

quantile-normalized models, with and without cell type adjustment. The application of 

quantile normalization alone resulted in the reduction of the temporal effect magnitude, 

consistent across most loci (Figure 3A). Cell type adjustment alone left temporal effects 

nearly unaffected (Figure 3B). Compared with cell-type adjusted model, quantile 

normalization resulted in inconsistent changes in the temporal effect magnitude, with larger 

changes for some loci and smaller changes for others (Figure 3C,D). Neither cell type 

adjustment nor quantile normalization, alone or combined, changed the direction of the 

observed temporal effects.

Discussion

To our knowledge, this is the first study to look at within- and between-person variability 

profiles of CpG sites from the HumanMethylation450 BeadChip. Our results show that on 

average, ICC < 0.5 is common across the genome, and that ICC profiles are similar across 
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all functional locations and probe types. This implies that genomic location at or near CGIs 

or functional regions has little effect on inter- and intra-individual variability of a CpG 

locus. We also found that within-person variation tended not to exceed a certain threshold 

(0.36 for ). Thus, larger between-person variation generally implies a higher ICC. In 

particular, among CpG loci with between-person variation above the threshold of 

meaningfulness (Δβ ≥ 0.2), over 99% loci had high ICC. Therefore, for differentially 

methylated loci with sizeable differences in methylation across subjects, i.e. loci of interest 

to most association studies, one measurement may be sufficient for a reliable estimate of 

methylation level.

We note that CpG loci within DMRs had better ICC profiles: even among those with low 

between-person variation, the percentage of high-ICC loci was higher than in other genomic 

locations. This observation is expected, as methylation of tissue-specific lineage-defining 

regions is stable in blood DNA.

The low ICC values may result in substantial attenuation (reduction in magnitude compared 

to the true value) in estimated parameters, so repeated measurements would be required per 

study participant to keep attenuation within some acceptable level. The average ICC across 

all CpG sites in our study was under 0.5, with the largest proportion of low and mid-range 

ICC values observed among low-variability CpG loci. More than one measurement would 

be needed for these loci to adequately assess their methylation and to limit attenuation in the 

estimates; however, because their variability is well below the threshold of meaningful 

difference, they will likely not be primary targets of an association study.

It should be noted that the low-variability CpG locus group would include most of 

unmethylated loci with mean methylation close to 0, as such averages can only be attained 

with low variation. Due to the nature of the logit transportation, this translates to negative 

M-values of very large magnitude, whereby even small differences in the β-values may 

translate to M-values that are wide apart. As a result, any estimates for such loci are very 

unstable and should be treated cautiously. For these loci it may be preferable to use β-values 

rather than M-values, with appropriate adjustments in analytic methods. For example, beta 

regression techniques (21) could be used for comparison of DNA methylation between two 

groups.

We have found that the percentage of high-ICC loci is much larger on the X chromosome, 

implying more stability in methylation patterns. Prior studies have shown that X 

chromosome inactivation is accompanied by methylation increase at CGIs and at the 

promoters of genes silenced by X chromosome inactivation (22). Furthermore, methylated 

promoter CGIs are usually associated with genes in a stable long-term silenced state (15). 

Although we were unable to distinguish between active and inactive X chromosomes, our 

observation of more stable methylation patterns at CGIs and near the start of gene coding 

regions on the X chromosome appears consistent with the effect of gene silencing in X 

chromosome inactivation.

In our study we have found that most CpG sites did not exhibit temporal trend that is 

sufficiently strong to be detected in a small window of <1 year. Among a rather small 
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percentage of sites that did exhibit a trend, negative trend was somewhat more common than 

positive trend. This finding is in agreement with several prior studies of age-related 

methylation changes. Using HumanMethylation450 platform on 421 individuals aged 14–94 

years, Johansson et al. (23) reported 29% of CpG sites significantly associated with age, of 

which 60.5% exhibited decrease, and 39.5% increase in methylation. Heyn et al. (24) 

showed that most of the genome undergoes age-associated hypomethylation. At the same 

time, a number of studies found that high CpG density promoters of key developmental 

genes tend to exhibit age-associated hypermethylation, during both early and late stages of 

life (6, 25, 26). In two longitudinal studies of newborns followed for 1.5–5 years, Martino et 

al. (26, 27) found clear distinction in methylation profile between samples collected at birth 

and at subsequent clinic visits. They also observed increase in methylation across all classes 

of annotated genomic regions, with intergenic regions most likely to undergo such changes. 

A unique aspect of our study is its longitudinal nature combined with a focus on short-term 

temporal changes. We have been able to show that in a number of CpG loci, temporal 

changes in methylation that occur in mature adulthood are detectable over 1-year period of 

time.

In addressing intra-individual variability in DNA methylation, adjustment for known sources 

of such variability could improve the ICC. Temporal change may be one such source of 

within-person variability for CpG loci that exhibit methylation changes over time. 

Removing a temporal trend may potentially reduce intra-individual variation and improve 

statistical power. However, because age-related methylation change may be an important 

contributor to carcinogenesis or other pathogenic process, temporal trend removal may 

sometimes obscure a true association between DNA methylation and disease risk.

Different cell mixture composition between samples taken from the same individual may 

also confound measured DNA methylation and contribute to the observed within-person 

variability. Reinius et al. (28) established that CpG methylation differs between cell types, 

such as mononuclear cells, granulocytes, natural killer (NK) cells, B-cells, and T-cells. 

Jacoby et al. (29) analyzed methylation of 58 CpG sites and observed differences in inter-

individual variability across blood cell types. We adjusted our analyses for cell type 

composition using the method of Houseman et al. (20). Koestler et al. (30) further tested this 

algorithm on data from the Gene Expression Omnibus database, reporting moderate to high 

agreement between predicted cell type composition and that from complete blood cell 

counts. In our analyses, there was little difference in ICCs before and after cell type 

adjustment. It has also been suggested that changes in cell composition of human blood 

across a person’s lifespan may largely explain age-associated methylation change (1, 31). In 

our study, we found that a significant temporal trend disappears after cell type adjustment in 

the majority of CpG sites with such trend (Table 3, Supplementary Table S3). We also 

observed an age-related decrease in the proportion of CD8+ T-cells (3.5%/year; P=0.015) 

and B-cells (1.2%/year; P=0.056) and a corresponding increase (4.7%/year; P=0.044) in the 

proportion of granulocytes (data not shown). Thus, our results support the hypothesis that 

cell composition change largely accounts for temporal changes in DNA methylation. While 

two of the aforementioned studies of methylation change did not account for cell type 

composition of whole blood (23, 25), others either considered cell type composition (27) or 

Shvetsov et al. Page 8

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



focused on specific cell types (6, 24). Thus, associations reported by this latter group of 

studies are independent of age-related changes in cell composition.

Quantile normalization is a widely used technique to correct for batch effects in DNA 

methylation and gene expression data. As this technique changes the data, it can affect 

variability patterns and trends in methylation levels. In our study we have observed that 

although quantile normalization has little effect on the ICC of differentially methylated CpG 

sites, it often lowers the ICC of low-variability loci. In addition, it changes the magnitude of 

the temporal trend estimates for CpG loci with significant trend, but does not change its 

direction. These observations suggest that for most likely targets of a DNA methylation 

study, such as differentially methylated loci or those with significant trend, applying 

quantile normalization as a batch correction technique is unlikely to significantly alter 

analysis results. However, for studies interested in the magnitude of temporal effects in 

methylation, this normalization technique can have a profound effect on the results and 

should be used with caution. Other batch correction techniques should also be considered 

(32).

Limitations of the present study include its modest sample size, which, nonetheless, is not 

unusual for epigenome-wide DNA methylation studies to date due to the cost constraint. 

Second, the absence of samples from men may restrict generalizability of our results. 

Although a recent study by Lam et al. (33) found only subtle sex differences in methylation 

of a small subset of CpG loci, one cannot discount the possibility that variability and 

temporal changes in some CpG loci may differ between men and women. Besides, there is 

conflicting evidence on the effect of sex on age-related changes in the methylome outside of 

sex chromosomes (23, 34). Third, in the absence of duplicate contemporaneous samples 

from the same subject and of technical replicates, it is unclear how much of the detected 

within-person variation is due to the temporal trend or other non-temporal factors, such as 

cell fraction differences. Also for this reason, we could not separate technical variability as 

part of the total variability in DNA methylation. Despite these limitations, we were able to 

examine variability patterns and detect short-term temporal methylation changes in a 

substantial number of CpG sites.

In summary, for CpG loci with differences in methylation between people, methylation 

levels can be reliably assessed with one blood sample; however, more samples and possibly 

special statistical methods are needed for low-variability and unmethylated loci. The X 

chromosome exhibits more stable methylation patterns, especially in CGIs and gene 

promoters, which is consistent with the effects of X chromosome inactivation. Although 

short-term temporal changes are largely driven by changes in the cell type composition of 

blood, trend unrelated to cell type was also detected in a small fraction of CpG sites. Further 

studies are needed to examine whether CpG loci with short-term temporal trend undergo 

similar methylation changes throughout lifespan and to what extent such changes are related 

to the onset or progression of disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Impact

This study shows that one measurement can reliably assess methylation of differentially 

methylated CpG loci.
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Figure 1. 
Scatter plot of within- vs. between-person standard error (β-scale), all CpG sites.
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Figure 2. 
The effect of quantile normalization on ICC distribution and trend estimates, all CpG sites. 

(A) High, mid and low ICC distribution for untransformed and quantile-normalized 

methylation levels, by genomic location and probe type. (B) Proportion of CpG loci with 

significant temporal trend for untransformed and quantile-normalized methylation levels, by 

genomic location and probe type. All estimates are adjusted for cell type composition. 

DMR: differentially methylated region; TSS: transcription start site; UTR: untranslated 

region.
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Figure 3. 
The effect of cell-type composition adjustment and quantile normalization on temporal trend 

in DNA methylation: scatter plots of trend estimates. (A) Untransformed vs. quantile-

normalized data, no cell-type adjustment. (B) Untransformed data: without vs. with cell-type 

adjustment. (C) Untransformed vs. quantile-normalized data, with cell-type adjustment., (D) 

Untransformed data with cell-type adjustment vs. quantile-normalized data without cell-type 

adjustment. All plots show only CpG loci with significant trend in both models. CTA: cell 

type adjustment; QN: quantile normalization.
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