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Abstract

Ultraviolet (UV) radiation from sunlight is a major etiologic factor for skin cancer, the most 

prevalent cancer in the U.S., as well as premature skin aging. In particular, UVB radiation causes 

formation of specific DNA damage photoproducts between pyrimidine bases. These DNA damage 

photoproducts are repaired by a process called nucleotide excision repair, also known as UV-

induced DNA repair. When left unrepaired, UVB-induced DNA damage leads to accumulation of 

mutations, predisposing people to carcinogenesis as well as to premature aging. Genetic loss of 

nucleotide excision repair leads to severe disorders, namely, xeroderma pigmentosum (XP), 

trichothiodystrophy (TTD) and Cockayne syndrome (CS), which are associated with 

predisposition to skin carcinogenesis at a young age as well as developmental and neurological 

conditions. Regulation of nucleotide excision repair is an attractive avenue to preventing or 

reversing these detrimental consequences of impaired nucleotide excision repair. Here we review 

recent studies on molecular mechanisms regulating nucleotide excision repair by extracellular cues 

and intracellular signaling pathways, with a special focus on the molecular regulation of individual 

repair factors.

INTRODUCTION

Ultraviolet (UV) radiation from sunlight is a major etiologic factor for skin cancer, the most 

prevalent cancer in the U.S. (1–6), as well as premature skin aging. UV radiation is 

classified into 3 types based on the wavelength- UVA (315–400 nm), UVB (280–315 nm) 

and UVC (100–280 nm) (7, 1). All UVC is blocked by the ozone layer, preventing it from 

reaching the surface of the earth (1). UVB forms only about 5% of all UV radiation reaching 

the earth’s surface, which effectively causes DNA damage (8, 9, 2). UVA forms about 95% 

of all UV radiation entering the earth, but is weaker than UVB in terms of causing DNA 

damage (8, 10, 2, 11).

UVB and UVC are absorbed directly by DNA, causing the formation of thymine dimers, 

mainly cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone 

photoproducts (6-4PP) (2, 5). UVA exposure also causes thymine dimers; in addition, it 

leads to generation of reactive oxygen species (ROS) via photosensitizing reactions, and 

thus indirectly causes oxidative DNA damage lesions (2, 12, 11).

In humans and mice UV-induced CPD and 6-4PP lesions are repaired by nucleotide excision 

repair (NER), the most versatile DNA repair system. NER eliminates a wide variety of 
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helix-distorting base lesions induced by environmental carcinogenic sources, including UV 

and air pollutants (13–20). Even though a primitive, more efficient DNA repair mechanism 

involving photolyases has been identified, it is absent in humans (20, 21). When NER is 

defective and the damage is left unrepaired, it leads to various disorders including 

xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD) 

(Table 1) (17, 16, 22). These disorders are characterized by increased carcinogenesis in 

various organs, developmental and immunological defects, neuronal and retinal 

degeneration, and aging (Table 1) (17, 16, 22). Defective NER predisposes affected 

individuals to carcinogenesis in the skin, brain, and lungs, and sensitizes mice to 

carcinogenesis in the skin, lungs, and liver (23, 24, 17, 25–27). Even though the versatile 

NER pathway can correct bulky nucleotide adducts distorting the DNA structure from a 

variety of environmental carcinogens, it is crucial for correction of UV-induced DNA 

photoproducts in the skin, since NER defective patients have high propensity to develop 

sunlight exposure induced skin cancer (27). Patients with defective NER manifest a 2,000–

10,000 fold increase in risk of skin cancer, have a significantly lower age of onset of skin 

cancer compared to the general population, and have skin cancer as the most common cause 

of death as compared to other internal cancers (27). This establishes the most significant 

association of NER defects with UV-associated skin cancer amongst all cancers. Essential 

NER factors have been identified, including xeroderma pigmentosum complementation 

group A–G (XPA-XPG) and cockayne syndrome group A (CSA) and B (CSB) (17, 16, 22).

There are two main types of NER: global genome nucleotide excision repair (GG-NER) and 

transcription coupled nucleotide excision repair (TC-NER) (16, 17). GG-NER is mainly 

responsible for removing most of the CPD and 6-4PP damage in non-transcribed regions, 

whereas TC-NER does the same in regions under active transcription in the genome (16, 

17). These two pathways differ in their damage recognition, but the following steps are the 

same in both pathways (Figure 1). In GG-NER, XPE (also known as DNA damage binding 

protein 2, or DDB2) and XPC first bind to the damage site and are responsible for UV-

induced DNA damage recognition, in the heterodimeric complex with DDB1 (DNA damage 

binding protein 1) and HR23B, respectively (16, 17). For TC-NER, CSA and CSB proteins 

mediate recognition of UV-induced DNA damage in actively transcribed regions by 

relieving the stalled RNA polymerase II (RNA pol II) at these sites (16, 17).

Following recognition, the rest of the NER pathway is the same for both the GG-NER and 

the TC-NER pathways (16, 17) (Figure 1). Upon recognition of the DNA damage, XPB and 

XPD, which form part of the transcription factor II H (TFIIH) complex, unwind the DNA 

through their helicase activity (16, 17) (Figure 1). XPA and RPA (replication protein) define 

the cleavage sites and strand specificity, to which XPG (also known as excision repair cross-

complementation group 5, ERCC5) and the nuclease complex XPF-ERCC1 (excision repair 

cross-complementation group 1) bind to cleave the damaged site, followed by its excision 

(16, 17). The excised portion is replaced with a newly synthesized patch with the help of 

proliferating-cell nuclear antigen (PCNA) and replicative polymerase (Pol) δ (16, 17) 

(Figure 1).

Unrepaired DNA damage leads to replication fork breakdown and subsequent genomic 

instability during cell division, since regular high fidelity DNA polymerases cannot 
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synthesize past DNA lesions (28–31). Translesion synthesis (TLS) polymerases can bypass 

the DNA damage and allow DNA replication to continue (28, 32–38). Even though TLS 

polymerases were originally considered low fidelity polymerases contributing to 

mutagenesis, recent advances suggest that TLS could be error-prone or error-free in a 

damage-specific and polymerase-specific manner (31, 28, 39–43).

Translesion synthesis across unrepaired CPD lesions is mediated by Pol η (initiation and 

extension) in an error-free manner (28, 43, 41, 44–46). When Pol η is absent, for example in 

XP-V patients, a two-step process involving initiation (TLS Pol ι,κ and/or an unknown 

polymerase) and extension (TLS Pol ζ or κ) mediates translesion synthesis across the CPD 

lesion in an error-prone manner (28, 47, 48). TLS across 6-4PP lesions is carried out by Pol 

ζ in an error-free manner, and alternatively by Pol η or Pol ι in an error-prone manner (49, 

42). Since TLS is potentially mutagenic, regulating the comparatively error-free NER would 

be more desirable (50, 31).

Hence it is important to understand how NER is regulated, which could be exploited to 

prevent or ameliorate pathologies associated with defective NER. In this review, we 

summarize recent advances regarding the regulators of individual factors involved in NER, 

emphasizing the molecular regulation of NER through controlling the expression or activity 

of NER proteins.

XPC REGULATION

XPC is an indispensable factor for initial recognition of bulky DNA damage in non-

transcribed regions (17, 16, 22). Loss of XPC function inhibits UV-induced CPD and 6-4PP 

DNA lesion repair, leading to accumulation of mutations upon replication, and increased 

cancer risk with UV exposure (17, 16, 22). Being such an important protein, XPC is 

regulated at multiple levels: genetic (mutations and polymorphisms), transcriptional, and 

post-translational, in addition to regulation under specific conditions like 

immunosuppression.

XPC polymorphisms

In spite of having normal NER, the Lys939Gln polymorphism in XPC has been associated 

with various cancers, indicating that NER-independent function of XPC is also important for 

cancer (51, 52). The XPC intron 11-5C/A SNP causes a reduction in DNA repair capacity 

due to a change in the frequency of alternatively spliced XPC mRNA.(53)

Promoter methylation of XPC

Recent studies have shown that XPC promoter methylation is increased by BRAFV600E 

(V600E mutant V-Raf Murine Sarcoma Viral Oncogene Homolog B), leading to decreased 

XPC mRNA levels and reduced DNA repair capacity (54) (Figure 2). This may play an 

important role in promoting spontaneous as well as UVB-induced melanomagenesis (54). 

XPC promoter hypermethylation is also associated with reduced XPC expression in lung 

tumors from patients (55). In lung cancer cell lines, the XPC promoter region, which 

consists of 17 CpG islands, was shown to be associated with XPC hypermethylation, leading 

to XPC repression (55).

Shah and He Page 3

Photochem Photobiol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Transcriptional regulation of XPC

Various distinct transcription factors, namely p53, nuclear factor erythroid 2-related factor 1 

(Nrf1, also called NFE2L1), Hypoxia-inducible factor-1 alpha (HIF-1α), AMP-activated 

protein kinase (AMPK), E2F transcription factor 4 (E2F4), and 130 kDa retinoblastoma-

associated protein (p130), have been found to regulate XPC expression, and non-

transcription factors also have been found to act via some of these transcription factors to 

modulate XPC expression (Figure 2).

The p53 tumor suppressor signaling is well known to regulate XPC to enhance NER (56). In 

HaCaT keratinocytes, Nrf1 promotes CPD repair by increasing XPC expression (57). Nrf1 

increases XPC expression via increasing glutathione availability (57). HIF-1α also 

contributes to increased XPC transcription after UVB (58). In mouse skin and normal 

human epidermal keratinocytes, the AMPK pathway promotes UVB-induced DNA repair by 

increasing XPC expression (59). Under growth arrest conditions, E2F4 and p130 repressors 

were found to bind the XPC promoter region in a genome-wide binding screen (60). In MEF 

cells, ARF was shown to reduce the binding of the E2F4-p130 repressor complex to XPC 

promoter, thus leading to increased expression of XPC (61, 62). ARF was shown to be 

required for efficient NER of UVC-induced CPD and 6-4PP lesions, due to its function of 

regulating XPC expression (62).

Loss of phosphatase and tensin homolog (PTEN), an important tumor suppressor, was 

shown to inhibit CPD repair and to a lesser extent 6-4PP repair in vitro (in HaCaT cells) and 

in vivo (in mouse epidermis) via decreasing XPC protein levels, by regulating XPC 

transcription (63). In in vitro cell culture models (MEFs and human keratinocytes), sirtuin 1 

(SIRT1) inhibition impairs CPD and 6-4PP repair by increasing XPC transcription (64). 

SIRT1 increases XPC transcription by activating PTEN through its deacetylase activity, 

which inhibits phosphorylation of AKT and impairs the nuclear localization of p130 

transcriptional repressor (64).

XPC regulation by post-translational modifications and protein-protein interactions

XPC can be regulated by two types of post-translational modifications: ubiquitylation and 

sumoylation (65). XPC can be polyubiqutinated by the UV-DDB E3 ligase complex 

consisting of DDB2, DDB1 (DNA damage binding protein 1), Cul4A, and several other 

proteins (66–69) (Figure 3). Ubiquitination of XPC increases XPC binding to DNA (68). 

Other studies also report that the UV-DDB complex mediates targeting of the XPC-HR23B 

complex to the site of CPD DNA damage (70, 71). Additionally, it was shown that DDB2 is 

necessary for degradation of XPC after UV-induced DNA photoproduct formation, but 

DDB1 and Cul4A, which are members of the same UV-DDB complex, inhibit XPC 

degradation upon UVC-induced DNA damage (72). After UV-induced DNA photoproduct 

formation, degradation of XPC was shown to be necessary for recruiting XPG at DNA 

damage sites and thus for efficient NER (72). XPC deubiquitination by ubiquitin-specific 

protease 7 (USP7) prevents XPC degradation and promotes NER (73). Sumoylation of XPC 

after UVC-induced DNA damage has also been shown to prevent its degradation (65). The 

K655 site on XPC is critical for sumoylation, as well as for degradation of XPC (72). RING 
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finger protein 111 (RNF111) can polyubiquitinate sumoylated XPC to promote XPC’s 

binding to damaged DNA (65, 74).

In addition, XPC interacts with other proteins to regulate its protein stability. For example, 

XPC-binding protein Rad23 (yeast homolog of HR23B) was shown to stabilize XPC (75, 

76) (Figure 3). Inhibition of the proteasome pathway or overexpression of Rad23 increases 

the stability of Rad4 (yeast homolog of XPC) (77). The authors further show that Rad23 

significantly impacts NER capacity via two independent but simultaneous mechanisms (77, 

78). With p53-null cell lines, retinoblastoma protein RB was shown to increase the half-life/

stability of XPC protein to enhance NER, through a direct interaction with XPC (79).

XPC regulation by immunosuppressants in organ transplant recipients

Organ transplant patients are at high risk of developing skin cancer (80). These skin cancers 

have long been attributed to the immunosuppressive therapy post-transplant, and the level of 

immunosuppression affects the development of skin cancer (80, 81). However, cyclosporin 

A (CsA), an immunosuppressant used for organ transplant recipients, promotes UVB-

induced skin carcinogenesis in an immunosuppression-independent manner by (i) impairing 

DNA repair by suppressing XPC transcription, and (ii) impairing checkpoint and DNA 

damage response by upregulating CypA (82). Other reports have also shown that CsA 

inhibits NER in fibroblasts and lymphoblasts (83, 84). In contrast to keratinocytes, in 

fibroblasts CsA inhibits NER by reducing XPA and XPG but not XPC (85). In 

keratinocytes, the immunosuppressants tacrolimus and mycophenolate mofetil reduce UVB-

caused DNA damage repair and apoptosis, and tacrolimus also impairs UVB-mediated 

checkpoint signaling, and thus may promote skin cancer in both an immunosuppression-

dependent and -independent manner (86).

REGULATION OF XPE/DDB2

As an essential factor in DNA damage recognition, DDB2 is regulated at both 

transcriptional and post-translational levels. In response to UVC, DDB2 transcription is 

regulated by p53 in human cells, but not in mice (87, 88). In addition, DDB2 activity is 

modulated by multiple pathways. UV irradiation was shown to cause constitutive 

photomorphogenesis 9 (COP9) signalosome (CSN) dissociation from the DDB2 complex 

(89, 69). This in turn increased the ubiquitin-ligase activity of DDB2 (90, 69). Upon being 

polyubiquitinated by the DDB complex itself, DDB2 signals for its degradation by 

proteasomes and loses its DNA binding activity (68). Poly (ADP)-ribosylation (PARylation) 

of DDB2 was shown to inhibit DDB2 ubiquitination and degradation, to allow DDB2 more 

time to mediate chromatin modification (91, 92). In addition to DDB2 complex-mediated 

chromatin regulation, DDB2 itself can regulate NER through chromatin remodeling by (i) 

Poly (ADP-ribose) polymerase 1 (PARP-1) mediated PARylation of chromatin, and (ii) 

recruiting chromatin remodeler Amplified in Liver Cancer 1 (ALC1) (91, 93–95).

REGULATION of CSA and CSB

As an ubiquitin-ligase in TC-NER, CSA activity is decreased by UV irradiation via rapid 

association of COP9 signalosome (CSN) with CSA (69). CSA was shown to ubiquitinate 
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CSB to target it for degradation via the ubiquitin proteasome pathway, ultimately aiding the 

reinitiating of transcription after DNA repair (96). UVSSA (UV-sensitive syndrome protein) 

was shown to recruit USP7 to deubiquitinate and stabilize CSB, thus opposing CSA-

mediated ubiquitination and degradation of CSB (97, 98).

REGULATION OF RNA pol II

Following UV-induced DNA photoproduct formation at actively transcribed genes, stalled 

RNA pol II recruits CSA and CSB (99–102). RNA pol II is then polyubiquitylated by CSA- 

and CSB-complex, which leads to the degradation of RNA pol II in the proteasomes to 

allow the recruitment of downstream NER factors (99–102). Alternatively, RNA pol II 

degradation factor 1 (Def1) can mediate degradation of RNA pol II via ubiquitination 

independent of TC-NER (103). In addition, the VHS (Vps-27, Hrs and STAM) domain of 

UVSSA was found to be essential for ubiquitination and dephosphorylation of RNA pol II 

and for efficient TC-NER, and this ubiquitination of RNA pol II does not target RNA pol II 

for degradation (104). The authors also suggest that since UVSSA interacts with TFIIH, 

UVSSA probably ubiquitinates RNA pol II by recruiting TFIIH, helping to remove stalled 

RNA pol II from the damage sites to allow the TC-NER factors access to the DNA damage 

(104).

XPD REGULATION

XPD functions at the merging point of the GG-NER and TC-NER pathways. XPD is a part 

of the TFIIH complex, and along with XPB serves to unwind the recognized DNA damage 

via its helicase activity. In keratinocytes, immediately after UVB irradiation, XPD normally 

undergoes a small decrease, followed by its upregulation (58).

XPA REGULATION

XPA level and activity are regulated through various mechanisms under physiological and 

stress conditions. XPA level is increased by deficiency in toll-like receptor 4 (TLR4) (105). 

In keratinocytes, αMSH/MC1R complex (α-Melanocyte-Stimulating Hormone/

Melanocortin 1 Receptor complex) enhances the GTPase activity of XPA-binding protein 1 

(XAB1), which in turn induces nuclear translocation of XPA, thus regulating NER for UVB-

induced DNA damage via a pigmentation-independent mechanism (106) (Figure 4). PKA-

mediated ATR phosphorylation enhances ATR-XPA interaction and rapid recruitment of 

XPA to DNA damage sites, ultimately promoting NER and reducing UVB or UVC-caused 

mutations (107). In addition, PARP-1 directly interacts with XPA to enhance NER (108). 

Arsenic is known to inhibit NER, and zinc was shown to protect against the detrimental 

effects of arsenic on DNA damage (109–112). In cell-based systems, XPA and PARP-1 

(both zinc finger proteins) were shown to be molecular targets for arsenite (113–116). 

Cadmium, copper, nickel and cobalt also inhibited XPA by decreasing binding of XPA to 

UVC-damaged DNA (117). The mechanism of NER impairment by metals needs to be 

further investigated.
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REGULATION OF RPA and PCNA

RPA binds to the unwound DNA damage site and to XPA. XPA and RPA together define 

the cleavage sites and strand specificity for the downstream nucleases. After excision of the 

damaged DNA by the nucleases, PCNA promotes filling of the gap by DNA synthesis. 

Transcription of RPA and PCNA may be regulated by E2F1 (E2F Transcription Factor 1) 

and E2F4, which were found to bind to the promoter region of RPA3 and PCNA genes 

(118). E2F4 and p130 repressors, under growth arrest conditions, were also found to bind to 

the PCNA promoter region in a genome wide binding screen (60).

REGULATION OF XPG/ERCC5

XPG/ERCC5 participates in cleavage and excision of the damaged DNA lesion via its 

endonuclease activity. XPG level and activity are regulated by transcription and protein-

protein interaction, respectively. In H23 or H460 human lung adenocarcinoma cell lines, 

CCAAT/enhancer-binding protein gamma (CEBPG) was shown to increase ERCC5 

transcription (119) (Figure 5). Human interferon β (IFN-β) treatment was shown to increase 

XPG mRNA levels in fibroblasts isolated from CSA and CSB patients with defects in TC-

NER (120). IFN-β-mediated upregulation of XPG could be a possible mechanism for IFN-β-

mediated resistance to UVC-induced cell death, in a TC-NER-independent manner (121). 

Other mechanisms may also have a role in the effect of IFN-β and remain to be determined.

Gadd45 (Growth Arrest And DNA-Damage-Inducible) has been shown to improve NER 

(122, 123). Gadd45a directly interacts with XPG to cause active DNA demethylation (124). 

Gadd45a-mediated DNA demethylation probably stimulates DNA repair via XPG and XPB, 

due to the association between DNA repair and DNA demethylation (124, 125). The precise 

mechanism remains to be elucidated.

ERCC1 REGULATION

XPF-ERCC1 dimer participates in cleavage and excision of the damaged DNA lesion via its 

endonuclease activity. ERCC1 mutations contributing to NER disorders have rarely been 

found. A patient with a homozygous Exon 7 mutation in ERCC1 is reported to have CS 

symptoms, and a patient with ERCC1 deficiency had developmental failure and a mild 

defect in NER (126, 127). Ercc1 knockout mice have similar critical developmental 

disorders and neonatal lethal characteristics (128). Deletion of Smad4 (SMAD family 

member 4) decreases ERCC1 transcription to cause defective CPD repair via reduced Snail 

expression, leading to increased UVA and UVB-induced SCC in murine models with 

keratinocyte-specific Smad4 loss (129).

OTHER NER REGULATORY PATHWAYS

Melanin, MSH, and Melanocortin

In melanocytes with functional MC1R, total melanin and eumelanin contents (MC and EC) 

were found to be inversely proportional to CPD damage (130). Additionally, melanocytes 

with loss of MC1R function have higher UVB-induced CPD damage and lesser repair of 

these lesions, independent of their total melanin and eumelanin content (130).
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MSH and adrenocorticotropic hormone (ACTH) have been shown to activate MC1R, 

leading to increased repair capacity of UVB-induced DNA photoproducts and decreased 

ROS generation (131–134). Forskolin was also shown to have effects similar to those of 

αMSH on UV-induced repair of DNA photoproducts, due to forskolin-mediated activation 

of the cAMP pathway, a downstream pathway common to melanocortins (131, 135, 136). 

Tetrapeptide and tripeptide analogs of melanocortin, containing a modified αMSH core with 

N capped groups and C terminal modifications respectively, also enhance CPD repair, by 

activating MC1R as MSH does (131, 137, 138).

Chromatin modification

Chromatin modification could be an important regulator of NER, since chromatin in an open 

conformation facilitates the binding of DNA repair factors to the damaged DNA (67, 139, 

140, 99). In cell extracts and reconstituted human excision nuclease systems, with 

reconstituted nucleosomes, the NER rate was inhibited to only 10% of that in naked DNA 

(141). The repair kinetics for acetylaminofluorene-guanine (AAF-G) adduct is increased by 

the SWI/SNF complexes (SWItch/sucrose nonfermentable) through multiple mechanisms 

(142–152). In addition, by increasing the access of NER factors to nucleosomal DNA, NER 

can be increased by ACF (Asymmetric Crying Facies), an ATP-utilizing chromatin 

assembly and remodeling factor (153–155).

The DDB2 complex also facilitates NER by carrying out ubiquitination of H2A, H3, and H4 

histone proteins, indicating DDB2’s role as a chromatin remodeler to allow the NER factors 

access to damaged DNA lesions (93–95). Histone acetylation mediates chromatin unfolding 

even after lesion detection, which is important for efficient NER. Indeed, histone 

acetyltransferases, such as GCN5 (general control of amino-acid synthesis 5), have been 

shown to be involved in this process (156–159). p53 was also shown to mediate whole 

genome relaxation to facilitate lesion detection and NER (159). The UV-DDB complex is 

also able to associate with GCN5 and p300, suggesting another probable mechanism of 

DDB-mediated chromatin regulation to facilitate NER (160–162).

E2F1 has been shown to facilitate NER by recruiting GCN5 at sites of UVC- or UVB-

induced DNA photoproducts (158). GCN5 mediates histone H3 Lysine 9 (H3K9) 

acetylation to allow increased access of NER factors to the damaged DNA (158). The S29A 

mutation (S29 in mice, equivalent to human S31) in E2F1 hinders E2F1 recruitment and 

E2F1-mediated recruitment of GCN5 and H3K9 acetylators at damage sites, reducing access 

of the NER factors XPC and XPA to the DNA damage lesions (163). After removal of DNA 

damage, restarting of transcription is enhanced by rapid removal and exchange of H2A and 

H2B at UVC-induced DNA photoproducts, and by placement of H3.3 histone (164–166). In 

yeast, the loss of H2A histone variant HTZ1 (H2A.Z) inhibits UVC-induced CPD damage 

removal (167). HTZ1 promotes CPD repair by recruiting GCN5, leading to histone 

H3K9/K14 acetylation and increasing Rad14 (ortholog of XPA) binding to damaged DNA 

(167). Through their histone acetylase activity, p300 and CREB Binding Protein (CBP) 

redundantly lead to DDB2 recruitment to CPD lesions in compacted chromatin regions, 

facilitating repair of UVC-induced CPD lesions (168). p300 phosphorylation at S1834 is 

Shah and He Page 8

Photochem Photobiol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



seminal for efficient CPD repair through facilitating DDB2 recruitment to the CPD lesion 

(168).

CONCLUSION AND PERSPECTIVES

UV-induced DNA repair, or NER, essentially removes DNA damage by inevitable 

environmental factors like solar UVB radiation and air pollutants. NER is vital to 

maintaining genomic integrity to protect animals and humans from skin, lung and brain 

cancer as well as neurological and developmental disorders, and thus justifiably has multiple 

factors and signaling mechanisms for its regulation. Recent studies have demonstrated that 

UV-induced DNA repair is regulated at multiple levels including transcriptional modulation 

and posttranslational modifications. Both extracellular cues and intracellular signaling 

regulate UV-induced DNA repair capacity. These regulations are achieved through 

regulating the availability or activity of individual repair factors, or modifying chromatin 

structure. Better understanding of the NER regulation can elucidate new opportunities to 

enhance the NER capacity and therefore improve our ability to prevent cancer initiation and 

progression, as both processes involve genetic mutations and/or genomic instability.
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ABBREVIATIONS

6-4PP pyrimidine (6-4) pyrimidone photoproducts

αMSH/MC1R 
complex

α-Melanocyte-Stimulating Hormone/Melanocortin 1 Receptor 

complex

AAF-G acetylaminofluorene-guanine

ACF Asymmetric Crying Facies

ACTH Adrenocorticotropic Hormone

AICAR 5-aminoimidazole-4-carboxamide ribotide

Akt V-Akt Murine Thymoma Viral Oncogene Homolog

ALC1 Amplified in Liver Cancer 1

AMPK AMP-activated protein kinase

ARF Alternative reading frame

ATM Ataxia Telangiectasia Mutated

ATR Ataxia Telangiectasia and Rad3 Related

BCC basal cell carcinoma
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BRAFV600E V600E mutant V-Raf Murine Sarcoma Viral Oncogene 

Homolog B

Camp cyclic AMP

CBP CREB Binding Protein

CEBPG CCAAT/enhancer-binding protein gamma

CPD cyclobutane pyrimidine dimmers

CS Cockayne syndrome

CsA Cyclosporin A

CSA Cockayne syndrome group A

CSB Cockayne Syndrome group B

CSN constitutive photomorphogenesis 9 (COP9) signalosome

Cul4A Cullin 4A

DDB1 Damage-Specific DNA Binding Protein 1

DDB2 Damage-Specific DNA Binding Protein 2

Def1 RNA polymerase II degradation factor 1

DOT1L DOT1-like protein

DP1 DRTF polypeptide 1

E2F1 E2F Transcription Factor 1

E2F4 E2F transcription factor 4

Epac Exchange protein activated by cyclic AMP

ERCC1 excision repair cross-complementation group 1

ERCC5 excision repair cross-complementation group 5

Gadd45 Growth Arrest And DNA-Damage-Inducible

GCN5 general control of amino-acid synthesis 5

GG-NER global genome nucleotide excision repair

H2A.Z H2A histone variant HTZ1

H3K9 Histone H3 Lysine 9

HIF-1α Hypoxia-inducible factor-1 alpha

HIRA HIR (Histone Cell Cycle Regulation Defective) Homolog A

HMGN1 High Mobility Group Nucleosome Binding Domain 1

HR23B RAD23 Homolog B

HRE hypoxia response element
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IFN-β interferon β

MC and EC total melanin and eumelanin contents

MFA2 Mating Factor A

MSH Melanocyte Stimulating Hormone

NAP1L1 Nucleosome Assembly Protein 1-Like 1

NAP1L4 Nucleosome Assembly Protein 1-Like 4

NEDD8 neural precursor cell expressed, developmentally down-

regulated 8

NER nucleotide excision repair

NOX1 NADPH Oxidase 1

Nrf1 also called NFE2L1, nuclear factor erythroid 2-related factor 1

p130 130 kDa retinoblastoma-associated protein

p38 MAPK p38 mitogen-activated protein kinases

PARP-1 Poly (ADP-ribose) polymerase 1

PARylation Poly (ADP)-ribosylation

PCNA proliferating-cell nuclear antigen

PI3K Phosphatidylinositol-3-kinase

PKA Protein Kinase A

Pol polymerase

PTEN phosphatase and tensin homolog

R4B Rad4 binding domain

RB retinoblastoma protein

RNA pol II RNA polymerase II

RNF111 RING finger protein 111

ROC1 Regulator of Cullins 1

ROS reactive oxygen species

RPA replication protein A

RPA3 Replication protein A3

SCC squamous cell carcinoma

SHM somatic hypermutation

SIRT1 sirtuin 1

Smad4 SMAD family member 4
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SWI/SNF SWItch/sucrose nonfermentable

TC-NER transcription coupled nucleotide excision repair

TFIIH transcription factor II H

TLS Translesion synthesis

TTD trichothiodystrophy

UBL Ubiquitin-like domain

USP7 Ubiquitin-specific-processing protease 7

UV Ultraviolet

UVSSA UV-sensitive syndrome protein

VHS Vps-27, Hrs and STAM domain

XAB1 XPA-binding protein 1

XP xeroderma pigmentosum

XPA xeroderma pigmentosum, complementation group A

XPB xeroderma pigmentosum, complementation group B

XPC xeroderma pigmentosum, complementation group C

XPD xeroderma pigmentosum, complementation group D

XPE xeroderma pigmentosum, complementation group E

XPF xeroderma pigmentosum, complementation group F

XPG xeroderma pigmentosum, complementation group G

YY1 Yin Yang 1

ZEB1 Zinc Finger E-Box Binding Homeobox 1
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Figure 1. 
Sequential assembly of molecular players to remove UV-induced CPD and 6-4PP DNA 

damage lesions in global genome nucleotide excision repair (GG-NER) and transcription 

coupled nucleotide excision repair (TC-NER).
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Figure 2. 
Transcriptional Regulation of XPC.
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Figure 3. 
Post-translational regulation of XPC.
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Figure 4. 
Molecular Regulation of XPA.
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Figure 5. 
Molecular regulation and interactions of XPG.
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Table 1

Disorders associated with defective NER (See Ref (17)).

Disease due to defective NER Genes causing disorder Characteristics

Xeroderma pigmentosum(XP) XPA, XPB, XPC, XPD, XPE, XPF, XPG, XPV (Xeroderma 
Pigmentosum Variant)

Sunlight exposure predisposes to various 
cancers, especially squamous cell 
carcinoma, basal cell carcinoma and 
melanoma skin cancer.

Trichothiodystrophy (TTD) XPB, XPD, TTDN1 (TTD non- photosensitive 1 protein or 
M- phase-specific PLK1- interacting protein) and TTDA 
(general transcription factor IIH, polypeptide 5 (GTF2H5))

Brittle, sulfur-deficient hair and ichthyosis, 
mental retardation

Cockayne syndrome (CS) CSA, CSB, XPD and XPG Developmental and neurological disorders, 
decreased lifespan
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