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Animal studies are now showing the exciting potential to achieve significant functional
recovery following central nervous system (CNS) injury by manipulating both the inefficient
intracellular growth machinery in neurons, as well as the extracellular barriers, which further
limit their regenerative potential. In this review, we have focused on the three major glial cell
types: oligodendrocytes, astrocytes, and microglia/macrophages, in addition to some of
their precursors, which form major extrinsic barriers to regrowth in the injured CNS.
Although axotomized neurons in the CNS have, at best, a limited capacity to regenerate or
sprout, there is accumulating evidence that even in the adult and, especially after boosting
their growth motor, neurons possess the capacity for considerable circuit reorganization and
even lengthy regeneration when these glial obstacles to neuronal regrowth are modified,

eliminated, or overcome.

he failure of injured central nervous system

(CNS) axons to regenerate over long dis-
tances and reestablish connections interrupted
by traumatic lesions has been known for a very
long time. As early as 1890, the striking dif-
ference between central axons and the often
well-regenerating peripheral nerves was exper-
imentally studied; peripheral nerve grafts were
implanted into different parts of the brain, ret-
ina, and spinal cord. The results showed that
denervated peripheral nerves are excellent
growth-promoting substrates for regenerating

axons, whether of peripheral or central origin.
Santiago Ramon y Cajal summarized these pio-
neering studies in his seminal book, Regenera-
tion and Degeneration of the Nervous System
(1913 in Spanish; 1928 first English edition; Ra-
mony Cajaletal. 1991). He concluded that adult
central neurons can be induced to grow long
axons by attractive and trophic factors originat-
ing from peripheral nerves. He also speculated
that the absence of regeneration in CNS tissue
would be because of a lack of such factors in the
adult brain and spinal cord. Modern tracing
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methods and electron microscopy confirmed
the old findings in the early 1980s (Aguayo et
al. 1991), but the discovery of neurotrophic
activities, for example, brain-derived neurotro-
phic factor (BDNF), ciliary neurotrophic factor
(CNTE), or leukemia inhibitory factor (LIF), in
adult CNS tissue reopened the question about
molecular mechanisms. In vitro studies on the
interaction of neurons confronted with CNS
tissue explants or frozen sections led to a new
concept of specific neurite growth inhibitory
factors in the adult CNS (Schwab and Thoenen
1985; Carbonetto etal. 1987; Schwab and Caroni
1988; Fawcett et al. 1989; Rudge and Silver 1990;
Mckeon et al. 1991). Surprisingly, these factors
were enriched in CNS myelin and oligodendro-
cytes, but also in scar areas and, as found later,
in perineuronal nets (PNNs) (Schwab and Ca-
roni 1988; Sandvig et al. 2004; Pizzorusso et al.
2006; Creggetal. 2014). Today, a detailed picture
on growth inhibitory and repulsive factors ex-
pressed by different types of glial and neuronal
cells at various stages of CNS development and
maturation arises (Lutz and Barres 2014; Silver
and Silver 2014). This article summarizes the
contributions of astrocytes, oligodendrocytes,
and microglia/macrophages, as well as some of
their precursors to growth inhibition and regen-
eration failure in the adult CNS.

Although glial cells influence the growth of
regenerating axons by soluble factors or mem-
brane contacts at the level of growth cones, their
influence can also regulate the growth state and
programs of neurons at the transcriptional and
posttranscriptional levels. Microglia and mono-
cyte-derived macrophages (MDMs) recruited
into lesioned tissue are expected to exert similar
effects on axons. Thus, “extrinsic” growth reg-
ulatory cues interact with and codetermine the
“Intrinsic” ability of injured CNS neurons to
form regenerating sprouts and elongate over
long distances. Current experimental therapeu-
tic approaches in animal models aim at manip-
ulating all of these components, for instance, by
suppressing or neutralizing growth inhibitory
signals, supplying growth promoters, and en-
hancing neuron intrinsic growth programs
(Cafferty et al. 2008; Zorner and Schwab 2010;
Hollis and Tuszynski 2011; Liu et al. 2011).

OLIGODENDROCYTES AND CNS MYELIN
INHIBIT NEURITE REGENERATION,
COMPENSATORY GROWTH, AND
PLASTICITY

Adult CNS Myelin Is Inhibitory for Neurite
Growth and Regeneration

When growing dorsal root ganglion, cortical or
cerebellar neurons derived from perinatal rats
and mice were confronted in culture with optic
nerve explants, white matter, CNS myelin,
or oligodendrocytes, growth cones collapsed
shortly after contact and neurite elongation
stopped (Schwab and Thoenen 1985; Carbon-
etto et al. 1987; Schwab and Caroni 1988; Faw-
cett et al. 1989). Clinical and experimental ob-
servations suggested that the repair capacity of
the CNS after injuries is much higher during
development than at more mature stages. Using
invivo lesion experiments in embryonic chicken
and newborn rodents, the switch from a regen-
eration-permissive to a nonpermissive property
of CN tissue seemed to be correlated in time
and space with myelin formation (Reh and Kalil
1982; Keirstead et al. 1992). For a more detailed
analysis of such effects, neurite growth inhibi-
tion, antiadhesive effects, and growth cone col-
lapse were subsequently used to characterize and
purify the main factors responsible for the fiber
growth inhibitoryeffects of the adult CNS tissue.
In line with the observations from the in vitro
encounter assays, potent neurite growth inhibi-
tory factors were found to be enriched in CNS
myelin. The membrane proteins Nogo-A, mye-
lin-associated glycoprotein (MAG) and oligo-
dendrocyte/myelin glycoprotein (OMgp), the
ephrins B3 and A3, the semaphorins 4D, 5A,
and 3F as well as chondroitin sulfate proteogly-
cans (CSPGs) and the myelin glycolipid sulfa-
tide were all found to exert strong growth inhib-
itory effects on an variety of neuronal cells in
vitro (Sandvig et al. 2004; Giger et al. 2010; Faw-
cett et al. 2012). The molecules are active at very
low concentrations, which prompted the search
for corresponding receptors. Today, the Nogo
receptor family, NgR 1-3, the new Nogo-A-spe-
cificreceptor sphingosine- 1-phosphate receptor
2 (SI1PR2), several Eph receptors, semaphorin
receptors, and the CSPG-interacting proteins
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LAR and protein tyrosine phosphatase PTPase-
o have been identified as functional receptors
mediating growth cone collapse and growth in-
hibition of the corresponding ligands (Liu et al.
2006a,b; Shen etal. 2009; Giger et al. 2010; Fisher
et al. 2011; Kempf 2014). Like neurotrophins
or Wnt, many of the growth inhibitory ligands
seem to function by activation of multisubunit
receptor complexes (Schwab 2010).

Specific Growth Inhibitory Factors Acting via
Neuronal Receptor Complexes Are Present
in the CNS and Enriched in Myelin

Two main effects can be distinguished when
growing neurites interact with growth inhibitory
factors: (1) a fast local collapse of lamellipodia
and filopodia of the growth cones after contact
with many of the inhibitory factors, and (2)
long-lasting cell-body-mediated growth inhibi-
tion, for example, by Nogo-A (Nash et al. 2009;
Schwab 2010). Growth cone collapse is largely
mediated by effects on the cytoskeleton, in par-
ticular, in the form of actin filament destabiliza-
tion (Nash et al. 2009). Activation of the small
GTPase signal transducer Rho, of the down-
stream Rho-associated protein kinase (ROCK),
and actin regulators slingshot and cofilin seem
to play major roles for Nogo-A-induced inhibi-
tion. For ephrins and Nogo-A, endocytotic up-
take of ligand /receptor complexes, followed by
retrograde transport to neuronal cell bodies in
signaling endosomes, has been shown (Zimmer
etal. 2003; Joset etal. 2010). For Nogo-A, Rho-A
activation and cAMP-response element-bind-
ing (CREB) inactivation play crucial roles for
the subsequent long-term down-regulation of
the neuronal growth machinery (Hannila and
Filbin 2008; Joset et al. 2010). Accordingly, these
inhibitory effects of Nogo-A, MAG, or CNS my-
elin can be counteracted by elevated levels of
cAMP or high concentrations of neurotrophic
factors, which, in turn, elevate cAMP and P-
CREB (Hannila and Filbin 2008). Interestingly,
Nogo-A also down-regulates a potent cellular
growth regulator, mammalian target of rapamy-
cin (mTOR) (Peng et al. 2011). Conversely, ex-
ogenous stimulation of mTOR, either through
the use of genetic tools or pharmacologically
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(e.g., by rapamycin), leads to strong stimulation
of sprouting and growth, even on inhibitory sub-
stratesinvitro orinvivo (Liuetal.2011). Wheth-
er different growth inhibitory factors converge
on signaling pathways, leading to growth cone
collapse or cell-body-mediated growth suppres-
sion, remains to be analyzed. A first example for
such a convergence is shown by the recent
demonstration that the Nogo/MAG/OMgp re-
ceptor, NgR1, can also function as a receptor for
the structurally very different growth inhibitory
CSPGs (Dickendesher et al. 2012).

Myelin-Associated Growth Inhibitors Restrict
Developmental Plasticity and Stabilize the
Structure of the Adult CNS

The growth inhibitory nature of CNS myelin
and the expression of several different growth
inhibitory factors by oligodendrocytes and in
myelin membranes was a surprising finding at
first. During development, many of these factors
are expressed by different cell types, including
subpopulations of neurons, and they serve re-
pulsive, negative guidance functions, or anti-
adhesive or migration modulatoryroles (Schwab
2010). Myelin formation in the CNS is tract de-
pendent; it starts in a given fiber tract after the
axons have reached their targets and established
functional connections. Restricting any further
growth and axonal branching in such a tract may
be one of the important functions of myelin-
associated growth inhibitory factors. A number
of findings support this concept. Structural
plasticity is very low in white matter, but higher
in gray matter in the adult CNS, and highly
plastic regions are often particularly low in
myelin content. In the neocortex, a temporal
coincidence exists between myelin formation
in layers IV-VI and the maturation-dependent
reduction of plasticity, for example, the closure
of the critical window for ocular dominance
plasticity (McGee et al. 2006). Importantly, de-
velopmental levels of structural plasticity could
be reestablished in full adult life in Nogo or
Nogo receptor (NgR1) knockout (KO) mice
in the visual and the sensorimotor cortex
(McGee et al. 2006; Akbik et al. 2013). Similar
results were obtained by enzymatic removal of
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CSPGs (Pizzorusso et al. 2006). Furthermore,
aberrant sprouting was observed after experi-
mental or pathologic demyelination, for exam-
ple, in the optic nerve (Tansey et al. 1985; Colello
and Schwab 1994; Phokeo et al. 2002). Neurite
growth inhibitory factors expressed by oligoden-
drocytes, including Nogo-A and CSPGs, there-
fore, appear as specific stabilizers of the highly
complex structure and wiring of the CNS of
higher vertebrates (Fig. 1).

Suppression of Neurite Growth Inhibitory
Factors Enhances Sprouting and Regeneration
of Injured Neurites and Functional Recovery
after CNS Injury

Avariety of methods has been used to neutral-
ize or delete myelin-associated inhibitory fac-
tors to study axonal regeneration and repair
processes after CNS injury. The most extensive
literature exists for Nogo-A, for which function-

blocking antibodies or autoimmunizations,
Nogo receptor—blocking peptides or fusion
proteins, gene knockdowns (KOs), or receptor
KOs have been used for in vivo manipulations,
in particular, in the context of spinal cord injury
(SCI), stroke studies, as well as autoimmune
disease models (Schwab 2004; Cafferty et al.
2008; Pernet and Schwab 2012). Acute blockade
of Nogo-A, the Nogo receptor complex, or of
the downstream Rho/ROCK pathway led to
enhanced regenerative sprouting and elonga-
tion over variable distances of injured cortico-
spinal, rubrospinal, or aminergic axons in the
spinal cord of adult rats and mice after injury.
Enhanced compensatory sprouting of spared
fibers is often also observed. On the level of
behavior, animals frequently show significantly
higher levels of functional recovery than the
control reagent-treated or -untreated controls.
Negative effects, which could be expected if un-
directed or random growth was overstimulated,

White mat[ei ; Z
T

Oligodendrocyte

——— Sprouting and regenerating nerve fibers

Gray matter

Figure 1. Oligodendrocytes express neurite growth inhibitory proteins, including the membrane protein Nogo-
A, on their cell surface and CNS myelin. These proteins inhibit branch formation along the mature axon in white
matter, but they also impair compensatory and regenerative fiber growth following axonal injury. In gray matter,
the lower levels of these inhibitory proteins allow some structural remodeling of dendritic and axonal arbors and
connections to occur, but these processes can still be potentiated by neutralization or deletion of the neurite

growth inhibitors in the mature CNS.
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were absent (Liebscher et al. 2005). Most re-
markably, pain thresholds were not different
from the ones in control animals and spastic-
ity decreased in anti-Nogo-A antibody—treated
spinal cord—injured rats (Liebscher et al. 2005;
Gonzenbach et al. 2010). Absence of malfunc-
tions was also seen in experiments with spinal
cord—injured macaques, whereas skilled hand
and finger movements recovered almost com-
pletely following high cervical spinal hemisec-
tion lesions and a 1-mo intrathecal anti-Nogo-
A antibody infusion (Freund et al. 2006, 2009).
A phase 1 clinical trial with intrathecal appli-
cation of a function-blocking anti-Nogo-A an-
tibody over 30 d in acutely and severely spinal
cord—injured patients confirmed the absence
of negative side effects of this treatment also in
humans (Abel et al. 2011).

In stroke models, suppression of Nogo-A
or NgR1 enhanced the compensatory sprouting
of the spared, contralesional corticofugal sys-
tem, which grew across the brain stem and spi-
nal cord midline and reinnervated the denervat-
ed side. This process was associated with a very
high degree of recovery of skilled movements,
in particular, the forelimb (Cafferty et al. 2008;
Tsai et al. 2011; Lindau et al. 2013). In experi-
mental allergic encephalomyelitis, a well-stud-
ied rodent model for multiple sclerosis, Nogo-A
KO, antibodies against Nogo-A or NgR1 KO led
to a milder disease course and higher functional
recovery (Karnezis et al. 2004; Yang et al. 2010;
Petratos et al. 2012).

Whether simultaneous deletion of several
inhibitory factors and/or very massive stimula-
tion of the intrinsic neuronal growth program
(Liu et al. 2011) would yield more extensive
regeneration and functional repair than what
has been obtained up to now requires systematic
additional studies. The danger exists, however,
that guidance and target interaction mecha-
nisms of the adult CNS, which are required to
establish and control new circuits and keep the
CNS wiring in a stable condition, could be over-
run, and chaotic connections and malfunctions,
for example, epilepsies, could result. A remark-
able finding has also been that (conventional)
KO mice for Nogo or its receptor NgR1 have
repeatedly resulted in milder fiber regrowth

CNS Regenerative Failure

effects than acute interventions with, for exam-
ple, neutralizing antibodies or receptor-block-
ing peptides (Dimou et al. 2006; Cafferty et al.
2010; Lee et al. 2010; Schwab 2010). For a Nogo-
A KO mouse, the up-regulation of several eph-
rins and semaphorins and their receptors
has recently been shown (Kempf et al. 2013).
This represents a striking example of functional
compensation of the lack of a physiologically
important molecule by the organism and un-
derlines the role of myelin-associated neurite
growth inhibitory factors for the homeostasis
of the adult CNS.

ASTROCYTES AND GLIAL PROGENITOR
CELLS PLAY CRITICAL ROLES IN
REGENERATION FAILURE

The Glial Scar and PNN: Proteoglycan-
Mediated Inhibition of Regeneration
and Sprouting

Awide variety of injuries or diseases of the CNS,
which are severe enough to cause a breach in the
blood—brain barrier or overt bleeding, lead to
secondary tissue damage, resulting in the en-
capsulation of the lesion by reactive astrocytes,
which form the so-called glial “scar.” The scar is
an essential part of wound healing in the brain
and spinal cord because it serves to physically
and molecularly wall off zones of intense in-
flammation to provide a measure of protection
for the remaining fragile tissue (Silver and Mil-
ler 2004). This portion of the review will de-
scribe current thinking about the biological con-
sequences of glial scarring in the spinal cord,
especially, as it affects wound repair and axon
regeneration; however, it is likely that similar
events occur throughout the CNS.

The astroglial component of the scar wall is
formed by at least five critical processes. The first
is the rapid (within days) migration of astrocytes
from the lesion epicenter toward its outermost
edges, actively driven away by as-yet-unknown
factors produced by inflammatory cells (Fitch
and Silver 1997). The second is proliferation of
the thin layer of reactive astrocytes (gliosis),
which comes to reside just at the lesion margin
(reactive astrocytes further away do not mark-
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edly increase their proliferation rates, nor do
they migrate extensively) (Bush et al. 1999;
Faulkner et al. 2004; Wanner et al. 2013). The
third is the accumulation of intermediate fila-
ment proteins, predominantly glial fibrillary
acidic protein (GFAP), vimentin, and nestin,
leading to cellular hypertrophy of the astrogli-
otic layer, as well as nondividing reactive astro-
cytes further away (Pekny et al. 1999; Xu et al.
1999; Wilhelmsson et al. 2004; Bardehle et al.
2013). The fourth involves the restructuring of
the gliotic layer into a mesh-like envelope,
which changes from a radial, longitudinal ori-
entation to an alignment largely perpendicular
to the long axis of the cord and is, thus, highly
obstructive to any potential regrowth of the ma-
jor projection axon pathways (Bardehle et al.
2013; Wanner et al. 2013). In addition, there
occurs the production of a variety of potently
growth inhibitory extracellular matrix (ECM)
molecules, among which are the lectican family
of CSPGs (McKeon et al. 1991, 1995, 1999; Da-
vies et al. 1999; Yamaguchi 2000; Busch and
Silver 2007; Alilain et al. 2011; Brown et al.
2012; Kawano et al. 2012; Li et al. 2013; Takeuchi
et al. 2013). Thus, the scar presents a physical
and molecular constraint against the release of
intralesional inflammatory agents, but also, un-
fortunately, to axon regeneration.

It is now known that this entire cascade of
events is triggered, in part, by TGF-f bound to
fibrinogen, which pores in through the leaky or
hemorrhagic blood—brain barrier and activates
the SMAD?2 signaling cascade. Blocking the
TGEF-B receptor pathway abolishes the fibrin-
ogen-induced effects on glial scar formation
and, in particular, reduces proteoglycan depo-
sition (Schachtrup et al. 2010). The early migra-
tory response of astrocytes appears to be, at least
in part, under the control of glycogen synthase
kinase-3 (GSK-3) activity because acute treat-
ment with a potent GSK-3 inhibitor accelerates
migration, resulting in better sequestration of
inflammatory cells and significantly enhanced
functional improvement (Renault-Mihara et
al. 2011). Also, the transcription factor SOX9
appears to be a critical component of the path-
way thatleads to inhibitory matrix deposition in
the lesion because its conditional KO leads to

reduced expression of various CSPGs and im-
proved locomotor function (Mckillop et al.
2013). The architectural glial changes are under
the control of STAT3. When this transcription
activator is genetically deleted in astrocytes (or
the proliferating/gliotic astrocytes are them-
selves deleted), the walling off phenomenon is
severely perturbed and inflammatory infiltrates
invade much larger regions of the cord, leading
to rampant tissue destruction and further loss of
function (Bush et al. 1999; Herrmann et al.
2008; Wanner et al. 2013). Another critical mo-
lecular determinant of astroglial scar building is
injury-induced glial Ca** signaling, which reg-
ulates expression of the cell-to-cell adhesion
molecule N-cadherin. This calcium-dependent
tight adhesion-forming molecule likely plays an
important role in strengthening the scar wall
(Kanemaru et al. 2013). N-cadherin binds the
fibroblast growth factor receptor (FGFR) and
activates a FGFR-dependent signaling cascade,
which, in turn, can enhance GFAP expression
and is known to play a critical role in controlling
the polarity of astrocytes (Goldshmit et al. 2012;
Lee et al. 2013; Macaya et al. 2013). In its ab-
sence, N-cadherin KO mice display abnormal
scar formation, leading to increased neuronal
death (Kanemaru et al. 2013). Thus, the astro-
cytic response to injury is an essential compo-
nent of damage control in the CNS, and the
large number of molecular determinants in-
volved with scar formation could be potential
therapeutic targets.

There are also reactive changes in astrocytes
much further away from the lesion, which even-
tually fill in the space vacated by dying oligo-
dendrocytes and axons undergoing Wallerian
degeneration (WD), but the structural changes
here take a much longer time to manifest (Silver
and Miller 2004; Wanner et al. 2013). Over ex-
tended periods of time, astroglial hypertrophy
at the lesion edge, and in the tract beyond, leads
to very dense aggregates of cells that, at the le-
sion and distally, especially near the pial surface,
become obstructive to axonal regeneration (Sil-
ver and Miller 2004). Interestingly, denervated
target regions, which are distant from the lesion,
also undergo reactive glial changes, again asso-
ciated with the production of sulfated proteo-
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glycans that are largely contained within the
PNN (Massey et al. 2006; Alilain et al. 2011;
Andrews et al. 2012; Hansen et al. 2013). The
molecular triggers, which instigate up-regula-
tion of these net-associated proteoglycans far
from lesions, are largely unknown, but also ap-
pear to be regulated, in part, by the SOX9 tran-
scription factor pathway (Mckillop et al. 2013)
as well as neuronal activity (Wang and Fawcett
2012). CSPG up-regulation within the PNN is
extremely important because it serves to limit
potential functional plasticity, which could oc-
cur via compensatory sprouting from surviving
inputs (Hockfield et al. 1990; Yamada et al.
1997; Berardi et al. 2004; Massey et al. 2006;
Pizzorusso et al. 2006; Gogolla et al. 2009; Gar-
cia-Alias et al. 2011; Kwoket al. 2011; Wang and
Fawcett 2012; de Vivo et al. 2013; Xue et al.
2014).

Oligodendrocyte Progenitor Cells and the
Neuroglial 2 Proteoglycan: The Role of
the Lesion Core in Regeneration Failure

Although the astroglial component of scar for-
mation and its purported role in regeneration
failure has been suggested for more than a cen-
tury (Ramon y Cajal 1928; Windle and Cham-
bers 1950) and has been clearly revealed by the
use of microtransplantation experiments (Da-
vies et al. 1997, 1999), the astroglial capsule is
not solely responsible for axonal regeneration
failure. When one examines, precisely, the inter-
actions that occur between dystrophic axon tips
and the cells that they closely associate with over
time, it was surprising to learn that, for the most
part, severed axons do not interact directly with
reactive astrocytes, but rather with a population
of neuroglial-2-proteoglycan (NG2)-produc-
ing oligodendrocyte precursor cells (OPCs)
within the core of the lesion (Busch et al. 2010;
Filous etal. 2010). It had long been thought that
after SCI, severed axons would retract back to
sustaining collateral (Ramoén y Cajal 1928), and,
thus, the free segment of remaining axon within
the white matter would eventually be eliminat-
ed. However, with the advent of modern label-
ing techniques, we now know that, following the
phase of axonal retraction (which is largely the

CNS Regenerative Failure

result of an aggressive attack on the dystrophic
axon tip by inflammatory blood-derived mac-
rophages) (Horn et al. 2008; Busch et al. 2009;
Evans et al. 2014), axotomized neurons often
survive (Kwon et al. 2002; Nielson et al. 2010).
Eventually, the cut axon stops retracting and its
dystrophic tip can come to rest for many years
(even decades) (Ruschel et al. 2013) within the
penumbra of the lesion (Li and Raisman 1995;
Guest et al. 2005; Kadoya et al. 2009). What
maintains the dystrophic end of the axon chron-
ically within the hostile environment of the glial
scar? Are the mechanisms involved with long-
term maintenance of the severed axon critical to
regeneration failure? Although SCI results in
astroglial emigration away from the lesion, in-
side the core of the lesion, during the first sev-
eral weeks postinjury, there is a robust recruit-
ment and proliferation of a wide variety of cell
types, which all become surrounded by astro-
glial scar. In addition to the vast array of acti-
vated blood-derived macrophages and other in-
flammatory cells, which begin to invade the
lesion core within the first day (Popovich and
Longbrake 2008; Kigerl et al. 2009; Evans et al.
2014), the normally rarely dividing ependymal
cells around the central canal become activated
and rapidly proliferate (Meletis et al. 2008).
Within the first week, they also move into the
core of the lesion and, as they do so, they down-
regulate their ependymal markers and begin to
display reactive astroglial phenotypes, thus,
contributing to the glial scar (Johansson et al.
1999). Additionally, after penetrating injuries
that open the dura mater, but also, importantly,
after contusive or ischemic injuries that leave
the meninges largely intact, fibroblast-like stro-
mal cells, which are derived from the meninges
or pericytes or pericyte-like cells located around
the perimeter of blood vessels, divide vigorously
and slough off from the meninges or vasculature
to help populate the lesion epicenter (Decimo
etal.2011; Goritz et al. 2011; Fernandez-Klett et
al. 2013; Sabelstrom et al. 2013; Soderblom et al.
2013). These cells interact with the astroglial
component of the scar and form a fibrotic-like
layer internal to the astroglial capsule. Via their
interactions with astrocytes and the collage-
nous/proteoglycan-rich matrices that are pro-
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duced, they also play a role in helping to seal the
lesion, but also may play a role in blocking re-
generation (Davies et al. 1999; Stichel et al. 1999;
Kawano et al. 2012; Sabelstrom et al. 2013; So-
derblom et al. 2013). Finally, there occurs a ro-
bust proliferation of OPCs, which produce the
purportedly potently inhibitory NG2 CSPG, as
well as a cocktail of growth-promoting ECM
molecules, including laminin and fibronectin
(Zai and Wrathall 2005; Lytle et al. 2006; Busch
etal. 2010). Thus, the early lesion core becomes
a rich oasis of cells with a mixture of growth-
inhibiting and -promoting properties.

The role of NG2™ cells, both in the normal
CNS and after injury, remains controversial.
NG2 is a member of the CSPG family of ECM
molecules that is thought to contribute to regen-
eration failure. Because NG2 is one of the most
dramatically up-regulated CSPG after CNS in-
jury (Levine 1994), it has been suggested that
NG2™ cells are “the” major regeneration-block-
ing cell type (Dou and Levine 1994; Fidler et al.
1999; Chen et al. 2002; Tan et al. 2006). In con-
trast, several studies suggest that NG2 ™" cells may
not be repulsive at all. Indeed, the dystrophic
tips of severed axons, which remain within the
lesion penumbra for extended periods, reside
closely among NG2™" glia (Zhang et al. 2001;
McTigue et al. 2006; Busch et al. 2010) and
NG2™ cells seem to facilitate growth of develop-
ing axons (Yang et al. 2006). Our laboratory
suggested that the population of stem-like,
NG2-producing cells in the lesion core may con-
tribute to regeneration failure by acting as a kind
of “safe haven” for dystrophic axons, stabilizing
them as they are forced to retract backward into
the caudal end of the lesion by activated macro-
phages (Busch et al. 2010). Indeed, severed ax-
ons in the lesion appear to be “addicted” to the
surface of these cells and refuse to leave. How-
ever, the mechanisms that govern this tight cell -
cell interaction and, in particular, whether the
NG2 CSPG is involved in this close association,
remained important and unresolved questions.

Recently, we sought a better understanding
of the interaction between severed sensory axons
and adult cord-derived NG2 glia after a dorsal
column injury (Filous et al. 2012). In our stud-
ies, we observed a novel mechanism of regener-

ation failure. When combined with growth-
promoting ECM molecules in critical ratios, pu-
rified NG2 and other CSPGs initially constrain
axons to their territory via a GAG/LAR family
CSPG receptor-mediated interactive mecha-
nism (Shen et al. 2009; Filous et al. 2010; Fisher
etal.2011; Lang et al. 2012, 2013). NG2 glia also
constrain early axonal outgrowth but, in ad-
dition, can lead to longer lasting entrapment
of the neuron onto the glial cell surface through
an unusual neuroglia synaptoid-mediated sta-
bilization, both in vitro and in vivo. Given that
neurons form synapses with NG2* OPCs under
physiological conditions throughout the CNS
(Bergles et al. 2000; Chittajallu et al. 2004; Lin
etal. 2005), it is possible that such synaptic-like
interactions within the damaged white matter
allow for long-lasting associations between the
dystrophic tips of sensory neurons and NG2*
cells. Although these stabilizations, initially,
may be beneficial to prevent further dieback
(Filous et al. 2010), they may also place further
limitations on the forward movements of the
struggling axon tip. The idea that synaptic-like
connections form between regenerating axons
and reactive glia, and may serve to curtail axonal
regrowth after injury, had been suggested many
years ago (Carlstedt 1985), although the impor-
tance of this phenomenon in regeneration fail-
ure had largely been abandoned. After a dorsal
root crush, even following a peripheral condi-
tioning lesion, injured sensory axons can regen-
erate rapidly within the proximal root until they
reach the dorsal root entry zone (DREZ), a tran-
sitional region between the peripheral nervous
system (PNS) and the CNS, where they abruptly
halt their forward progress and remain (Carl-
stedt 1985; Liuzzi and Lasek 1987; Di Maio
et al. 2011). Early studies suggested that, as pe-
ripheral axons regenerate toward the CNS, they
contact reactive astrocytes, which initiate the
early stages of so-called synaptoid formations
in close association with the astrocyte surface.
Interestingly, our current studies suggest that,
in addition to their wall-building job, reactive
astrocytes may also play an indirect role in sig-
naling for sensory axons to begin synapse for-
mation mediated, at least in part, via thrombo-
spondins, which are important in regulating
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neuron-to-neuron synaptogenesis (Christo-
pherson et al. 2005). However, our data show
clearly that dystrophic axons after DCC are ac-
tually synapsing on the NG2™ cell, rather than
astrocytes, and this relationship is also likely
to occur at the DREZ. It is also possible that
reactive astrocytes can directly induce prolifera-
tion of OPCs by releasing the mitogen, Sonic
hedgehog (SHH) into the injury environment
(Amankuloretal. 2009). Activation of the SHH-
Gli-signaling axis within the OPC population
results in its dramatic expansion and the poten-
tial amplification of OPC-mediated effects on
severed axons. It is also probable that inflamma-
tory cells play a role in accelerating OPC mitosis
as well (Miron et al. 2013).

This close interaction between NG2™" cells
and injured neurons after SCI provides a new
way of thinking about how CSPGs and the core
of the scar “inhibit” axonal migration and helps
explain how dystrophic axon tips persist within
the scar-encased, hostile lesion environment.
Thus, we hypothesize that in vivo within the
scar core, CSPGs do not cause axon tips to cease
growing because of a lack of adhesion, but rath-
er because they create dystrophy and increasing
entrapment of the growth cone via abnormally
strong bonds with the substrate. Thus, the scar,
with its two distinct regions (the core and the
wall), can inflict a measure of inhibition that
thwarts the advancement of the regenerating
neuron (see Fig. 1).

Plasticity of Reactive Astrocytes?

The final question that I would like to speculate
on is whether reactive astrocytes in the scar wall
are permanently refractory to axonal regenera-
tion or whether they can become plastic and
promote or, at least, allow axonal growth (as
they do during development) (Silver et al. 1982,
1993; Silver and Ogawa 1983). Emerging data
suggests that they can be plastic and regeneration
failure through the scar is the result of an imbal-
ance between a lack of intrinsic growth machin-
eryinthe neuron (Yleraetal. 2009) and extrinsic
forces (some of which are discussed above) that
limit growth. Astrocytes that contribute to the
scar and are derived from the ependymal tube

CNS Regenerative Failure

appear to be slightly more “immature” than as-
trocytes derived from self-duplication because
they express less GFAP relative to vimentin
(Fig. 2) (Meletis et al. 2008). It would be very
interesting if the well-known regeneration-en-
hancing functions of ependymoglial cells that
are present in robustly regenerating cold-blood-
ed species (Singer et al. 1979) are retained, at
least to some extent, in the ependymal sub-
population of reactive astrocytes in scar tissue
of mammals (Silver and Steindler 2009). Poten-
tial functional differences between astrocyte
populations in the scar may be appearing in
the rather dramatic ability of neurons to regen-
erate their severed axons right across and beyond
carefully crafted lesions within the rodent spinal
cord or optic nerve following PTEN/SOCS3 de-
letion (Park et al. 2010; Sun et al. 2011). Indeed,
the impressive regeneration, albeit across rela-
tively narrow lesions, when the protein products
of these growth or cytokine regulatory genes are
diminished or genetically deleted, is strictly con-
fined to and dependent on astroglial bridges,
which form spontaneously across the lesion
core (Filous et al. 2010; Zukor et al. 2013). The
appreciation of whether separate reactive astro-
glial subpopulations exert these guidance func-
tions or possibly even if gliotic astrocytes in the
scar wall can be plastic and made growth per-
missive or even promoting in response to the
presence of a robustly growing axon, could be
very important and therapeutically provocative
(Ahmed et al. 2005). It would suggest that we
consider strategies tailored toward amplifying
or attenuating particular, functionally distinct
astrocyte subpopulations or to further enhance
the plasticity of gliotic astrocytes to help maxi-
mize functional recovery.

MICROGLIA AND MACROPHAGES
Origin of Macrophages in Injured CNS

In parallel with the injury-induced changes de-
scribed above for oligodendrocytes and astro-
cytes, a robust and long-lasting inflammatory
response is initiated, which is dominated by
macrophages. These cells are mostly derived
from two sources: (1) resident microglia, and

Cite this article as Cold Spring Harb Perspect Biol 2015;7:a020602 9



g’é’gﬁb Cold Spring Harbor Perspectives in Biology

PERSPECTIVES

Voo’

www.cshperspectives.org

J. Silver et al.

Lesion core
[ Lesion penumbra
Reactive astrocyte
¥ Macrophage
¥y MG2* cell
=@ Dystrophic ending
=« Stabilized ending
-«“ Conditioned ending

—_

S~ W N

Figure 2. Schematic representation of the proximal end of a dorsal column crush lesion 7 d after injury. GFAP™
astrocytes (blue) have pulled away from the lesion core, which is now populated by NG2™ cells (purple) and
phagocytic ED1" macrophages (green). The fibroblastic and ependymal cell types are not displayed, but are also
plentiful in the lesion core. Dorsal root ganglion neurons (red) attempt to regenerate into the lesion core. (1)
Typical axon with a dystrophic growth cone that has become susceptible to macrophage attack. (2) Typical axon
that has undergone macrophage-mediated retraction back to NG2* cells and stabilized. (3) Atypical axon that
has stabilized further distally within the lesion core on a contiguous bridge of NG2* cells. (4) Growth cone of a
neuron that has been stimulated or conditioned and able to overcome macrophage-induced axonal dieback and
extend into the lesion core on NG2* cells. (From Busch et al. 2010; reprinted, with express permission, from the

Journal of Neuroscience and the investigators of this review.)

(2) blood monocytes, that is, macrophage pre-
cursors that emigrate from bone marrow or the
spleen (Popovich et al. 1999; Popovich and
Hickey 2001; Longbrake et al. 2007; Swirski
etal. 2009; Blomster et al. 2013). Microglia orig-
inate from precursor cells in the yolk sac and
become homogeneously distributed through-
out the CNS during early embryogenesis (Gin-
houx et al. 2010). Like astrocytes, microglia re-
spond rapidly to injury, extending cellular
processes or migrating toward the lesion site
where they participate in scar formation (Dava-
los et al. 2005; Dibaj et al. 2010). Surely, this
early and rapid response serves a protective
role, as there is no obvious evolutionary advan-

tage for blanketing the CNS with cells that,
when provoked, will mobilize and destroy deli-
cate nervous tissue. Indeed, blocking or pre-
venting microglial activation, via either phar-
macologic or genetic means, exacerbates lesion
pathology and impairs recovery of function (La-
lancette-Hébert et al. 2007; Hines et al. 2009).
After a delay of ~2 d postinjury, monocytes
bind to endothelial adhesion molecules and
then migrate into the lesioned CNS, down che-
motactic gradients established by astrocytes
(Pineau et al. 2010). Shortly thereafter, mono-
cytes differentiate into tissue macrophages. Be-
cause microglia and MDMs are both of myeloid
lineage, lineage-specific markers cannot be used
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to distinguish between these major CNS mac-
rophage subsets. Equally ambiguous is the effect
that CNS macrophages have on neurons and
axons that survive after CNS injury.

Seemingly conflicting data implicate macro-
phages, regardless of their source, as effectors of
both tissue repair and secondary tissue damage.
Although Ramon y Cajal is often recognized as
the “father of neuroscience,” he also provided
some of the earliest descriptions of neuroim-
mune interactions in the injured CNS. Specifi-
cally, he noted that macrophages accumulated
and persisted at sites of injury and concluded
that their primary role was as scavenger cells
(Ramon y Cajal 1991):

This leukocytic invasion of the dead neuron is
not surprising. It is a general law that any mor-
tified portion, no matter what is its character,
becomes a pasture-ground for phagocytes. We
believe that the protagonists of all acts of neuro-
nophagy are nothing else than the granular cor-
puscles which accumulate so prodigiously in the
necrotic focus of the centres and in the periph-
eral stumps of degenerated nerves.

Because he did not have the benefit of modern-
day techniques (e.g., radiation bone-marrow
chimeras, transgenic mice, etc.), Ramon y Cajal
and his contemporaries were unable to un-
equivocally determine the origin of CNS mac-
rophages. Regardless, he accurately predicted
that most phagocytes present in lesioned CNS
tissue were derived from blood, that is, mono-
cytes:

... we believe also that the phagocytes—our

traumatocytes—which have penetrated into the

neuronal cadaver positively represent large leu-

cocytes with a lobulated nucleus, which have
come from the host’s blood.

We now know that his predictions were correct
and the biased accumulation of MDMs at the
lesion center may have significant implications
for the growth or retraction (“dieback”) of in-
jured axons (see below).

Macrophage Functions in Injured CNS

Some years after Ramon y Cajal’s seminal obser-
vations (circa 1950), additional insight into
CNS macrophage function was gleaned from a

CNS Regenerative Failure

serendipitous discovery. Although studying
neural mechanisms of thermal regulation in
dogs with SCI, Windle, Clemente, and col-
leagues discovered that deliberate systemic in-
jection of pyrogens had the unintended benefit
of enhancing neurologic recovery (Windle and
Chambers 1950; Clemente and Windle 1954).
Postmortem analysis of dogs injected with crude
pyrogens revealed markedly increased numbers
of intraspinal macrophages and reduced intra-
lesional scarring as compared with injured spi-
nal cords of untreated dogs (Clemente and
Windle 1954). Almost 30 years later, Guth and
colleagues extended Windle’s observations
showing that systemic injections of purified en-
dotoxin (i.e., lipopolysaccharide [LPS]) into
spinal-injured rats enhanced intraspinal leuko-
cytosis beyond that normally seen after SCI
(Guth et al. 1994a). This enhanced inflammato-
ry reaction was accompanied by more robust
axon growth and quantitatively superior im-
provements in hindlimb locomotor function.
Guth later found that the salutary effects of
LPS could be further improved by simulta-
neously treating animals with anti-inflammato-
ry agents, including indomethacin or steroids
(Guth et al. 1994b). This combination ap-
proach, although seemingly counterintuitive,
was based on keen insight regarding the diver-
gent functions of activated CNS macrophages.
Guth realized that, during maturation, macro-
phages become “primed” or partially activated
by cytokines (and other factors) present in the
injury milieu; however, to attain a greater level of
functional competency, including the ability to
promote axon growth or neuroprotection, mac-
rophages likely require a second distinct signal,
in this case, LPS. He also recognized that once
activated, these same cells release hydrolyzing
enzymes, oxidative metabolites, and aracha-
donic acid metabolites (e.g., prostaglandins),
which can damage neurons and glia. Indometh-
acin and steroids were used to inhibit these de-
structive secretory components of activated
macrophages.

Over the next 10—15 yr, data from several
laboratories using rabbit, guinea pig, and rat
models of SCI showed that, in the absence of a
secondary stimulus, the injurious effects of in-
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traspinal macrophages predominate. Regardless
of species, injury type (e.g., compression, con-
tusion), or injury severity, selective inhibition
or depletion of macrophages during the first
1-2 wk postinjury consistently reduces second-
ary or bystander tissue injury, leading to im-
proved recovery of sensory, motor, or autonom-
ic functions (Giulian and Robertson 1990;
Blight 1994; Popovich et al. 1999; Gris 2004).

Emerging data now indicate that in response
to different combinations of factors, which are
normally found in the extracellular milieu of
the injured nervous system, macrophages dif-
ferentiate into functionally distinct cell subsets
that differentially affect neuron survival and
axon growth (Stout et al. 2005; Kigerl et al.
2009). For example, cytokines, cell fragments,
and nucleic acids promote differentiation of
macrophages into “classically” (M1) or “alter-
natively” activated (M2) cells. The canonical in
vitro model for promoting inflammatory M1
macrophage differentiation is exposure of native
(unstimulated) myeloid cells to LPS and inflam-
matory cytokines, including interferon (IFN)-vy
or tumor necrosis factor (TNF)-«. Alternative-
ly, to promote M2 differentiation, immature
myeloid cells are stimulated with interleukin
(IL)-4 or -13 (Gordon and Taylor 2005). After
CNS injury, signaling pathways that polarize
macrophages toward an M1 phenotype pre-
dominate (Kigerl et al. 2009; David and Kroner
2011). M1 macrophages can be neurotoxic and
cause axon dieback (Horn et al. 2008; Kigerl
et al. 2009). Thus, the neuroprotective effects
of acute macrophage inhibition or depletion
in SCI models might be explained by reducing
the burden of M1 macrophages at the injury
site. Surprisingly, these same cells also can en-
hance neurite outgrowth.

In vivo injections of inflammatory stimuli
(e.g., LPS, zymosan), which are needed to pro-
mote an M1 macrophage phenotype in vitro,
enhance regeneration of injured peripheral
and central axons (Yin et al. 2003; Steinmetz
et al. 2005; Boivin et al. 2007; Gensel et al.
2009). In injured brain, spinal cord, and optic
nerve, macrophage clusters are often associated
with sprouting of injured axons (Fig. 3). This
endogenous repair phenomenon is mediated by

macrophages via the release of neurotrophins
and growth factors or, indirectly, by activating
glia within the scar, which subsequently pro-
duces a trophic gradient. BDNE CNTE and glial
cell line—derived neurotrophic factor (GDNF)
have been implicated in this response (Batchelor
et al. 2002; Yin et al. 2006; Muller et al. 2007;
Gensel et al. 2009; Benowitz and Popovich
2011). The ability of transplanted microglia or
macrophages to promote neurite outgrowth in
different models of SCI might be explained by a
similar mechanism (Prewitt et al. 1997; Rab-
chevsky and Streit 1997; Rapalino et al. 1998).

Compared with M1 macrophages, M2 mac-
rophages may be less destructive and better able
to repair the injured CNS. M2 macrophages
promote more robust neurite outgrowth and
recent data show that these cells release acti-
vin-A, which enhances oligodendrocyte pro-
genitor cell differentiation and, subsequently,
remyelination (Kigerl et al. 2009; Miron et al.
2013). Enhancing M2 microglia/macrophage
differentiation in lesioned CNS tissues is asso-
ciated with neuroprotection; however, limited
data exist linking M2 macrophages with axon
regeneration in vivo. Combining peripheral
nerve grafts with acidic fibroblast growth factor
in an injured spinal cord produces a cytokine
milieu that favors M2 macrophage differentia-
tion, polyamine synthesis with improved axon
regeneration (Kuo et al. 2011). Similarly, infu-
sion of IL-4 (M2 cytokine) into guidance chan-
nels placed into injured sciatic nerves induces
an M2 macrophage response that stimulates
Schwann cell migration with enhanced axon re-
generation into the distal nerve stump (Mokar-
ram et al. 2012).

Manipulating Macrophages
to Promote Axon Regeneration:
Future Considerations

ProCord was an experimental cell-based therapy
that was developed to treat acute SCI in humans.
Clinical trials were initiated by Proneuron Bio-
technologies (New York, NY) based on data
showing that autologous macrophages, when
activated ex vivo, then injected into the injured
spinal cord, promote axon regeneration and

12 Cite this article as Cold Spring Harb Perspect Biol 2015;7:a020602



CNS Regenerative Failure

Rostral to injury Caudal to injury

Oligodendrocyte progenitor cells (OPCs)

Surveying _
microglia -

Wallerian-
degenerating
segments of
corticospinal
tracts

e
//

Injured CST }k X 4P
)
—

/T__/éa °
) \Xt \ Growtheg 7
Dystrophic \. cone {
axon Effector
microglia 9

InfiItLaﬁrrg/monocyte—derived macrophages
- @ M1 phenotype
@ M2 phenotype
' Undifferentiated/mixed phenotype

Figure 3. Schematic of microglia and MDM reactions elicited by SCI. After injury, the lesion center (also referred
to as “epicenter” in contusion lesions) becomes filled with phagocytic macrophages derived from blood mono-
cyte precursors. These cells become enlarged as they phagocytose lipid and cell debris. These and other stimuli in
the lesion prime an M1 macrophage phenotype (red). Only a subset of macrophages become “alternatively”
activated (i.e., M2 macrophages, green). Some cells remain undifferentiated or adopt a heterogeneous phenotype
(orange/green mix). Macrophages in the lesion center are “walled off” by reactive astrocytes, which create a scar.
OPCs interdigitate between scar-forming astrocytes and are drawn toward the lesion edge by undefined factors.
Complete OPC differentiation into myelinating oligodendrocytes may require factors derived from (M2) micro-
glia subsets, which often lie outside the lesion microenvironment (gradient fill). Microglia exist in intact spinal
cord as sentinel cells, which continuously survey the microenvironment. After injury or in response to subtle
changes in homeostasis, microglia become activated and transform morphologically and phenotypically into
effector microglia. Depending on the composition of factors present in the microenvironment, microglia can
become polarized to become M1 or M2 effector cells. Rostral to the site of injury, surveying and effector
microglia colocalize with damaged axons, a subset of which are undergoing dieback, but also with a subset
that are stabilized or attempting to grow. Caudal to the lesion, descending axons undergo Wallerian degeneration
(WD). Various factors released during WD activate microglia (and macrophages). It is common to see effector
microglia (and, presumably, a subset of MDMs) colocalized with WD axon segments. CST, corticospinal tract.
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reduce tissue damage in two different rodent SCI
models (Rapalino et al. 1998; Bomstein et al.
2003). An overview of the rationale and design
for the phase I trial was reviewed previously (Ki-
gerl and Popovich 2006). Results of the phase 2
randomized controlled multicenter trial, involv-
ing 43 participants, showed a trend for better
recovery in the control group relative to patients
receiving macrophage transplants, but without
group differences in the number of adverse
events (Lammertse et al. 2012). Although effica-
cy was not established, future cell-based clinical
trials for SCI (and other diseases) will benefit
from the ProCord experience, because this trial
identified and overcame numerous logistical
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and technical constraints associated with enroll-
ing, preparing, and injecting into the spinal cord
within 14 d of injury, an autologous cellular
therapy (Jones et al. 2010).

Autologous macrophage transplantation re-
mains a promising therapeutic approach; how-
ever, new preclinical data indicate that the phe-
notype of macrophages generated ex vivo may
not persist after injection into lesioned CNS.
When M2 polarized macrophages are trans-
planted into lesioned spinal cord, they differ-
entiate into M1 macrophages. Conversely, M2
macrophages maintain their phenotype when
transplanted into intact spinal cord (Kigerl
et al. 2009). Accordingly, future transplantation
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protocols, whether macrophages or other cell
types, will need to incorporate measures that
modify the lesion microenvironment. Generic
immune suppressive drugs (e.g., steroids) are
not practical in this context because these drugs
will affect injurious and reparative macrophage
subsets. Generic macrophage inhibition or de-
pletion strategies, including intravenous injec-
tions of anti-integrin antibodies or liposome-
encapsulated bisphosphonates, could be useful,
especially in the acute postinjury period or if
used together with neuroprotective drugs (Po-
povich et al. 1999; Gris 2004; Iannotti et al.
2011; Lee et al. 2011). Neuropeptides (e.g., sub-
stance P), antibodies that block cytokine signal-
ing or stem cells, also could be used as each is
able to modulate the injury milieu, creating an
environment that favors polarization of endog-
enous macrophages toward an M2 phenotype
(Busch et al. 2011; Cusimano et al. 2012; Guer-
rero et al. 2012).

In addition to macrophage transplanta-
tion, targeted or “precision” immunotherapies,
which inhibit or stimulate one or more pheno-
typically distinct macrophage subsets, is an ideal
approach. Along with the M1/M2 CNS macro-
phage subsets described above, new reagents
and genetic tools have revealed the presence of
other distinct intraspinal macrophage subsets
(Thawer et al. 2013). For example, variations
in the relative expression of the chemokine re-
ceptor CX3CR1 or maturation markers (e.g.,
Ly6) define functionally distinct CNS macro-
phages (Shechter et al. 2009; Donnelly et al.
2011; Saiwai et al. 2013). Antibodies and small
molecule inhibitors can or have been designed
to target these macrophages, but whether such
manipulations will affect axon regeneration re-
quires additional research. Ideally, future studies
will incorporate acute and chronic CNS lesion
models. Although macrophages persist indefi-
nitely in CNS lesions, their role in the chronic
injury milieu and nearby spared tissue is un-
known.

The possibility that microglia and MDMs
will have distinct effects on cell repair and
axon regeneration after CNS injury is likely
and should also be considered when designing
or interpreting preclinical studies (Popovich

and Longbrake 2008; London et al. 2013). Mi-
croglia and MDMs develop by discrete tran-
scriptional control mechanisms from unique
precursor cells (Prinz et al. 2011; Schulz et al.
2012). After injury, the discrete spatial distribu-
tion of different macrophage subsets produces
heterogeneous microenvironments that can dif-
ferentially affect injured axons, nascent axonal
growth cones, and surrounding glia. Recent data
show that signals emanating from aged brain
trigger a neuroprotective transcriptomic sig-
nature in microglia (Hickman et al. 2013).
Whether similar neuroregenerative or neuro-
toxic “sensomes” exist in microglia or MDMs,
respectively, is unknown, but such profiles seem
likely, especially because the ratio of microglia to
MDMs increases in regions remote from the
injury site, along with clear evidence of anatom-
ical and functional plasticity or endogenous
CNS repair (Zhang and Guth 1997; Popovich
and Hickey 2001; Zhou et al. 2003; McTigue
et al. 2006; Detloff et al. 2008; Busch et al.
2010; Hansen et al. 2013).

Conversely, physical contact between axons
and macrophages within the lesion core (high
ratio of MDMs to microglia) causes axons to
retract or “dieback” from the injury site. Both
soluble factors and cell surface proteins are cul-
pable in this degenerative response (Horn et al.
2008; Busch et al. 2011). Macrophages express
numerous membrane-bound proteins, includ-
ing receptors for ephrins, siglecs (sialoadhe-
sins), and integrins (Crocker et al. 1994; Sobel
etal. 1995; Tang etal. 1997; Liu etal. 2006). Axon
growth and guidance may be positively or neg-
atively affected when these proteins are bound
by corresponding ligands found on axons. Giv-
en the discrete spatiotemporal dynamics of
macrophages and microglia, when, where, and
how much injured axons are exposed to these
cells will undoubtedly affect their ability to re-
generate.

Although there is a growing appreciation
that macrophages are important contributors
to CNS regeneration failure, we have only a ru-
dimentary understanding of how or whether
these cells influence axon regeneration. Achiev-
ing a greater understanding of CNS macrophag-
es should improve the safety and success of
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future clinical trials designed to promote regen-
eration or repair of the injured CNS.

CONCLUSION

Over the past several decades, there has been
steady progress in understanding basic mole-
cular mechanisms that are responsible for the
poor regenerative potential of injured central
nervous system axons. Indeed, there are limita-
tions within the neuron, that is, molecular
switches that impede intrinsic regeneration ma-
chinery, and there are various glial cells that
create lesion barricades or “extrinsic” inhibitory
cues, which curtail the relatively limited regen-
erative potential of injured CNS axons. In this
review, we have focused on each of the major
glial cell types that serve as the primary extrinsic
regulators of axon regeneration with an empha-
sis on the injured spinal cord. We have described
how the severed axon tip, struggling to advance
a new growth cone, is collapsed by myelin-de-
rived growth-inhibitory factors, made dystro-
phic by proteoglycans, and further attacked by
the destructive actions of M1 macrophages,
whose job, early on, is to phagocytose the nox-
ious debris. The unfortunate neuron, whose
axon was once enveloped by supportive oligo-
dendrocytes and astrocytes, is left to fend for
itself during the attack; oligodendrocytes die
and reactive astrocytes abandon the core of the
lesion as they attempt to protect and mechani-
cally stabilize the remaining fragile tissue from
an expanding inflammatory reaction, creating
yet another obstacle to regeneration. But, there
is some relief, even within the eye of the storm.
Once neurotoxic macrophages convert into a
more reparative M2 state, and various stem-
like cells, including oligodendrocyte progeni-
tors, begin to thrive within the lesion core, the
retracting axon can find a safe haven and even
form synaptic-like connections on the primitive
glia where, unfortunately, they remain locked
in place for decades. As we have acquired a
more complete appreciation of the molecular
mechanisms that control the untoward effects
of glia, new approaches are being developed
that can readily prevent axons from dying back-
ward and also may allow them to robustly sprout

CNS Regenerative Failure

or sometimes regenerate beyond the scar toward
new functional synaptic targets. A major goal
for the future will be to combine the most suc-
cessful glia-targeted strategies with others that
drive the neuron’s intrinsic growth capacity to
maximize the regenerative potential that we
now know exists within the damaged adult CNS.
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