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Introduction

Ibuprofen is a traditional nonsteroidal anti-inflammatory drug (NSAID) widely used for its 

analgesic, anti-inflammatory, and antipyretic properties [1,2]. At low over-the-counter doses 

(800–1200 mg/day), ibuprofen is indicated to relieve minor pain and inflammation, 

including headache, muscular aches, toothache, fever, backache, and dysmenorrhea. At 

prescription doses (1800–2400 mg/day), it is used for the long-term treatment of rheumatoid 

arthritis, osteoarthritis, ankylosing spondylitis, and other chronic conditions [2]. Ibuprofen 

has also been used off-label to promote closure of patent ductus arteriosus (PDA) in preterm 

neonates [3]. It is commonly used in pediatric patients for the treatment of acute pain and 

fever (5–10 mg/kg every 6–8 h) due to its relative safety compared with aspirin and its high 

efficacy compared with acetaminophen [2]. Prescription doses of ibuprofen (adult: 200–800 

mg every 6–8 h; pediatric: 5–10 mg/kg every 6–8 h) have greater antipyretic and analgesic 

effects in both children and adults compared with commonly used doses of acetaminophen 

(adult: 500–1000 mg every 6–8 h; pediatric: 10–15 mg/kg every 4–6 h) [4].
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Pharmacokinetics

Ibuprofen is most commonly administered orally, but an intravenous formulation is also 

approved for use in the USA. Other formulations, most notably topical and rectal, can be 

prepared by compounding pharmacies in the USA and may be commercially available in 

other countries. Ibuprofen is rapidly and completely absorbed following oral administration 

(tmax, ~ 1–2 h depending on the specific oral formulation), and unbound concentrations 

show linear pharmacokinetics at commonly used doses [1,5]. It is extensively (>98%) bound 

to plasma proteins at therapeutic concentrations [1]. Although ibuprofen may displace other 

highly protein-bound drugs, this is unlikely to result in clinically relevant drug–drug 

interactions for agents with a low extraction ratio, such as warfarin [6] and phenytoin [7]. 

Consistent with the high degree of plasma protein binding, ibuprofen exhibits a low apparent 

volume of distribution that approximates plasma volume (~0.1–0.2 l/kg), but it is able to 

penetrate into the central nervous system (CNS) and accumulate at peripheral sites where its 

analgesic and anti-inflammatory effects are required. Ibuprofen is present in a free, unbound 

form in cerebrospinal fluid and is retained in the synovial fluid in the inflamed joints of 

arthritic patients [2]. Ibuprofen has a wide therapeutic concentration range for its analgesic, 

antipyretic, and anti-inflammatory effects (~10–50 mg/l) and a relatively short plasma half-

life (t1/2, ~ 1–3 h), necessitating frequent administration to maintain therapeutic plasma 

concentrations [1,2].

The pharmacokinetic profile of ibuprofen in the pediatric population (age > 0.5 years) 

appears to be similar to that observed in adults in general, although some studies have 

indicated that young children (0.5–5 years) have higher rates of ibuprofen clearance [2]. In 

contrast, the half-life of ibuprofen in premature neonates is in the order of 30–45 h following 

intravenous administration, which may be due to several factors including developmental 

effects on cytochrome P450 (CYP) enzyme activity and lower glomerular filtration rates in 

neonates compared with adults [2,3].

Metabolism

Like most NSAIDs, ibuprofen is administered as a racemic mixture of R and S enantiomers, 

with S-ibuprofen being largely responsible for its pharmacologic activity [1]. Following 

administration, an estimated 50–65% of R-ibuprofen undergoes inversion to the S 

enantiomer through an acyl-CoA thioester by the enzyme α-methylacyl-coenzyme A 

racemase (encoded by gene AMACR) [1,8,9]. This appears to occur predominantly 

systemically in the liver [1,10], but may occur pre-systemically in the gut as well [11].

Ibuprofen is almost completely metabolized, with little to no unchanged drug found in the 

urine [1,9,12]. The primary route of elimination is oxidative metabolism by CYP enzymes to 

inactive metabolites (Fig. 1). Urinary excretion of the two major metabolites, carboxy-

ibuprofen and 2-hydroxy-ibuprofen (and their corresponding acyl glucuronides), accounts 

for ~37 and 25% of an administered dose, respectively [1,9]. Small amounts of other 

hydroxylated metabolites (3-hydroxy-ibuprofen and 1-hydroxy-ibuprofen) have also been 

detected in urine [12].
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CYP2C9 is the primary CYP isoform responsible for ibuprofen clearance, catalyzing the 

formation of 3-hydroxy-ibuprofen (most of which is subsequently converted to carboxy-

ibuprofen by cytosolic dehydrogenases [12,13]) and 2-hydroxy-ibuprofen [13,14]. 

Consequently, coadministration of ibuprofen with CYP2C9 inhibitors (i.e. selective 

serotonin-reuptake inhibitors) or other CYP2C9 substrates (i.e. warfarin) may precipitate a 

pharmacokinetic drug–drug interaction, thereby increasing the risk for an adverse drug event 

(for a broader discussion, refer to the Drug–drug interactions section) [6,15,16]. Whereas 

CYP2C9 can readily metabolize both enantiomers of ibuprofen in vitro, CYP2C8, which 

plays a minor role in ibuprofen clearance, exhibits stereoselectivity, preferentially catalyzing 

the 2-hydroxylation of R-ibuprofen [13,14,17]. CYP3A4 also contributes to ibuprofen 

clearance at high concentrations through 2-hydroxylation, whereas CYP2C19 appears to 

play a minor role [14].

Approximately 10–15% of an ibuprofen dose is directly glucuronidated to ibuprofen-acyl 

glucuronide [1,9]. In-vitro experiments indicate that multiple uridine 

5′diphosphoglucuronosyltransferases (UGTs) are capable of metabolizing ibuprofen, 

including UGT1A3, UGT1A9, UGT2B4, UGT2B7, and UGT2B17 [18–20]. UGT1A10, 

which is predominantly expressed in the gut, can also generate ibuprofen-acyl glucuronide 

[21]. CYP-derived hydroxy and carboxy metabolites are metabolized to the corresponding 

acyl glucuronides, but the UGTs that catalyze this reaction have not been investigated. 

Further studies are necessary to characterize the relative contributions of individual UGTs to 

ibuprofen metabolism in vivo.

Although glucuronidation is generally considered a detoxification pathway, acyl 

glucuronides are potentially reactive metabolites. They can undergo intramolecular 

rearrangement and are capable of binding covalently to macromolecules and contributing to 

toxicity [22]. Consistent with this, covalent binding of ibuprofen-acyl glucuronide to plasma 

proteins has been detected in vitro and in elderly individuals chronically treated with 

ibuprofen in vivo [23]. However, ibuprofen-acyl glucuronide was relatively less reactive 

than other compounds investigated, and the degree of covalent binding to plasma proteins 

was low, suggesting that ibuprofen-acyl glucuronide is not a key contributor to toxicity in 

most individuals [23]. Conjugation to thiols has also been reported, although these 

conjugates account for less than 1% of urinary metabolites [24]. Like acyl glucuronides, 

these metabolites are considered reactive and may contribute to adverse drug events; 

however, evidence demonstrating the toxicity of these metabolites in humans in vivo is 

lacking [25].

Transport

NSAIDs interact with various classes of transporters. It is still unclear which, if any, 

transporters facilitate the uptake or efflux of ibuprofen in vivo or whether this influences the 

distribution or clearance. Ibuprofen is a weak acid and is lipid soluble; hence, it is feasible 

that it may be able to cross membranes without the need for specific transporters [1]. 

However, the interaction of ibuprofen with various transporters may result in clinically 

relevant drug–drug interactions.
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In-vitro studies have demonstrated that ibuprofen is a substrate for SLC22A6 and SLC22A8 

[26] and can inhibit various transporters, including SLC22A6 (hOAT1), SLC22A7 

(hOAT2), SLC22A8 (hOAT3), SLC22A9 (hOAT4), SLC22A1 (OCT1), SLC15A1 

(hPEPT1), SLC5A8 (hSMCT1), and SLC16A1 (MCT1) [26–31]. Stereoselectivity in 

transporter inhibition has been observed in some cases, with S-ibuprofen being a more 

potent inhibitor of SLC22A6 than R-ibuprofen, whereas both enantiomers inhibited 

SLC22A8 equipotently [32]. Although ibuprofen is not a substrate for the organic anion-

transporting polypeptides, it does interact with SLCO1B1 (hOATP1B1) and SLCO1B3 

(hOATP1B3) to increase the uptake of pravastatin and inhibit the uptake of 

bromosulfophthalein [33]. Additional studies are necessary to determine whether these 

transporter interactions observed in vitro lead to clinically relevant drug–drug interactions in 

vivo.

One drug–drug interaction in which transporters may play a role is the well-recognized 

interaction between methotrexate and ibuprofen. Coadministration of NSAIDs with 

methotrexate reduces methotrexate clearance, resulting in elevated systemic concentrations 

[1,6]. Ibuprofen inhibited methotrexate uptake by SLC22A6, SLC22A8, and SLC22A9 in 

vitro [32,34,35], suggesting that inhibition of these transporters in the kidney may contribute 

to the reduction in renal clearance of methotrexate upon coadministration with ibuprofen. 

Another possible mechanism is through the inhibition of ABCC2 (MRP2)-mediated and 

ABCC4 (MRP4)-mediated transport of methotrexate, which would also be hypothesized to 

decrease the renal clearance of methotrexate in vivo [36].

Although the interaction between methotrexate and ibuprofen is potentially fatal, some 

transporter-mediated interactions with ibuprofen may enhance the efficacy or limit the 

toxicity of the interacting drug. For example, ibuprofen was shown to modulate the activity 

of ABCB1 (P-glycoprotein) such that treatment of human sarcoma cells with ibuprofen 

reversed ABCB1-mediated efflux of doxorubicin and led to increased drug accumulation, 

cytotoxicity, and apoptosis [37]. Ibuprofen may increase intracellular concentrations and 

potentiate the antiviral efficacy of nucleoside reverse transcriptase inhibitors, including 

zidovudine, lamivudine, tenofovir, and abacavir, through the inhibition of ABCC4, which 

mediates the export of these drugs out of T cells [38]. Through the inhibition of SLC22A6, 

ibuprofen may limit the nephrotoxicity of the antiviral drug adefovir, known for its 

cytotoxicity in the renal proximal tubules [39].

It is important to note that studies to date have been performed in vitro, largely with cells 

transfected with the transporter of interest. Although the majority of these studies used 

concentrations of ibuprofen in the range of the total drug concentrations observed in plasma, 

it is unclear how well these conditions approximate the unbound concentrations that would 

be available to inhibit transport in vivo. Thus, additional studies are necessary to clarify the 

clinical relevance of these transporter-mediated drug–drug interactions in vivo.

Pharmacodynamics

The main mechanism of action of ibuprofen is the non-selective, reversible inhibition of the 

cyclooxygenase enzymes COX-1 and COX-2 (coded for by PTGS1 and PTGS2, 
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respectively; Fig. 2) [1]. In-vitro studies have indicated that, of the two enantiomers, S-

ibuprofen is a more potent inhibitor of COX enzymes compared with R-ibuprofen [40,41]. 

In an in-vitro human whole-blood assay, S-ibuprofen was seen to have comparable 

inhibitory activities toward COX-1 and COX-2 (IC50 2.1 and 1.6 μmol/l, respectively). In 

contrast, R-ibuprofen was ~ 15-fold less potent than S-ibuprofen as a COX-1 inhibitor (IC50 

34.9 μmol/l) and did not inhibit COX-2 at concentrations of up to 250 μmol/l [42]. COX-1 

and COX-2 catalyze the first committed step in the synthesis of prostanoids – prostaglandin 

(PG) E2, PGD2, PGF2α, PGI2 (also known as prostacyclin), and thromboxane (Tx) A2 – 

from arachidonic acid. Prostanoids produce a diverse array of biologic effects through the 

activation of prostanoid receptors, and play important roles in a variety of homeostatic and 

pathologic processes [43].

Many of the pharmacodynamic effects of ibuprofen can be directly linked to the inhibition 

of prostanoid synthesis. Single and repeated oral doses of ibuprofen inhibited the production 

of COX-1-derived TxB2 (a stable metabolite of TxA2) ex vivo by ~ 96 and ~ 90%, 

respectively, whereas COX-2-derived PGE2 production ex vivo was inhibited by ~ 84 and ~ 

76%, respectively [44]. PGE2 and PGI2 are proinflammatory prostanoids that enhance 

edema formation, increase vascular permeability, and promote leukocyte infiltration. They 

also reduce the threshold of nociceptor sensory neurons to stimulation [43]. Ibuprofen exerts 

its anti-inflammatory and analgesic effects largely by inhibiting the formation of these 

prostanoids. PGE2 is also a primary mediator of pyresis, and its synthesis is triggered in the 

hypothalamus by pyrogens such as cytokines, endotoxin, and products from activated 

leukocytes [45]. Thus, the antipyretic effects of ibuprofen can be attributed to inhibition of 

PGE2 synthesis. Inhibition of both PGF2α and PGE2, which trigger spasm of the uterine 

smooth muscles and inflammatory pain, is responsible for the therapeutic efficacy of 

ibuprofen in primary dysmenorrhea [46]. TxA2, a major product of COX-1 in platelets, 

causes vasoconstriction and promotes platelet activation and aggregation, thereby leading to 

thrombus formation [43,47]. Consequently, ibuprofen exhibits a mild, transient antiplatelet 

effect through reversible inhibition of platelet COX-1, as evidenced by its ability to inhibit 

stimulus-triggered platelet aggregation in vitro [48].

In addition to the direct inhibition of prostanoid synthesis, ibuprofen exerts other biologic 

effects that may contribute to its anti-inflammatory action and might be consequent to the 

suppression of prostaglandin synthesis. Several studies have suggested that ibuprofen can 

inhibit neutrophil aggregation and degranulation as well as proinflammatory cytokine 

production by immune cells in vitro and in vivo [49–53]. During inflammation, immune 

cells, such as macrophages, mast cells, eosinophils, and neutrophils, robustly produce 

reactive oxygen species (e.g. superoxide anion, O2
•−, hydroxyl radical, HO•, and other 

unstable molecules) and reactive nitrogen species (e.g. nitric oxide, •NO, and peroxynitrite 

anion, ONOO−) that contribute to the pathophysiology of the inflammatory processes [54]. 

Using noncellular in-vitro screening systems, ibuprofen was reported to scavenge HO•, •NO, 

and ONOO− radicals at concentrations comparable to the high doses prescribed for chronic 

inflammatory conditions [55]. Cell-based in-vitro studies have indicated that ibuprofen can 

activate or inhibit nitric oxide production through constitutive nitric oxide synthases (cNOS) 

(neuronal NOS, encoded by NOS1, and endothelial NOS, encoded by NOS3) or 
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inflammation-induced nitric oxide synthase (iNOS, encoded by NOS2) depending on the 

type of the enzyme and the cellular system used [48,56]. In healthy human individuals, 

therapeutic doses of ibuprofen triggered a reduction in exhaled NO and urinary excretion of 

nitrite and nitrate, consistent with an inhibitory effect of the drug on nitric oxide production 

[57]. Taken together, these findings suggest that ibuprofen exhibits pleiotropic anti-

inflammatory effects by inhibiting prostanoid synthesis, interfering with immune cell 

function, scavenging reactive oxygen and nitrogen species, and altering nitric oxide 

synthesis. However, further studies are required to determine whether the effects of 

ibuprofen on immune cells and reactive oxygen and nitrogen species result from the 

inhibition of prostaglandin production.

Additional analgesic effects of ibuprofen may be attributable to elevated levels of the 

endocannabinoid anandamide (also known as arachidonoylethanolamide), which activates 

the antinociceptive axis through the cannabinoid receptors (CB1 and CB2) in the CNS. 

Animal studies have suggested that, at therapeutic concentrations, ibuprofen inhibits 

anandamide metabolism [58,59] and, together with anandamide, exerts a synergistic 

antinociceptive effect in a model of inflammatory pain [60]. In in-vitro studies, ibuprofen 

was shown to inhibit the binding of a potent synthetic agonist to the human CB2 

cannabinoid receptor, indicating that it may compete with endogenous ligands for receptor 

binding and activation of the analgesic pathway [61]. However, the clinical relevance of 

these findings is still to be investigated in human participants.

Adverse events

The short plasma half-life, a wide therapeutic window, and the lack of prolonged retention 

in specific body compartments make ibuprofen a relatively safe drug. There is no evidence 

of ibuprofen accumulation in the elderly and relatively little impact of chronic disease states 

(arthritis) or mild renal/hepatic impairments on the pharmacokinetics of ibuprofen [1,2]. 

Although serious skin diseases, such as the Stevens–Johnson syndrome and toxic epidermal 

necrolysis, have been reported in patients with ibuprofen use, these are exceedingly rare, at a 

rate of less than 1 per 1 million users per week for most NSAIDs [62].

Like other NSAIDs, ibuprofen can cause serious gastrointestinal and possibly cardiovascular 

adverse events, especially at high doses [1,2,63–66]. Most observational studies with 

ibuprofen have reported no increased risk for cardiovascular events, such as myocardial 

infarction and sudden cardiac death [67–69]. However, the risk for cardiovascular events 

might increase with prolonged exposure to ibuprofen (i.e. greater than 1 year) [70]. It still 

remains to be determined how ibuprofen compares with COX-2-selective inhibitors, known 

to pose a cardiovascular risk [66]. In the Therapeutic Arthritis Research and Gastrointestinal 

Event Trial, gastrointestinal safety and cardiovascular safety were compared between a 

COX-2 inhibitor lumiracoxib and traditional NSAIDs ibuprofen and naproxen [64,65]. 

Despite a higher incidence of cardiovascular events in the lumiracoxib group, the 

Therapeutic Arthritis Research and Gastrointestinal Event Trial involved patients at low 

risk, was under-powered, and used an intention-to-treat analysis [65]. A recent meta-analysis 

of 280 randomized trials of NSAIDs versus placebo and 474 trials of one NSAID versus 

another NSAID focused on the cardiovascular and gastrointestinal risks of this class of drugs 
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among different patient populations, especially those at increased risk for vascular disease 

[63]. Compared with placebo, high-dose ibuprofen significantly increased the risk for major 

coronary events (nonfatal myocardial infarction or coronary death), although the number of 

events was low and, similarly to other NSAIDs, was associated with increased upper 

gastrointestinal complications. All NSAIDs, including ibuprofen, doubled the risk for heart 

failure causing hospital admission, and none of the NSAIDs studied was associated with an 

increased risk for stroke. Although high-dose ibuprofen significantly increased the risk for 

major coronary events, further studies are required to verify whether the cardiovascular risks 

associated with ibuprofen are comparable to those associated with COX-2-selective 

inhibitors [63]. Moreover, the cardiovascular risk associated with short-term, low-dose 

ibuprofen use is a topic of some debate, as prospective studies defining this risk are lacking. 

Overall, relative to other NSAIDs, especially COX-2-selective inhibitors, ibuprofen might 

have lower gastrointestinal and cardiovascular risks, especially when used over a short term 

at over-the-counter doses [1,2,63,66]. However, resolving the issue of cardiovascular risk 

from ibuprofen alone or relative to COX-2 inhibitors would require a large-scale, long-term, 

adequately powered, randomized, controlled outcome trial.

Drug–drug interactions

Ibuprofen exhibits pharmacodynamic interactions with a variety of drugs. Ibuprofen 

antagonizes the cardioprotective effect of low-dose aspirin (acetylsalicylic acid) through 

competition for the NSAID binding site of COX-1 in platelets [71]. Low-dose aspirin is 

recommended as an effective antiplatelet therapy for secondary prevention of myocardial 

infarction and stroke [72,73]. Consumption of low-dose aspirin results in maximum 

inhibition of TxA2 synthesis by platelets, with subsequent inhibition of platelet aggregation. 

Under chronic dosing conditions, when ibuprofen is administered three times a day, this 

interaction undermines aspirin-induced inhibition of platelet aggregation irrespective of 

which of the drugs precedes the other in the morning [71]. The follow-up studies on 

ibuprofen–aspirin interactions range from confirming ibuprofen antagonistic effect on 

aspirin antiplatelet action [64,74,75] to reporting no change after the concurrent 

administration of the two drugs [69,76], although a well-powered, clinical end-point study 

has never been conducted.

Because it reversibly inhibits COX-1 in platelets, ibuprofen has a transient antiplatelet effect 

for 1 h during the 8 h dosing interval, which may increase bleeding risk when administered 

with other anticoagulant or antiplatelet agents. Concomitant administration of warfarin with 

ibuprofen was reported to prolong the bleeding time [77] and increase the international 

normalized ratio, a measure of the clotting tendency of blood [78]. An increased risk for 

gastrointestinal bleeding has been reported after coadministration of NSAIDs with selective 

serotonin-reuptake inhibitors (SSRIs). SSRIs block serotonin reuptake by platelets and 

downregulate serotonin receptors, leading to the inhibition of platelet function and increased 

bleeding risk [15]. SSRI use alone increases the risk for bleeding by 30% as compared with 

non-NSAID/non-SSRI use, and the risk for gastrointestinal events increases to 50–60% 

when SSRIs are coadministered with NSAIDs [6]. These effects may be compounded by a 

concomitant pharmacokinetic drug–drug interaction through CYP2C9 (see the 

Pharmacokinetics section). Individuals with CYP2C9*2 and CYP2C9*3 variants, who 
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comprise about 20% of the white population, may be especially susceptible to the bleeding 

events [6].

In patients with a bipolar affective disorder, the concomitant use of lithium with NSAIDs 

has been reported to increase the serum lithium level and reduce lithium clearance, thus 

causing acute lithium intoxication [79]. Mechanistically this might be due to inhibition of 

prostaglandin-mediated excretion of lithium in the distal tubule. However, the degree of 

elevation in serum lithium concentrations with concomitant ibuprofen treatment has been 

inconsistent across studies [80–83]. In a geropsychiatric population, coadministration of 

lithium with ibuprofen for 6 days was found to increase the serum lithium level and 

decreased lithium clearance, with pronounced interindividual variability [82]. The 

magnitude of increase in the serum lithium level ranged from 12 to 66.5%, with an average 

increase of 34%, suggesting that there is substantial interindividual variability in the clinical 

significance of this drug–drug interaction. Thus, frequent monitoring of serum lithium levels 

upon initiation of concomitant therapy with ibuprofen is recommended to identify those 

individuals in whom a reduction in lithium dosage is necessary. The effect of long-term 

ibuprofen therapy in lithium-treated patients needs to be further investigated [82].

Finally, NSAIDs, including ibuprofen, interfere with the efficacy of many antihypertensive 

agents, including β-adrenergic blockers, angiotensin-converting enzyme inhibitors, 

angiotensin receptor blockers, and diuretics [84–87]. This is mediated through the inhibition 

of the production of vasodilatory prostanoids in the kidneys, thereby inducing 

vasoconstriction of afferent renal arterioles, fluid retention, and reduction in renal blood 

flow, promoting activation of the rennin–angiotensin system [2]. Although a well-designed 

trial, adjusting for drug exposure and comparing the hypertensive effects of NSAIDs, has 

not been conducted to date, a retrospective study reported that ibuprofen appears to be less 

likely than diclofenac and piroxicam to necessitate an intensification of antihypertensive 

treatment [86].

Pharmacogenomics

Pharmacogenomic studies on ibuprofen have examined the effects of genetic 

polymorphisms on pharmacokinetics (clearance, half-life, area under the curve) [88–92], 

pharmacodynamics (inhibition of COX-1 and COX-2) [88,90], the safety profile 

(gastrointestinal adverse events) [88,93–97], and therapeutic efficacy (analgesia, PDA 

closure, cancer chemoprevention) [3,98–107].

Several studies have investigated the effect of genetic variations in CYP2C8 and CYP2C9 on 

ibuprofen pharmacokinetics because of the key role of these enzymes in ibuprofen 

clearance. Ibuprofen clearance is significantly reduced in carriers of the CYP2C9*3 variant 

allele compared with individuals with the CYP2C9*1/*1 genotype, whereas the CYP2C9*2 

variant appears to have no significant impact on the pharmacokinetics of ibuprofen [88–90]. 

One study reported that the reduction in ibuprofen clearance in CYP2C9*3 variant allele 

carriers was accompanied by an increased pharmacodynamic effect, namely, prolonged 

inhibition of TxB2 and PGE2 synthesis, indices of COX-1 and COX-2 inhibition, 

respectively [90], but another study found no differences in the degree of COX-1 or COX-2 
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inhibition in variant allele carriers [88]. Similarly, conflicting data have been reported on the 

relationship between the CYP2C8*3 variant and interindividual variability in ibuprofen 

pharmacokinetics [88,89,91,92]. To date, most studies have suggested that ibuprofen 

clearance is reduced by the CYP2C8*3 allele [89,91,92], but one study reported 20% higher 

ibuprofen clearance in CYP2C8*3 variant allele carriers compared with CYP2C8*1/*1 

individuals [88].

A few studies have suggested that a decrease in clearance, leading to sustained ibuprofen 

levels, may increase the risk for gastrointestinal bleeding in CYP2C8 and CYP2C9 variant 

allele carriers. In a small study of Italian NSAID users who experienced gastroduodenal 

bleeding after short-term NSAID use (< 1 month; all NSAIDs: n = 26; ibuprofen: n = 3), 

significantly higher frequencies of CYP2C9*1/*2 and CYP2C9*1/*3 genotypes were 

reported in cases versus controls [94]. A French study representing nonaspirin NSAID users 

of various ethnicities (all NSAIDs: n = 57; ibuprofen: n = 11) similarly found a greater risk 

for acute gastrointestinal bleeding in patients heterozygous [odds ratio (OR) (95% 

confidence interval (CI)): 4.0 (1.7–9.5)] and homozygous [OR (95% CI): 15.7 (1.8–138.0)] 

for the CYP2C9*3 variant allele, but did not replicate the association for CYP2C9*2 [95]. A 

study in Spanish NSAID users (all NSAIDs: n = 94; ibuprofen: n = 9) reported an increased 

risk for acute gastrointestinal bleeding in CYP2C9*2 variant allele carriers [OR (95% CI): 

1.92 (1.14–3.25), P = 0.009], but found no association with CYP2C9*3 [96]. A subsequent 

study by the same group repeated this analysis and investigated the effect of the CYP2C8*3 

variant allele in an expanded population (all NSAIDs: n = 134; ibuprofen: n = 14) [93]. The 

greatest risk for NSAID-related gastrointestinal bleeding was observed in individuals who 

carried both the CYP2C8*3 and CYP2C9*2 variant alleles [OR (95% CI): 3.73 (1.57–8.88), 

P = 0.003], whereas there was no elevation in risk among individuals who carried only the 

CYP2C8*3 [OR (95% CI): 1.36 (0.39–4.66), P = 0.646] or CYP2C9*2 [OR (95% CI): 0.73 

(0.22–2.51), P = 0.637] variant allele in isolation [93]. In contrast to these findings, no 

significant differences in the frequency of CYP2C9*2 and CYP2C9*3 variant alleles were 

observed between patients with NSAID-induced gastric ulceration and controls (all 

NSAIDs: n = 54; ibuprofen: n = 5) in a predominantly Caucasian cohort from New Zealand 

[97]. Notably, all studies to date have enrolled patients taking a variety of NSAIDs; thus, it 

is unclear to what degree the potentially increased risk for gastrointestinal bleeding in 

CYP2C8 and CYP2C9 variant allele carriers is specifically related to ibuprofen use.

To date few studies have evaluated the effect of genetic variation on the therapeutic efficacy 

of ibuprofen [3,98]. One study has investigated the effect of polymorphisms in COX-1 

(PTGS1) and COX-2 (PTGS2) on pain perception with either ibuprofen or rofecoxib after 

third molar (i.e. wisdom tooth) extraction [98]. The authors also quantified the mRNA 

expression level of COX-1, COX-2, and other related genes in mucosal biopsies before and 

2–4 h after the oral surgery. No significant associations were observed with regard to 

variants in PTGS1. However, one variant located in the PTGS2 promoter, rs20417 (-765G > 

C), was associated with both lower PTGS2 mRNA expression in mucosal tissue and greater 

analgesic response to ibuprofen in variant allele carriers. At 48 h after surgery, patients who 

carried the minor allele for rs20417 (CC +CG) reported significantly lower pain scores on a 

visual analog scale (100 mm) following treatment with ibuprofen compared with rofecoxib 
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(ibuprofen: 7.0 ± 1.9 mm vs. rofecoxib: 37.0 ± 6.8 mm, P <0.01), whereas patients 

homozygous for the major allele (GG) had a better response to rofecoxib than to ibuprofen 

(ibuprofen: 31.3 ± 6.7 mm vs. rofecoxib: 7.2 ± 2.5 mm, P <0.01; note: this gene is on the 

minus chromosomal strand, complemented on PharmGKB to the plus strand; in the paper 

this is reported on the minus strand) [98]. These results suggest that the PTGS2 rs20417 

variant may have utility in guiding the selection of COX-2-selective versus traditional 

NSAID therapy following third molar extraction, but additional studies are necessary to 

validate these findings. Another study evaluated the relationship between CYP2C8 and 

CYP2C9 variants and the response to ibuprofen for PDA closure in preterm neonates 

because higher ibuprofen serum concentrations had been previously associated with higher 

response rates. No significant associations between the CYP2C8 or CYP2C9 genotype and 

ibuprofen response were observed after multivariate adjustment, which may reflect the 

substantial clinical heterogeneity in this patient population, as well as the potential influence 

of development on the expression and catalytic activity of CYP2C enzymes [3].

Numerous studies have investigated the effect of genetic variants on the efficacy of NSAIDs 

for cancer chemoprevention, but have yielded conflicting information [99 –107]. One study 

observed no significant role of interactions between NSAID use and polymorphisms in 

CYP2C8, CYP2C9, PPARD, PPARG, and UGT1A6 in modifying the risk for colorectal 

cancer, but it did report a nonsignificant trend (P for interaction = 0.24) toward a greater 

protective effect of nonaspirin NSAIDs, including ibuprofen, in carriers of the PPARG 

Ala12 variant allele [103]. A subsequent study in a larger population validated this potential 

interaction between ibuprofen use and the PPARG Pro12Ala variant in modifying rectal 

cancer risk (P for interaction =0.03) [107]. Other studies in colorectal cancer patients have 

reported significant interactions between ibuprofen use and genetic variants of CYP2C9 

(CYP2C9*2 and *3) [105], SMAD7 (rs4939827 and rs4464148) [104], and UGT2B4 

(rs1131878, rs1966151, and rs13119049) [106], but not PTGS2 (rs68946, rs20432, and 

rs5275) [99]. Studies in men with advanced prostate cancer have suggested that the 

protective effect of ibuprofen may be modified by the LTA C +80A (P for interaction 

=0.008) [102] and PTGS2 rs2745557 (P for interaction =0.12) [101] variants, but the 

numbers of ibuprofen users in these studies were relatively small. In contrast, no significant 

interactions between ibuprofen use and genetic variation in PTGS2 were observed in women 

with breast cancer [100].

An interesting area for future research with respect to ibuprofen is how the drug may interact 

with AMACR variants and modulate cancer risk [8]. Elevated protein levels of AMACR, 

which converts R-ibuprofen to S-ibuprofen, have been detected in prostate cancer cells and a 

number of other cancers, and variants and alternative splice forms of AMACR have been 

associated with cancer risk. However, the potential for ibuprofen to modify these 

relationships has not been explored to date [8].

Conclusion

To date, the most robust finding with regard to the pharmacogenomics of ibuprofen has been 

the relationship between the CYP2C9*3 variant and decreased ibuprofen clearance. Given 

ibuprofen’s wide therapeutic window, the clinical significance of this relationship is unclear, 
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but CYP2C9*3 variant allele carriers may be at a greater risk for adverse events or drug–

drug interactions, particularly with concomitant use of other CYP2C9 substrates (i.e. 

warfarin). Although some associations between genetic variation and therapeutic efficacy of 

ibuprofen have been reported, further study is necessary to validate these findings, as well as 

to define the role of pharmacogenomics in guiding ibuprofen therapy.
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Fig. 1. 
Metabolism and transport of ibuprofen in the liver and kidney. IBU, ibuprofen; IBU gluc, 

ibuprofen glucuronide. A fully interactive version is available online at http://

www.pharmgkb.org/pathway/PA166041114.
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Fig. 2. 
Stylized cell depicting the mechanism of action of ibuprofen (IBU). Arachidonic acid is 

released from the cell membrane phospholipids by phospholipase A2 (PLA2), encoded by 

PLA2G4A (cytosolic, calcium-dependent) and PLA2G2A (in platelets and synovial fluid). 

Arachidonic acid is converted to the unstable intermediate prostaglandin (PG) H2 by 

cytosolic prostaglandin G/H synthases, termed cyclooxygenases (COX), that exist in two 

forms, COX-1 and COX-2, and are encoded by PTGS1 and PTGS2, respectively. PGH2 is 

converted by tissue-specific synthases to various prostanoids – that is, PGE2, PGD2, PGF2α, 

PGI2, and TxA2. These bioactive lipids act through their corresponding receptors to trigger a 

series of biological effects. Ibuprofen exerts its anti-inflammatory and analgesic effects 
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through inhibition of both COX isoforms. In addition, ibuprofen scavenges HO•, •NO, and 

ONOO− radicals and can potentiate or inhibit nitric oxide formation through its effects on 

nitric oxide synthase (NOS) isoforms. Ibuprofen may activate the antinociceptive axis 

through binding to the cannabinoid receptors and through inhibition of fatty acid amide 

hydrolase (FAAH), which metabolizes the endocannabinoid anandamide. CNR1 and CNR2, 

cannabinoid receptors 1 and 2; H2O2, hydrogen peroxide; FAAH, fatty acid amide 

hydrolase; •NO, nitric oxide; NOS, nitric oxide synthase; ONOO−, peroxynitrite anion; O2
•−, 

superoxide anion; PGD2, prostaglandin D2; PGDS, prostaglandin D synthase; PGE2, 

prostaglandin E2; PGF2α, prostaglandin F2α; PGFS, prostaglandin F synthase; PGH2, 

prostaglandin H2; PGI2, prostacyclin; PTGDR, prostaglandin D receptors; PTGER, 

prostaglandin E receptors; PTGES, prostaglandin E synthase; PTGFR, prostaglandin F 

receptors; PTGIR, prostacyclin receptor; PTGIS, prostacyclin synthase; TBXA2R, TxA2 

receptor; TBXAS1, thromboxane A synthase 1; TxA2, thromboxane A2. A fully interactive 

version is available online at http://www.pharmgkb.org/pathway/PA166121942.
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