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Abstract
The higher-order organization of chromatin is well-established, with chromosomes occupy-

ing distinct positions within the interphase nucleus. Chromatin is susceptible to, and con-

stantly assaulted by both endogenous and exogenous threats. However, the effects of DNA

damage on the spatial topology of chromosomes are hitherto, poorly understood. This

study investigates the organization of all 24 human chromosomes in lymphocytes from six

individuals prior to- and following in-vitro exposure to genotoxic agents: hydrogen peroxide

and ultraviolet B. This study is the first to report reproducible distinct hierarchical radial orga-

nization of chromosomes with little inter-individual differences between subjects. Perturbed

nuclear organization was observed following genotoxic exposure for both agents; however

a greater effect was observed for hydrogen peroxide including: 1) More peripheral radial or-

ganization; 2) Alterations in the global distribution of chromosomes; and 3) More events of

chromosome repositioning (18 events involving 10 chromosomes vs. 11 events involving

9 chromosomes for hydrogen peroxide and ultraviolet B respectively). Evidence is provided

of chromosome repositioning and altered nuclear organization following in-vitro exposure to

genotoxic agents, with notable differences observed between the two investigated agents.

Repositioning of chromosomes following genotoxicity involved recurrent chromosomes and

is most likely part of the genomes inherent response to DNA damage. The variances in nu-

clear organization observed between the two agents likely reflects differences in mobility

and/or decondensation of chromatin as a result of differences in the type of DNA damage in-

duced, chromatin regions targeted, and DNA repair mechanisms.
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Introduction
The nucleus is a highly complex and compartmentalized organelle that accommodates a wide
spectrum of actions including: genome replication, transcription, splicing and DNA repair.
The concept of nuclear organization can be considered with regards to chromatin only (i.e. po-
sition of chromosomes), the interchromatin compartment (channels around chromosome ter-
ritories) and the specialized structures of the nucleus (nucleolus, nuclear matrix). Although the
higher order of chromatin structure has been described extensively, the dynamics that govern
the organization of chromatin, the underlying functional significance and the molecular mech-
anisms of relative change in position of chromosomes remain poorly understood.

Certain concepts have nonetheless emerged, with the central dogma of the field being chro-
mosomes occupy distinct non-random positions within the interphase nucleus, these positions
are termed chromosome territories (CTs) [1–6]. CTs appear to be highly partitioned with min-
imal interactions which seems to confer a fractal globule model for the genome at least on the
megabase scale as shown by 3C studies [7]. This minimal interaction occurs exclusively in the
periphery of CTs, is observed in higher eukaryotes and contrasts the situation in budding yeast,
where CTs are less geographically defined and are characterized by a higher degree of intermin-
gling [8]. Identification of patterns of proximity (i.e. radial organization) among chromosomes
may have provided a functional advantage over the course of evolution. Two models have
emerged to describe the radial organization of CTs within the interphase nucleus, namely gene
density and chromosome size.

The gene density model stems from observations in proliferating lymphoblasts and fibro-
blasts that gene rich chromosomes are located toward the nuclear interior with gene poor chro-
mosomes located toward the nuclear periphery [9,10]. The gene density model has also been
observed in primates, [11], old world monkeys [12], rodents [13], cattle [14] and chicken (how-
ever, the chicken also fits the chromosome size model) [15]. The chromosome size model sug-
gests CTs are ordered according to size, with small chromosomes preferentially localized toward
the nuclear interior and larger chromosomes toward the nuclear periphery. This model was pro-
posed following observations in quiescent and senescent cells [16,17] and also 3D-FISH experi-
ments in flat ellipsoid fibroblasts [18]. The two prevailing models should not be considered as
mutually exclusive, given that chromosome position likely depends on the proliferating status of
the cell, the chromosome and/or its neighborhood [17,19]. These correlative observations have
established the concept of non-random position of chromosomes in the interphase nucleus and
have raised the question of the functional significance of this organization. One prevailing hy-
pothesis correlates gene activity with an interior localization. Several lines of evidence lend sup-
port for this hypothesis given that the following have all been observed to be localized towards
the nuclear interior: 1) Gene rich chromosomes; 2) G-C rich regions of chromatin; and 3) Early
replicating regions of the genome, which typically contains active genes [20]. Further support
for a possible regulation of gene expression from the nuclear “address” of chromosomes comes
from experiments where CTs are reorganized upon a surge of transcription [21] during cellular
differentiation processes (e.g. β-globin genes in mouse erythroid cells, genes during adipogen-
esis). In such instances activated genes have been demonstrated to reposition from the nuclear
periphery to the nuclear interior [20,22]. In addition, recent observations demonstrating reloca-
tion of activated genes with nuclear structures involved in transcription (e.g. RNA polymerase II
molecules and Cajal bodies) provides further support for this hypothesis [21]. Whether genome
organization determines function or whether localization is a “reflection” of function continues
to be debated. However, several key findings denote its importance in maintaining a stable ar-
chitecture for proper cellular functionality [23]. These include: 1) Non-random organization of
chromosome position in multiple cell types and evolutionarily divergent species [6]; 2) Evidence

Chromosome Repositioning following DNA Damage

PLOSONE | DOI:10.1371/journal.pone.0118886 March 10, 2015 2 / 24

chromosome territory organization studies provided
by the Herbert Wertheim College of Medicine at
Florida International University (startup funds
awarded to HGT). The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



that this pattern of organization is evolutionary conserved [24]; and, 3) Indications that alter-
ations in nuclear localization are correlated with certain diseases (laminopathies, Hutchinson-
Gilford Progeria, Promyelotic leukemia, and breast cancer) [25–27]. Any perturbation in nucle-
ar architecture could thus induce change in the local gene environment and availability of tran-
scription factors leading to possible misregulation or failure to take part in transcription [28].
Thus, it seems reasonable to suggest that the nucleus requires a “healthy” state of organization
for proper functionality, and if this state is perturbed it could be manifested as alteration of
chromosome (and thus gene) position.

Genomic DNA is constantly under attack from endogenous and exogenous factors such as
reactive oxygen species (ROS) arising from normal cellular metabolism or physical and chemi-
cal agents such as ultraviolet (UV) radiation, alkylating agents and topoisomerase inhibitors
[29]. To maintain genomic integrity from the detrimental effects of damaging agents (e.g. mu-
tations and chromosomal rearrangements) numerous repair mechanisms have evolved. These
various mechanisms comprise the DNA damage response (DDR) that either work indepen-
dently or in combination to repair damaged lesions and allow the cells to re-enter the cell cycle
for faithful duplication of the genome [30]. This study has focused on genotoxic agents namely,
hydrogen peroxide (H2O2) and ultraviolet (UV) radiation that are capable of inducing endoge-
nous and exogenous DNA damage.

H2O2 is a by-product produced by ROS during normal cellular metabolic activity that can
induce single- and double-stranded breaks (SSBs & DSBs), helical distortions and hindrances to
base pairing. These mechanisms can alter important genetic information by interfering with
replication and transcription. Thus, accumulation of oxidative lesions compromises DNA in-
tegrity predisposing to cancer and aging [31]. UV radiation is a common exogenous agent, with
UVC (100–280nm) mostly absorbed by the earth’s atmosphere, whereas UVA (315–400nm)
and UVB (280–315nm) reach the earth’s surface and are known to cause mutagenic and cyto-
toxic lesions within DNA [32]. UVA causes oxidative damage, whereas UVB causes dipyrimi-
dine photoproducts (thymine dimers) by a direct photochemical mechanism [33]. The most
common DNA repair mechanism to respond to oxidative damage by H2O2 occurs through the
activation of inherent antioxidant enzymes possessed by cells [34] whereas, nucleotide excision
repair (NER) is the predominant mechanism that repairs damage caused by UV radiation [35].

The compartmentalization of the nucleus with the radial non-random organization of chro-
mosomes seems to have a modulatory role for induction of DNA damage. Therefore, if DNA
damage preferentially occurs in certain regions of the nucleus the radial organization of chro-
matin will be impacted with specific chromosomes more prone to DNA damage. The body-
guard hypothesis proposes that peripherally localized heterochromatin protects the interior
part of the cell [36]. However, evidence has been provided to suggest that the nuclear center (lo-
cation of gene dense chromosomes in lymphocytes) could be the preferred site for DNA dam-
age and mutation [37]. Further evidence for the generation of preferential sites of DNA damage
is provided by the formation of recurrent chromosomal translocations; and the recruitment of
repair mechanisms [37] at different rates depending on the chromatin type. Typically, gene rich
euchromatic regions are repaired at a faster rate than gene poor, heterochromatic regions [38].

Perturbations in the nuclear address of CTs following induction of DNA damage can pro-
vide unique insights into chromatin behavior following damage on a global scale and can po-
tentially provide more details into specific cell type patterns of response to damage. In the
current study we assessed the radial topology of all 24 human chromosomes in lymphocytes
collected from six healthy volunteers. DNA damage was induced in-vitro in lymphocytes utiliz-
ing two different genotoxic agents that differ in their mechanistic action (H2O2 and UVB). As-
sessment of the radial organization of all 24 chromosomes before and after in-vitro exposure to
the genotoxic agents was studied in all six individuals. Our study findings of inter-individual
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reproducibility in CT organization and genotoxic specific alterations in topology following ex-
posure to H2O2 and UVB will be discussed.

Materials and Methods

Sample cohort
This research study was approved by the Florida International University Institutional Review
Board (IRB). Informed written consent to participate in this study was provided by six individ-
uals (four females and two males). The average age of the participants was 29.8 years (range,
20–40). As per the IRB protocol each participant filled out a brief health history survey, provid-
ing life style (e.g. alcohol or tobacco use) any recent illness information, and any medication
taken. All participants were non-smokers, had not knowingly been in contact with any hazard-
ous or radioactive material in their working or home environment. Four subjects were social
drinkers (2–3 units per week) and only one participant disclosed a medical condition (hyper-
thyroidism) for which eltroxin was prescribed.

Cell culture conditions and genotoxic exposure
Peripheral blood was collected by venipuncture in heparin tubes (Greiner-BioOne, Monroe, NC,
USA). Whole blood from each individual was split and cultured in the presence or absence of
genotoxic agents. Unexposed “control” lymphocyte cultures were prepared as follows: Culture
medium RPMI 1640 (Lonza, Walkersville, MD, USA) was reconstituted with 10% heat inacti-
vated fetal bovine serum (FBS—Sigma-Aldrich, St Louis, MO, USA), 2% L-glutamine (Thermo-
Fisher, Waltham, MA, USA) and 1% penicillin-streptomycin solution (Thermo-Fisher, Wal-
tham, MA, USA). All cultures had a total volume of 5ml of reconstituted medium with 100μl of
phytohaemagglutinin (PHA), (45mg/vial) (Remel Inc, Lenexa, KS, USA) 0.8–1.0 ml of blood
was incubated for 71 hours at 37°C (5% CO2) to allow mitotic proliferation of lymphocytes.

To induce DNA damage, lymphocyte cultures were exposed at the initiation of culturing to
H2O2 (80mM—30 minutes) (Thermo-Fisher, Waltham, MA, USA) or UVB radiation
(280–320nm—15 minutes), from a BIO-RAD trans-illuminator (BIO-RAD, Hercules, CA,
USA). The maximal concentration of H2O2 and UV exposure were chosen based upon previ-
ous dose-response experiments. The genotoxity of a range of different conditions for both gen-
otoxic agents were tested to determine which conditions resulted in presence of measurable
DNA damage after 71 hours of culturing following exposure. Maximal doses of the genotoxic
agents were also selected to ensure that following exposure, a high proportion of cells were still
viable and capable of undergoing cell division. Specific treatment conditions (80mM for H2O2

and 15 minutes for UVB) were selected based on the presence of a minimum of 25 metaphase
spreads for karyotype analysis, detectable chromosome aberrations, and a reduction in mitotic
index that did not exceed 65%. Karyotyping was used to identify whether the genotoxic agents
utilized had clastogenic or aneugenic properties detected by the presence of cytogenetically
visible structural or numerical chromosomal aberrations. In addition, the mitotic index was
assessed to provide a measure of the proliferation status of the cell culture population. The mi-
totic index is a ratio between the number of cells in mitosis (complete metaphases) and total
number of cells.

The H2O2 exposed cultures were incubated in the presence of 80mMH2O2 for 30 minutes
at 37°C in complete medium without PHA, cultures were subsequently centrifuged at 1,200
rpm for 10 minutes to halt the reaction, the supernatant was removed and cells were resus-
pended in 5ml of complete medium with PHA for incubation (71 hours) as outlined for the un-
exposed cultures. Additionally, lymphocyte cultures (in complete medium with PHA) were
also exposed to UVB radiation (280–320nm) utilizing a BIO-RAD trans-illuminator (BIO-
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RAD, Hercules, CA, USA) for 15 minutes at room temperature prior to being transferred at
37°C for incubation (71 hours).

Karyotyping and calculation of the mitotic index
Evaluation of the DNA damage induced by the genotoxic agents (H2O2 or UVB) at the chromo-
somal level was performed using standardized cytogenetic procedures. In brief, lymphocytes were
cultured in the absence of genotoxic agents for 71 hours, subsequently, proliferating cells in meta-
phase were arrested using 0.2μg colcemid (Thermo-Fisher, Waltham, MA, USA) for 30 minutes
at 37°C, followed by standard hypotonic conditions to allow separation of white blood cells from
anucleate erythrocytes (0.075M of KCL—Thermo-Fisher, Waltham, MA, USA) for 45 minutes at
37°C.White blood cells were subsequently fixed in 3:1 (v/v) of methanol:acetic acid solution to
clean and fix the preparation. All cultures were stored at -20°C immediately following the harvest-
ing procedure. Cells were dropped on glass slides (FisherBrand—Thermo-Fisher, Waltham, MA,
USA) and mounted with a glycerol-based solution containing 40,6-diamidino-2-phenylindole
(DAPI) (Vectashield with DAPI—Vector Labs, Burlingame, CA, USA) under a 24X55 mm cover-
slip. Metaphases were captured using an Olympus BX61 epifluorescence microscope equipped
with a cool charged couple device camera (Hamamatsu ORCA—R2 C10600). All images were ac-
quired using Smart Capture 3.0 and chromosomal analysis was performed using Smart Type 2.0
(Digital Scientific, Cambridge, UK). Karyotyping was performed using reverse DAPI staining to
visualize chromosome banding. Chromosomes and chromosome aberrations were identified and
described using the standardized International System for Human Cytogenetic Nomenclature
[39]. A minimum of 25 metaphase spreads were karyotyped per subject, per condition, when pos-
sible at least 50 metaphase spreads were karyotyped. The mitotic index was calculated by analyz-
ing a minimum of ten fields of view and scoring a minimum of 1000 cells respectively for each
condition. The mitotic index of cultures exposed to genotoxic agents was subsequently compared
to unexposed cultures to determine the percentage change in cellular proliferation.

Fluorescence in situ hybridization (FISH)
Cells (from unexposed, H2O2, and UVB exposed cultures) were dropped on glass slides, al-
lowed to adhere by ageing overnight at room temperature (RT) and then washed in 1X PBS
(Thermo-Fisher, Waltham, MA, USA), followed by an ethanol dehydration step (70–80–-
100% for 3 minutes each). Air dried cells were then treated with 1% pepsin solution
(Thermo-Fisher, Waltham, MA, USA) in a pre-warmed at 37°C solution of 49 ml double
distilled water (ddH2O) and 0.5 ml of 1N HCL (Thermo-Fisher, Waltham, MA, USA) for 20
minutes. Cells were then rinsed with ddH2O and 1 X PBS at RT, and subjected to another
round of fixation using 1% paraformaldehyde/PBS [1.34ml of 37% paraformaldehyde
(Thermo-Fisher, Waltham, MA, USA) in 49 ml of PBS] at 4°C for 10 minutes. Slides were
then rinsed in 1 X PBS followed by ddH2O at RT, in preparation for another dehydration
round in ethanol (2 minutes each), and finally air dried. A dual color FISH experiment (red
and green FISH probes) was then set up utilizing probes for whole chromosome paints
(WCPs), for all 24 chromosomes. All probes were obtained from Rainbow Scientific (Wind-
sor, CT, USA) and were co-denatured for 5 minutes with lymphocytes at 75°C followed by
overnight hybridization (>16hours) at 37°C using a Thermobrite Statspin (Abbott Molecu-
lar, Illinois, IL, USA). A post hybridization stringency wash was performed in a pre-warmed
73°C solution of 0.7 X SSC/0.3% Tween 20 (Thermo-Fisher, Waltham, MA, USA) (35ml of
20 X SSC, 3ml of Tween 20 and 965ml of ddH2O) for 2 minutes. After 2 minutes elapsed,
cells were washed in 2 X SSC/ 0.1% Tween 20 (100ml of 20 X SSC, 1ml of Tween 20 and
900ml of ddH2O) and a brief ethanol series (1 minute each). Slides were subsequently air
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dried in the dark and mounted with DAPI under a 24X55mm coverslip. Image acquisition
was performed as described above using 3 single band pass filters for (fluorescein isothiocya-
nate (FITC), tetramethyl rhodamine isothiocyanate (TRITC), and DAPI) (Chroma Tech-
nology, Bellows Falls, VT, USA). All images were acquired using Smart Capture 3.0,
exported as. tiff files for further analysis. Captured images were subjected to judicious
thresholding to reduce any background fluorescence present, extreme care was taken to en-
sure the intensity and distribution of the FISH probe signal within the nucleus was not com-
promised or altered. A minimum of 100 cells were analyzed per subject, per chromosome
pair, per condition (unexposed, H2O2 and UVB exposed).

Radial chromosome positioning analysis
To evaluate the chromosome position and therefore the nuclear organization, previously pub-
lished methodologies were utilized [9,10]. The details have been described extensively else-
where [40,41]. Briefly, a customized script was written for Image J, which allows for the
separation of each image into three channels (red and green [FISH probes] and blue [DAPI
counterstain]). The DAPI fluorescence is converted to a binary mask that allows for the crea-
tion of 5 rings of equal area (1- interior, 5- peripheral). The proportion of WCP signal in each
ring (and for each channel) is measured relative to the total signal for the area that is covered
by the ring. Data is collected and normalized against the different DNA content (DAPI fluo-
rescence intensity) in the nucleus to compensate for the fact that a 3D object is observed
under two-dimensions. The radial distribution of a CT is analyzed across the population of
nuclei (n = 100). Our method of analysis also allows the data to be transformed to provide a
single number for each nucleus reflective of the overall position of the signal. The software
compresses the entire CT distribution across the five rings by weighing the proportion of sig-
nal contained within each ring and summing these together across the whole population of
cells analyzed. For example if we consider a single cell in which a CT was entirely localized in
rings 2 and 3 with an equal proportion of fluorescence signal within both rings, the software
would weight this distribution as follows: 2�0.5+3�0.5 = 2.5. In doing so, we are able to com-
press the relatively large CTs of the population of cells analyzed (n = 100/CT/subject) into a
single number, which reflects the midpoint of the frequency distribution of observed fluores-
cence (median). This median can be utilized to determine the hierarchical radial order of CTs
from the nuclear interior toward the nuclear periphery.

Statistical analysis
Chi-squared goodness-of-fit test (χ2) was employed to compare the distribution of each in-
dividual CT across each of the five rings for each cell and individual. If the distribution of
the CT was equally distributed across the five rings, the CT was classified as random
(p>0.05). Non-random organization of a CT was supported if the CT distribution was not
equally distributed across the five rings (p<0.05). The chi-squared goodness-of-fit test (χ2)
was applied to determine subject specific differences in CT organization. In this instance
the distribution of fluorescence within the five rings for each CT was compared between
subjects, (p>0.05 suggested a reproducible CT distribution between subjects, whereas
p<0.05 provided evidence of a different CT distribution between subjects). Additionally,
the chi-squared goodness-of-fit test (χ2) was used to evaluate whether CT repositioning oc-
curred in the H2O2 and UVB exposed cultures by comparing the CT distribution in the un-
exposed culture from the same individual, (p>0.05 provided evidence of no change in CT
distribution following exposure, whereas p<0.05 provided evidence of altered CT
positioning).
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Results

Measurement of genotoxicity, karyotyping and mitotic index assessment
Peripheral blood from six individuals was cultured in the presence and absence of genotoxic
agents. To assay the genotoxicity of the tested agents, metaphase spreads from each individual
and experimental condition were karyotyped and the mitotic index was calculated. A minimum
of 50 metaphases were karyotyped from the unexposed cultures for each of the six individuals.
A notable decrease in the number of metaphase spreads available for karyotyping was observed in
the H2O2 and UVB exposed cultures, with an average of 37.8 and 33.3 metaphases karyotyped,
per subject, respectively. Further evidence of a reduction in cellular proliferation was provided by
evaluating the mitotic index. Compared to the unexposed lymphocyte cultures there was an aver-
age of a 62% and 40.5% reduction in cellular proliferation in H2O2 and UVB treated cells respec-
tively. These findings were most likely due to altered cell cycling of lymphocytes exposed to
genotoxic agents resulting in a significant reduction in cell proliferation. Over 300 metaphases
were karyotyped for the unexposed lymphocytes, all metaphases were cytogenetically normal with
the exception of one metaphase spread that contained a single chromatid break. The karyotyping
analysis for the exposed conditions in all six subjects, revealed cytogenetically visible chromosome
aberrations in 8.8% and 8% of H2O2 and UVB treated metaphases respectively (Fig. 1). The most
common aberration observed in both conditions was pulverized chromosomes, the morphology
of the chromosomes being highly distorted. Pulverization of the chromosomes occurred in 14
H2O2 metaphases and six UVBmetaphases. The second most commonly observed aberration
was chromosome or chromatid breaks that occurred in four H2O2 metaphase spreads and six
UVBmetaphases. In both H2O2 and UVBmetaphases one metaphase spread was found to pos-
sess premature centromere separation and premature separation of sister chromatids (Fig. 1). The
remaining aberration identified in H2O2 cells was the presence of a dicentric chromosome. In the
UVB exposed samples the following additional aberrations were identified: two chromatid gaps,
one chromosome gap, one numerical aberration (47, XYY), and one marker chromosome.

Radial organization of all 24 human chromosomes in unexposed and
exposed lymphocytes
A total of 21,600 cells were captured and analyzed from all six subjects to assess the nuclear or-
ganization for all 24 human chromosomes in lymphocytes from control and genotoxicant ex-
posed cultures. Examples of FISH images for the CTs, the radial distribution of all 24 CTs in
the lymphocytes of each of the six subjects for each condition and the average distribution of
all six subjects for each of the three conditions and is presented in Figs. 2–4 (CTs 1–8 Fig. 2;
CTs 9–16 Fig. 3; and CTs 17–22, X and Y Fig. 4). One unique aspect of this study is the inclu-
sion of multiple subjects which enables the reproducibility of CT organization for each chro-
mosome within the same cell type to be investigated between subjects. In this study, the radial
organization of CTs in the unexposed lymphocytes was assessed 140 times (chromosomes
1–22 and X for 6 subjects [n = 138], and the Y chromosome [n = 2] from the two male subjects
enrolled in this study). The chi-squared goodness-of-fit comparison was utilized to examine
inter-individual differences in the radial distribution of CTs. The radial organization was re-
markably consistent between the six subjects in the unexposed lymphocytes with no significant
differences identified in the radial distribution between subjects for the vast majority of CTs (1,
2, 4, 5, 6, 7, 8, 9, 11, 14, 16, 18, 20, 21, 22, X and Y [p>0.05]). However, there were 19/140 occa-
sions (13.57%) of inter-individual variability in the CT radial distribution, involving only seven
chromosomes (Figs. 2–4). Specifically, the following subjects showed differences in the radial
distribution of CTs compared to other subjects: subject 5: CT3 compared to subjects 1 and 6,
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Fig 1. Chromosomal aberrations observed following exposure to genotoxic agents. Panels A-F provides representative examples of karyotypes and
different chromosomal aberrations observed after genotoxic exposure. Panels A-C depict individual metaphase spreads. Panels D-F provides examples of
individual chromosome pairs with specific chromosome aberrations (magnified). A description of each panel follows: (A) Normal 46, XX metaphase spread;
(B) Metaphase spread displaying distorted pulverized chromosomes with altered morphology, indistinct banding pattern and indistinguishable centromeres
(several examples are indicated by arrows); (C) Metaphase spread demonstrating premature sister-chromatid separation (e.g. black arrow) and premature
centromere separation (e.g. gray arrow); (D) Gap in chromosome 6; (E) Dicentric chromosome 3 at band 3p21; and (F) Chromatid break in the X
chromosome at band Xq21.

doi:10.1371/journal.pone.0118886.g001
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Fig 2. Radial distribution for chromosomes 1–8 in six subjects in unexposed, H2O2 and UVB exposed
lymphocytes. Fig. 2 displays representative FISH images and the radial distribution for CTs 1–8. Note FISH
experiments were dual color, for simplicity only a single fluorochrome (CT) is displayed in each lymphocyte
(the second fluorochome was removed by deselecting either the red or green channel). Moving from left to
right the chromosome number is indicated followed by a representative FISH image for the CT and four
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(p<0.05); CT10 subjects 1, 4 and 5 compared to subjects 2, 3 and 6 (p<0.05); subject 3: CT12
compared to subjects 1 and 5, (p<0.05); subject 6: CT13 compared to subject 1, CT15 com-
pared to subject 4, CT17 compared to subject 5 and CT 19 compared to subjects 1, 2, 3, 4, and
5 (p<0.05).

The random or non-random organization of the individual CTs for all six individuals for
each of the treatment conditions was also assessed (Fig. 5). In unexposed lymphocytes the vast
majority of CTs demonstrated consistent reproducible patterns of non-random/random organi-
zation in all six individuals. Chromosomes 1, 8, 10, 12, 14, 15, 16, 17, 19, 20, 21, and 22 were
classified as non-randomly organized. In contrast, chromosomes 5, 7, 11, 13, and Y randomly
organized in all six individuals. The remaining seven CTs (2, 3, 4, 6, 9, 18, and X) demonstrated
more inter-individual variability in non-random/random status among the different subjects
enrolled in this study. For example, chromosomes 6 and 18 were non-randomly organized in
5 out of 6 and 2 out of 6 subjects, respectively. In the H2O2 exposed lymphocytes the following
chromosomes 1, 14, 15, 16, 17, 19, 20, 21, and 22 were non-randomly organized, whereas chro-
mosomes 3, 4, 5, 6, 13, and Y were randomly organized in all six subjects. Nine CTs had inter-
individual variability (chromosomes 2, 7, 8, 9, 10, 11, 12, 18, and X). However, four chromo-
somes demonstrating inter-individual variations in organization were common between the
control and H2O2 treated cells (chromosomes 2, 9, 18, and X). In cultures treated with UVB,
chromosomes 1, 12, 14, 15, 16, 17, 19, 20, 21, and 22 were non-randomly organized, whereas
chromosomes 5, 7, and Y were randomly organized in all six subjects (Fig. 5). Eleven CTs de-
picted inter-individual variability (chromosomes 2, 3, 4, 6, 8, 9, 10, 11, 13, 18, and X); with seven
chromosomes being common to either unexposed or H2O2 cultures (chromosomes 2, 3, 4, 6, 9,
18, X and 2, 8, 9, 10, 11, 18, and X, respectively). Interestingly chromosomes 2, 9, 18, and X were
the only CTs with inter-individual variability for all conditions, with CTs 1, 14, 15, 16, 17, 19,
20, 21, and 22 demonstrating consistent non-random organization, and CT’s 5 and Y demon-
strating consistent random organization in all individuals and all treatment conditions. The
emerging picture from Fig. 5 is that a large proportion of chromosomes occupy distinct posi-
tions in all conditions and that their non-random/random status is largely reproducible among
subjects. CTs from all subjects were non-randomly organized in 64.28% (90/140), 52.14% (73/
140), and 60% (84/140) of unexposed H2O2 and UVB exposed samples respectively.

Genotoxicity effect on radial CT organization
In order to evaluate statistically significant repositioning of CTs in control and exposed lym-
phocytes the distribution of fluorescence in each of the five shells of equal area were compared
(between the control and H2O2/ UVB exposed lymphocytes from the same individual). When
the p value from the chi-squared goodness-of-fit comparison was less than 0.05 the topological
alteration was deemed statistically significant. Table 1 provides a summary of the changes that
were observed in CT localization based on these comparisons. Certain interesting inferences
can be drawn from Table 1. Cumulatively there were 29 events of repositioning following

histograms. The X-axis for all histograms represents each of the five rings of equal area (1–5, nuclear interior
to nuclear periphery [left to right]). The Y-axis for all histograms represents the proportion of fluorescence (%).
Error bars represent the standard error of the mean (SEM). The first, second and third histogram display the
radial distribution for each CT in control, H2O2 and UVB exposed lymphocytes, respectively. Each of these
histograms contain six bars for the five rings, corresponding to each of the six subjects (1 to 6, left to right).
The fourth histogram displays the average radial distribution for the six subjects in unexposed (blue), H2O2

(red) and UVB (green) exposed lymphocytes. Roman numerals indicate significant inter-individual variations
in radial distributions (p<0.05) between subjects in control lymphocytes: I- CT3 subject 5 (different to subjects
1 and 6).

doi:10.1371/journal.pone.0118886.g002
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Fig 3. Radial distribution for chromosomes 9–16 in six subjects in unexposed, H2O2 and UVB exposed lymphocytes. Fig. 3 displays representative
FISH images and the radial distribution for CTs 9–16. As in Fig. 2 moving from left to right the chromosome number is indicated followed by a representative
FISH image for the CT and four histograms. Each histogram displays the proportion of fluorescence (%) from the nuclear interior toward the nuclear periphery
(left to right). The first, second and third histogram displays the radial distribution for each CT in control, H2O2 and UVB exposed lymphocytes, respectively
for each of the six subjects (1 to 6, left to right). The fourth histogram displays the average radial distribution for the six subjects in unexposed (blue), H2O2
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exposure of lymphocytes to H2O2 and UVB (18 and 11 events of repositioning, respectively).
Furthermore, all subjects participating had at least one statistical significant repositioning
event for H2O2, whereas two subjects demonstrated no significant alteration in CT organiza-
tion for UVB (subjects 1, 2). More chromosomes were involved in change following H2O2 (ten
CTs), than UVB (nine CTs). Also certain chromosomes seemed to be frequently repositioned
in multiple subjects following H2O2 exposure (e.g. chromosomes 6, 8, and 10); in contrast a
less consistent picture emerges from UVB exposed cells (Table 1). Furthermore, this table dem-
onstrates variability in the types of movement observed following exposure to H2O2, in com-
parison to a more consistent predominant type in UVB. Based on the histograms produced
from the radial analysis, movement of CTs was classified into the following categories: a) interi-
or to less interior, b) interior to intermediate, c) interior to periphery, and d) intermediate to
periphery. Fig. 6 (A–D) displays examples for all of the classified categories of CT movement
observed in exposed cultures versus unexposed lymphocytes.

Global and hierarchical distribution of all 24 human chromosomes in
unexposed and exposed lymphocytes
In addition to measuring the radial distribution of fluorescence signal within each of the five
rings (Figs. 2–4), the software also compresses the CT into a single number (median) that rep-
resents the midpoint of the CT. This median value can be utilized to hierarchically order the
CT distribution from the nuclear interior to the nuclear periphery [41]. The average hierarchi-
cal order of all CTs in each condition is presented in Fig. 7 for the six subjects. In addition to
the median, the average upper and lower quartile distribution of fluorescence for each CT and
condition for the six subjects is displayed as a box-plot to allow a visual comparison of the glob-
al distribution of these points within the nucleus (Fig. 7 A-C). The length of the boxes demon-
strates the variations observed in position of the CT for these points (median, upper, and lower
quartile) among a population of cells and different exposures in six subjects. Shorter boxes sug-
gest the CT is more constrained (less variation in CT position between cells and subjects), with
larger boxes suggesting more variation in CT position between cells and subjects. Visual com-
parisons of the median reference point, relative length and position of the boxes between the
various conditions reveal similar distribution patterns in the unexposed and UVB exposed
lymphocytes (Fig. 7A and 7C). This distribution in the unexposed lymphocytes can be charac-
terized as relatively constrained, and appears to be maintained following UVB exposure al-
though a tighter clustering of these CTs points in the nucleus is observed (Fig. 7C). A different
picture emerges from the H2O2 exposed CT distribution (Fig. 7B); with CTs displaying a larger
distribution and more peripheral localization (e.g. CT 12 and 19, suggesting greater variation
in CT position) compared to unexposed lymphocytes (Fig. 7A). The data depict a specific
trend for chromosomes located closer to the interior of the nucleus. In both control and treated
lymphocytes, chromosomes 17, 19, 21, and 22 seem to compile the core of the territories that
are always found at the innermost region of the nucleus with chromosome 15 in close proximi-
ty for all conditions. Chromosomes 17, 19, and 22 are amongst the most gene dense, with chro-
mosomes 15 and 21 less so [42]. Following that, the interior to intermediate areas of the
nucleus are being accommodated by a mixture of medium to small sized chromosomes (e.g.
chromosomes 6, 8, 9, 10, and 12) with the exception of chromosome 1. The emerging picture
for the territories mostly occupying the intermediate to peripheral space, includes

(red) and UVB (green) exposed lymphocytes. Error bars represent the standard error of the mean (SEM). Roman numerals indicate significant inter-
individual variations in radial distributions (p<0.05) between subjects in control lymphocytes: II- CT10 subjects 1, 4 and 5 (different to subjects 2, 3 and 6); III-
CT12 subject 3 (different to subjects 1 and 5); IV- CT13 subject 6 (different to subject 1); V- CT15 subject 6 (different to subject 4).

doi:10.1371/journal.pone.0118886.g003
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Fig 4. Radial distribution for chromosomes 17–22, X and Y in six subjects in unexposed, H2O2 and
UVB exposed lymphocytes. Fig. 4 displays representative FISH images and the radial distribution for CTs
17–22, X and Y. As in Figs. 2 and 3 moving from left to right the chromosome number is indicated followed by
a representative FISH image for the CT and four histograms. Each histogram displays the proportion of
fluorescence (%) from the nuclear interior toward the nuclear periphery (left to right). The first, second and
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predominantly the largest of the chromosomes 2, 3, 4, 5, 7, 11, and 13. In terms of the sex chro-
mosomes in all conditions X is more internally located compared to Y.

Discussion
Historically, an inherent con nection exists between CTs and DNA damage. One of the first pi-
oneering experiments that re-discovered the concept of CTs and their non-random positioning
involved the induction of DNA damage. This study utilized a small laser microbeam in a spe-
cific part of a Chinese hamster nucleus and identified that as a result, only a few chromosomes
were damaged [43]. This finding was fundamental for verifying non-random organization of
the interphase nucleus. The purpose of our study was to assess the effect of genotoxicity by two

third histogram displays the radial distribution for each CT in control, H2O2 and UVB exposed lymphocytes,
respectively for each of the six subjects (1 to 6, left to right), with the exception of CTY which only contains
data from the two male subjects enrolled in this study (subjects 1 and 2). The fourth histogram displays the
average radial distribution for the enrolled subjects in unexposed (blue), H2O2 (red) and UVB (green)
exposed lymphocytes. Error bars represent the standard error of the mean (SEM). Roman numerals indicate
significant inter-individual variations in radial distributions (p<0.05) between subjects in control lymphocytes:
VI- CT17 subject 6 (different to subject 5); and VII- CT19 subject 6 (different to subjects 1, 2, 3, 4, and 5).

doi:10.1371/journal.pone.0118886.g004

Fig 5. Non-random or random chromosome position status for all subjects and conditions. Each colored block represents the status of the
chromosome position for all six subjects and three tested conditions following analysis of 100 cells. Chromosome territory position was determined to be
random or non-random by the χ2 goodness of fit test (df:4). White blocks indicate non-random positioning (p<0.05), whereas grey blocks indicates random
positioning. Data for chromosome Y is provided only for the two male subjects. The control (unexposed) condition is abbreviated in the table (Ctrl).

doi:10.1371/journal.pone.0118886.g005
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different agents in human lymphocytes in terms of the topology of chromosomes. Our study
clearly demonstrates a reproducible CT organization in human lymphocytes between subjects;
and provides evidence of chromosome repositioning following in-vitro exposure to genotoxi-
cants. Despite genotoxicant exposure occurring 71 hours prior to harvesting of cells, measur-
able genotoxicity was induced in lymphocytes cultured in the presence of H2O2 and UVB.
Specifically, a reduction in cellular proliferation was observed in H2O2 and UVB exposed lym-
phocytes (62% and 40.5%, respectively). Mitotic proliferation is frequently utilized in the as-
sessment of genotoxity, and the findings of this study are similar to previously published
studies [44–46]. The marked reduction in cellular proliferation observed in this study is likely
due to altered cell cycling and/or a consequence of apoptosis as the result of genotoxicity [47].
However, it should be noted that measurement of the levels of apoptosis was not assessed in
the current study to determine whether this was a contributing factor to the decreased cell pro-
liferation observed. Furthermore, additional findings of cytogenetically visible chromosome
aberrations provide further evidence of genotoxicity. The most common aberrations observed
included pulverized chromosomes and chromosome or chromatid breaks. Overall, more aber-
rations were observed in the H2O2 exposed cultures however; UVB induced a wider variety of
aberrations. The presence of cytogenetic chromosomal aberrations observed in this study has
demonstrated that a proportion of cells contained DNA damage. Furthermore, these cells were
able to progress through the cell cycle and initiate mitosis (at least up to the metaphase stage)
despite the presence of persistent DNA damage. It should be noted that karyotyping can only

Table 1. Statistically significant events of CT repositioning following exposure to H2O2 and UVB compared to control unexposed lymphocytes.

Subject Number H2O2 Chromosome Movement UVB Chromosome Movement

1 6 Interior to Intermediate - -

1 8 Interior to Intermediate - -

1 10 Interior to Intermediate - -

2 8 Interior to Intermediate - -

3 7 Intermediate to Periphery 19 Less interior localization

3 8 Interior to Periphery - -

4 10 Less interior localization 15 Less interior localization

4 - - 19 Less interior localization

5 4 Interior to Periphery 10 Less interior localization

5 6 Interior to Intermediate 12 Less interior localization

5 10 Less interior localization 15 Less interior localization

5 12 Less interior localization 17 Less interior localization

5 14 Less interior localization 22 Less interior localization

5 17 Less interior localization X Less interior localization

5 19 Less interior localization - -

5 X Interior to Periphery - -

6 6 Interior to Intermediate 4 Interior to Intermediate

6 8 Interior to Periphery 8 Less interior localization

6 10 Interior to Intermediate - -

Table 1 includes chromosomes that demonstrated statistically significant events of repositioning (p<0.05) after exposure to H2O2 or UVB, compared to

unexposed lymphocytes in the same subject. The percentage of fluorescence in each shell was compared between control and exposed lymphocytes and

the χ2 goodness of fit test deemed whether significant events of CT repositioning occurred. Results are presented on a per subject basis and include the

chromosomes involved and the altered positioning observed in the exposed lymphocytes compared to unexposed lymphocytes. The hyphen (-) denotes

no significant event of repositioning observed for the exposure condition.

doi:10.1371/journal.pone.0118886.t001
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detect structural aberrations that are>5Mb in size. Therefore, the percentage of abnormal
metaphase spreads (around 8–9%), is likely to be an underrepresentation of total DNA damage
due to the inability to identify smaller chromosomal aberrations. The results from the karyo-
type analysis are in line with previously published studies for these agents [48–50]. Genotoxi-
city observed was measurable over 71 hours following exposure to the genotoxic agents. Thus,
it is important to realize that the lymphocyte cell population studied conceivably consists of a
heterogeneous population of cells including: 1) cells in which exposure to the genotoxic agents
did not induce any DNA damage; 2) cells in which DNA damage was induced, but successfully
repaired; 3) cells undergoing apoptosis, following DNA damage and unsuccessful repair; and
4) cells in which apoptosis was evaded following DNA damage, but the DNA damage was not
successfully repaired (e.g. karyotype aberrations observed).

We report for the first time a comprehensive picture of the genome organization of all 24
chromosomes in lymphocytes from more than one individual. In contrast to previous reports
where one donor was used, six karyotypically normal subjects participated in this study
[9,10,51]. The findings of this study demonstrated remarkable reproducibility of CT organiza-
tion between subjects for 17 of the 24 investigated chromosomes. A handful of differences in

Fig 6. Chromosome repositioning events following exposure to genotoxic agents. All four panels (A-D) depict the different types of CT repositioning
observed in human lymphocytes following exposure to genotoxic agents H2O2 and UVB compared to control (unexposed) cells. In all four panels the X axis
shows the five shells of equal area from the nuclear interior to the nuclear periphery (left to right) and the Y axis shows the percentage of fluorescence for
each CT that lies within each of the five shells after analysis of 100 cells. Error bars represent the standard error of the mean (SEM). Examples for each of the
four different categories of statistically significant chromosome repositioning described in Table 1 are provided: (A) “less interior” localization of chromosome
17 in subject 5 following UVB exposure compared to control cells; (B) interior to intermediate positioning of chromosome 6 in subject 1 following H2O2

exposure; (C) interior to peripheral positioning of chromosome 4 in subject 5 following H2O2 exposure; and (D) intermediate to peripheral positioning of
chromosome 7 in subject 3 following H2O2 exposure.

doi:10.1371/journal.pone.0118886.g006
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Fig 7. Hierarchical organization of all 24 human chromosomes and distribution of the median, upper
and lower quartile CT data points in control H2O2 and UVB exposed lymphocytes. Box-plot
representation of the distribution of all 24 chromosomes within lymphocytes in all six subjects. Panels A, B
and C depict the distribution in control, H2O2, and UVB exposed lymphocytes, respectively. Each
histographic bar represents the upper quartile, median, and lower quartile for each CT position from the
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the radial distribution of six chromosomes were identified (CTs 3, 10, 12, 13, 15, 17 and 19). It
should be noted that differences often involved a single chromosome in a single subject with
differences in organization between two other subjects. However, CT10 seems to have bimodal
pattern of organization. Overall subject 6 demonstrated more differences, with a different CT
position for 3 chromosomes compared to a single subject and a significantly less internal locali-
zation of CT19 compared to all subjects. Observations of inter-individual reproducibility of
specific CTs (albeit a small sample size), demonstrates the importance of this organization.
Our results confirm that chromatin inside the nucleus is a dynamic entity and in constant mo-
tion [52]. Thus, all chromosomes exhibited some variation in positioning; however, some were
more defined than others with over 50% of CTs occupying distinct non-random positions.
With the exception of chromosome 1, the medium (6, 8, 10, 12, 14, 15) and smaller-sized chro-
mosomes (16, 17, 19, 20, 21, 22) consistently exhibited non-random positions in all subjects. In
contrast CTs, 2, 3, 4, 5, 7, 13, 18, and Y seem to have a less defined (random) position in the nu-
cleus (p>0.05). Furthermore, these results suggest that CT organization, at least for certain
chromosomes, could be utilized as part of a battery of genotoxicity assays to measure nuclear
health and monitor the level of DNA damage and/or DNA repair response.

We also purport repositioning of specific CTs following exposure to genotoxic agents
(H2O2 and/or UVB). CT repositioning was observed in all subjects for at least one chromo-
some, three days following exposure to the genotoxicants. Overall, more repositioning was ob-
served cumulatively following exposure to H2O2 than UVB (18 vs. 11 events). Seven CTs were
involved in a statistically significant alteration of their position that were common in both
H2O2 and UVB treated cells (4, 8, 10, 12, 17, 19, and X), whereas repositioning of chromo-
somes 6, 7, and 14 was exclusive to H2O2 and chromosomes 15 and 22 to UVB exposure. Of
note, is the observation, that several chromosomes were frequently repositioned in multiple in-
dividuals following H2O2 exposure and to a lesser extent UVB exposure (chromosomes 6, 8,
10, and chromosomes 15, and 19 respectively). Inter-individual variability of CT repositioning
following genotoxicant exposure was observed; with some subjects exhibiting less change (e.g.
subjects 1 and 2) than others (e.g. subject 5). This inter-individual difference warrants further
investigation and could be due to any number or combination of endogenous or exogenous
factors (e.g. sensitivity to genotoxic agents, efficiency of DNA damage recognition and repair,
age, diet, environment, stress, exercise, medication, and pathology). However, such studies in
humans are notoriously difficult to design and control and are beyond the scope of this study.
Another emerging feature was the greater versatility in the types of CT repositioning following
exposure to H2O2 compared to UVB. The predominant positional alteration of CTs after UVB
damage was a more constrained movement (less interior distribution) compared to H2O2 that
appeared to possess a greater degree of movement or potentially chromatin decondensation. In
the current study, all the repositioning events observed were peripheral movements, with no
significant reciprocal internal repositioning of CTs. It is possible that one or more CTs adopted
a smaller-scale internal repositioning event in response to the peripheral repositioning of other
CTs that was not detectable in our current system. Whether the repositioning events observed

nuclear interior to the nuclear periphery (Y axis). Panel A, displays the points that correspond to the upper
quartile (UQ), median (M) and lower quartile (LQ) on the Y chromosome. Odd numbered chromosomes and
chromosome X are represented by green bars, whereas even chromosomes and chromosome Y are
represented by purple bars. The column of numbers to the right of the box-plot displays the hierarchical
organization of CTs determined from the median CT data for the corresponding exposure conditions. The
column of CTs are ordered from the nuclear interior (bottom) toward the nuclear periphery (top). Numbers in
parentheses represents the mean median value for each CT (lower median values indicate closer proximity
to the nuclear interior). Note, data for all CTs is based on measurements taken in 600 cells (n = 6) with the
exception of the Y chromosome, which is obtained from 200 data points (n = 2).

doi:10.1371/journal.pone.0118886.g007
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following exposure to genotoxicants are the result of inter-individual variation or reflect a ran-
dom disruption of genome organization remains to be elucidated. Given that the experiment
was not repeated in the same individuals it was not possible to directly test these hypotheses.
However, our preliminary data has identified a handful of chromosomes that were more sus-
ceptible to repositioning, suggesting that certain regions of the genome could be preferentially
involved. It is clear that these hypotheses may not be mutually exclusive and warrant further
investigation in future studies.

Mehta et al. recently used a similar methodology for all human chromosomes, examining
whether CTs are repositioned as a result of genotoxic exposure including two fibroblast cell
lines [53]. This study reported that certain CTs repositioned towards the nuclear periphery
(CTs 17, 19, and 20), whereas others moved towards the nuclear interior (CTs 12 and 15) [53].
Despite the difference in the shape and size of fibroblasts and lymphocytes, they broadly have a
similar CT organization as reported by Boyle et al. [10], with CTs 1, 16, 17, and 22 being locat-
ed toward the nuclear interior and CTs 2, 13, and 18 being located more toward the nuclear pe-
riphery. Both our data and those of Mehta et al. [53] for unexposed cells are largely consistent
with those of Boyle et al. [10]. Boyle et al. [10], classified CTs into four groups based on wheth-
er there was a predominance of fluorescence in the following: 1) nuclear interior (CTs 1, 17, 16,
22, and 19); 2) no significant bias toward the interior or periphery (5, 21, 15, 10, 6, 1 and 4); 3)
less significant peripheral distribution (12, 9, X, Y and 20); and 4) nuclear periphery (7, 3, 13, 2,
8, 18, 11, and 4). Comparing this data with the radial hierarchy of CTs in this study from six
subjects demonstrates very similar groupings of CTs (Fig. 7). The largest differences in the ra-
dial distribution between the studies are for CTs 8, Y and 5, with CT 8 being more internally lo-
calized in this study, whereas CTs Y and 5 were more peripherally localized in this study
compared to Boyle et al. [10]. Five other chromosomes in this study showed a small difference
in localization, with CTs 1, 6 and 16 being slightly more peripherally localized and CTs 12 and
21 being slightly more internally localized in the current study compared to that of Boyle et al.
[10]. The relatively small variations observed between the two studies are reassuring, suggest-
ing reproducibility between different erosion analysis software and different methods to assess
the hierarchical radial organization of CTs. Additionally, it is important to note that one of the
major strengths of the current study is the inclusion of multiple subjects rather than a single in-
dividual as examined in the Boyle et al. study [10]. When looking at all participants in our
study, 12 different CTs (4, 6, 7, 8, 10, 12, 14, 15, 17, 19, 22, and X) were involved in a topologi-
cal alteration (p<0.05) following damage from H2O2 and UVB. CT repositioning for chromo-
somes 12, 17, and 19 were common with the Mehta study [53]. The current study included six
subjects also allowing the inter-individual variability and reproducibility of repositioning fol-
lowing genotoxicant exposure to be evaluated and also to identify common CTs (4, 8, 10, 12,
17, 19, and X) that were repositioned as a result of H2O2 and UVB damage. Our data suggests
that both gene rich (e.g. 12, 17, and 19) and gene poor (e.g. 4, and 8) chromosomes [42] were
associated with CT repositioning, compared to only gene rich chromosomes as observed in the
Mehta study [53]. Several factors could account for the differences observed between the two
studies: cell type, culture conditions, genotoxic agents, exposure conditions and lack of assess-
ment of variability and reproducibility between subjects as performed in the current study.

Repositioning of CTs as a result of DNA damage has also been observed when HeLa cells
were irradiated with α particles to initiate linear double strand breaks (DSBs) and distortions
of the track morphology of CTs through γ-H2AX staining suggested movement of CTs [54].
Other studies using a similar methodology to track repair foci, post irradiation damage yielded
mixed results in mammalian cells with little (photosensitized cells) or large distance movement
(osteosarcoma and HeLa cells) [52]. The bodyguard hypothesis proposes preferential damage
of DNA occurs in the peripheral heterochromatin to protect the euchromatin in the nuclear
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interior. However, localization of repair sites following H2O2 and UVC damage in fibrosarco-
ma cells toward the center of the nucleus in conjunction with the higher mutation rate seen in
the internally located CT19 [55] argues against this hypothesis. Therefore, the nuclear center
could be the preferred site for DNA damage and mutation with CTs located in the interior and
intermediate region of the nucleus being preferentially repositioned with the exception of a sin-
gle peripherally located CT7 following H2O2 exposure [37]. However, it is important to note
that differences in nuclear localization of DNA damage and CT repositioning will likely depend
on different types of damage, repair mechanisms, cell lines and growth conditions [52]. More-
over, we should not neglect that the spatial organization of chromosomes and genes is dynamic
with repositioning occurring as result of gene expression, quiescence, senescence, mutations
and diseases [21,27]. The movement of chromosome territories as result of DNA damage is not
a surprise when one considers that chromatin is in constant relative motion during interphase
and this motion fluctuates with ATP levels. Any constraint on the movement stems from the
chromatin fiber itself, the nature of nucleoplasm and protein-protein interactions that tether
loci to nuclear structures [52]. It appears that this movement of chromatin upon induction of a
DNA lesion (e.g. DSB) is part of the general cascade of events that form the DDR of the cell to
DNA damage. Evidence comes from the appearance of γ-H2AX molecules immediately after
DSB through phosphorylation of H2AX histones at serine 139. This appears to be a critical and
evolutionary conserved mechanism for chromatin reorganization that allows accessibility of re-
pair factors to the damaged site [8,37]. The appearance of these molecules seems to be more
correlated with gene rich chromosomes [53] or euchromatic regions [8]. Further evidence vali-
dating movement being part of the DDR response comes from yeast, where mutated upstream
components of DDR resulted in DSBs and loss of enhanced mobility [52]. In mammalian cells
a similar lower mobility has been described when uncapped telomeres were misinterpreted for
DSBs, in cells with a null ATMmutation (involved in DSB motion) [56].

Our results demonstrate that CTs following H2O2 damage had a greater variation in nuclear
distribution compared to control and UVB exposed cells. The findings in this study could po-
tentially indicate more decondensed chromatin, mobility and plasticity of CTs following H2O2

exposure and warrants further investigation. Chromatin typically decondenses around sites of
DNA damage to allow access of the repair machinery or to reduce the error risk during homol-
ogous recombination repair [8,57]. Additionally, differences in CT repositioning following ex-
posure to genotoxic agents could simply be a reflection of the different way that the lesion is
sensed and subsequently repaired [52]. It is clear that different repair rates exist following UV
irradiation in mammalian cells with repair occurring faster in GC rich, followed by AT rich
and then heterochromatic regions of the genome [38]. It seems plausible that the differences
observed in the distribution of CTs within the nucleus between the two genotoxic agents likely
reflects differences in the amount of damage induced; different mechanisms of DNA damage
and DDR that occur in response to the different agents. Furthermore, it seems likely that sub-
ject-specific differences in susceptibility to DNA damage, DNA damage recognition, fidelity
and efficiency of DDR will exist. This could in part, explain some of the inter-individual differ-
ences in CT repositioning observed in this study (e.g. number of events and CTs involved).

In terms of the hierarchical radial organization of lymphocytes reflects more of a gene-
density correlation which is in agreement with previous findings [9,18,51,58]. Gene rich chro-
mosomes (e.g. chromosomes 1, 15, 16, 17, 19, and 22) were preferentially located towards the
nuclear interior, whereas gene poor chromosomes (e.g. 2, 3, 4, 5, 13, and 18) were located more
towards the periphery. Certain chromosomes (e.g. 15, 16, 17, and 22) contain segmental dupli-
cations that are associated with regions of chromosome instability or evolutionary rearrange-
ment [59,60]. Therefore, one possible explanation for their topological arrangement is for
protection. The nuclear center is postulated to be an active transcription site, which plays a role
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in the maintenance of genome stability [37]. The sex chromosomes were localized in the inter-
mediate/peripheral region of the nucleus. Our data agree with previously published studies,
with the X chromosome demonstrating a more interior localization in comparison to the Y
chromosome [10].

Our preliminary findings need to be expanded to a larger study, but suggest that certain
CTs maintain a reproducible non-random organization between individuals and that certain
CTs were frequently involved in genotoxic specific repositioning events following DNA dam-
age. The emerging picture supports the compartmentalization of chromatin; thus, nuclear or-
ganization may influence the repair process. Recent evidence from yeast suggests that
overlapping nuclear territories repair more efficiently than sequences located in spatially dis-
tant territories [61]. Whether it is the recombinational efficiency or a transcriptional surge that
drives the repositioning of CTs warrants further investigation. Current data between repair
and transcription with chromatin mobility seems to be correlative, and experiments that would
address in real time the transcriptional output during a repositioning event are needed to pro-
vide more direct evidence [52].

Conclusion
In summary, current evidence suggests organization of chromosomes likely plays an important
role in the maintenance of genome integrity. Radial organization of chromosomes has the po-
tential to be utilized as a powerful research and clinical diagnostic tool. In order to do so it is es-
sential to evaluate and identify targets which are non-randomly organized in a “healthy state”
and repositioned in “disease or damaged states”. Additionally, future studies should investigate
CT repositioning at different time points and longer exposures to determine whether reposi-
tioning of CTs are transient or longer term effects. Temporal studies assessing the effect of gen-
otoxic agents and CT repositioning with additional assays to measure DNA damage (e.g.
comet, micronuclei, TUNEL) in combination with molecular studies to measure DNA repair
will provide important information regarding: 1) which regions are more prone to damage as
the result of specific agents; 2) DNA damage induced; 3) repair responses elicited; and 3) how
CTs are repositioned in response to genotoxicity.
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