
A weighted relative difference
accumulation algorithm for dynamic
metabolomics data: long-term elevated
bile acids are risk factors for
hepatocellular carcinoma
Weijian Zhang1*, Lina Zhou2*, Peiyuan Yin2, Jinbing Wang3, Xin Lu2, Xiaomei Wang1, Jianguo Chen3,
Xiaohui Lin1 & Guowang Xu2

1School of Computer Science & Technology, Dalian University of Technology, Dalian, China, 2Key Laboratory of Separation Science
for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China, 3Qidong Liver Cancer
Institute, Qidong 226200, China.

Dynamic metabolomics studies can provide a systematic view of the metabolic trajectory during disease
development and drug treatment and reveal the nature of biological processes at metabolic level. To extract
important information in a systematic time dimension rather than at isolated time points, a weighted
method based on the means and variations along the time points was proposed and first applied to
previously published rat model data. The method was subsequently extended and applied to prospective
metabolomics data analysis of hepatocellular carcinoma (HCC). Permutation was employed for noise
filtering and false discovery rate (FDR) was used for parameter optimization during the feature selection.
Long-term elevated serum bile acids were identified as risk factors for HCC development.

M
etabolomics is increasingly applied to studies of pathogenesis and biomarker identification1,2.
Metabolomics aims to comprehensively monitor alterations at the metabolic level in response to endo-
genous or exogenous stimuli3 and link metabolic disruptions to biological mechanisms4. Because meta-

bolism is a dynamic process, it is very important to monitor the dynamic responses of metabolites in response to
disease development and drug administration. Coupled with systematic metabolomics investigations, time-
series5,6 studies are increasingly recognized as advantageous in disease pathogenesis research, early diagnosis,
personalized medicine, and the elucidation of complex life processes.

Optional data processing methods for complex metabolomics time-course data are rare6. Most of algorithms
were proposed for large sets of time-series data, while the number of time points in a metabolomics time-series
study is often less than ten7. Short time series, together with large variables and small samples (characteristics of
metabolomics data), render many classic data analysis methods unsuitable for metabolomics dynamic studies6,8.

Time-series data are frequently analyzed by static methods that do not consider their dynamic nature6. For
example, three-dimensional data have been analyzed by means of PCA and PLS-DA, etc.9–14, without taking
advantage of time information. Parallel factor analysis15 (PARAFAC) can resolve data with three or more
dimensions and it can treat samples, features and time16 together to analyze overall metabolic trends.
However, PARAFAC is a time-consuming process17, and the number of principal components chosen greatly
influences the identification of physiologically relevant features18. Clustering algorithms are also applied to
analyze time-series data19–24 to group the features according to their dynamic changes. Methods have been
proposed to define important features by simulating the variable distribution or evaluating the smoothness of
the variables at each time point25,26. To model short time series in metabolomics25, each observed time series is
assumed to be a smooth random curve inferred by a functional data analysis approach. Berk et al.7 described a
statistical framework for estimating time-varying metabolic data and used a functional test statistic to detect
differences between groups. Trend analysis of time-series data27 is a method for untargeted metabolic feature
discovery that employs two univariate methods: autocorrelation as a measure of the smoothness of non-random
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behavior and curve-fitting to analyze the compounds. Although
these methods are compatible with short time-series datasets, each
observed time series is assumed as a smooth random curve. However,
when dealing with detailed time-series data where specific time
points must be treated differently, corresponding data processing
methods are needed.

Hepatocellular carcinoma (HCC) is one of the most lethal can-
cers28,29, and its incidence and mortality rates continue to increase30.
However, the mechanism of hepatocarcinogenesis remains obscure
because of the complicated interactions of multiple factors and indi-
vidual genetic variations, impeding early clinical intervention before
the development of HCC. Relatively effective treatments are available
when HCC is diagnosed early. HCC patients often have a history of
chronic liver diseases, leading to the introduction of screening pro-
grams among high-risk populations31, such as those infected with
hepatitis virus B (HBV) in Qidong, China (a high-incidence area of
HCC due to the high prevalence of HBV infection), who undergo
HCC screening every half year. In addition, a sample library has been
established in Qidong for HCC pathogenesis and early diagnosis
studies32–34.

In this study, a weighted relative difference accumulation algo-
rithm (wRDA) and its extended form were proposed. The wRDA
method was first used to treat our previously published rat model
data, and its extended form was further applied to a prospective
cohort study of HCC patients with the aim of revealing earlier
HCC diagnosis biomarkers and metabolic dysregulations contrib-
uting to hepatocarcinogenesis.

Results
The application of the wRDA to metabolomics data from the rat
HCC model. The proposed wRDA was first applied to our
previously published data for a rat HCC model induced by
diethylnitrosamine (DEN) administration35. In that study35, 52
differential metabolites were identified, of which three, taurocholic
acid (TCA), lysophosphoethanolamine 16:0 (LPE 16:0) and
lysophosphatidylcholine 22:5 (LPC 22:5), were defined as ‘‘marker

metabolites’’ for distinguishing the different stages of chemical
hepatocarcinogenesis. LPE 16:0 and TCA were more discrimi-
native between the disease group and control group, whereas LPC
22:5 was more discriminative between the HCC and non-HCC
samples.

Parallel to our previous feature-defining process, a two-level data
analysis procedure employing the wRDA (Fig. 1) was performed to
select meaningful features to discriminate between the models and
control, and between HCC and non-HCC samples. In the first level,
152 ion features were removed by means of permutation, leaving
1092 features with a false discovery rate (FDR) of 0 to constitute
feature subset 1. Then, Support Vector Machine36 (SVM) was con-
ducted based on the top 20 features (Fig. 2A) ranked by the wRDA.
Five fold cross validation was conducted 50 times. The average accu-
racy rate was 98.85% 6 0.66%, demonstrating that the top ranked
variables have a strong ability to distinguish disease samples from
controls. These metabolic features include two bile acids (TCA and
tauroursodeoxycholic acid (TUDCA)), LPCs, and LPEs with differ-
ent acyl chains and unsaturation levels. These results indicate a dis-
turbance of lipid metabolism in DEN-induced liver disease.

In the second level, the features in feature subset 1 were analyzed
again to calculate their ability to characterize the metabolic status of
the three different liver diseases. Using the top 20 ranked variables
(Fig. 2B), the average accuracy rate of the SVM classifier for discrim-
inating HCC and non-HCC samples was 93.12% 6 1.92%, dem-
onstrating that informative features can be defined by weighting
the time points according to their importance (here the importance
of the time points was decided according to prior knowledge). The
combinations of these features can denote disease progression
towards HCC.

To investigate the discrimination abilities of the top ranked 20
features defined by wRDA to distinguish the liver diseases from
the controls, their receiver operator characteristic curves are further
drawn with their area under curves (AUCs) calculated. Among 15
features (after deleting the redundant ions from the same metabo-
lite), three features TUDCA, feature with m/z of 636.3415 and LPE

Figure 1 | Flow chart of the analysis of the rat metabolomics data.
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22:6 are found to have higher AUCs of 0.97, 0.97 and 0.96, respect-
ively (Fig. S1) than that of TCA (0.94). And 12 features have larger
AUCs than that of LPE 16:0 (0.88) except for LPC 20:4 and feature
with m/z of 545.6404 (0.81 and 0.79, respectively). TUDCA, feature
with m/z of 636.3415 and LPE 22:6 were not included in 52 differ-
ential metabolites defined by VIP . 2 in the analysis of PLS-DA in
our previous work35. The Pearson correlation coefficients of TUDCA
and feature with m/z of 636.3415 with TCA are 0.71 and 0.94,
respectively. LPE 22:6 also has a high Pearson correlation coefficient
with LPE 16:0 (0.80). For discriminating HCC from non-HCC, LPC
22:5 has the largest AUC (0.87). Because the top ranked features are
related to bile acid and lipid metabolism disturbance which was
discussed in our previous paper35, here further explanation is omit-
ted. Collectively, the metabolic features derived from the rat model
metabolomics data demonstrate the excellent performance of the
wRDA in feature-ranking and demonstrate its potential in analyzing
time-series metabolomics data.

The application of w2RDA in HCC prospective metabolomics data
analysis. In this prospective cohort study, samples of 5 time points
from 11 HCC cases were collected during screening over 3.5 years.
The study aimed to identify prospective features of HCC, but the
biological events in the other time points before HCC occurrence
are unknown. Moreover, in contrast to animal model samples, the
collection times of samples from patients in the same stage were not
uniform. Therefore, parameter k was introduced into the wRDA to
reduce the influence of sample storage time. The settings of vi for each
time point and kj for each sampling time affect the measurement of the
features. To define the most suitable settings for v and k, linear

function, exponential function and proportional function were
tested with different changing factors (equal weights were included
as a special case of linear function). For n top-ranked features, the
lowest FDR was adopted to evaluate the settings of k and v. As shown
in Table 1, when v was an exponential function, the minimum values
of the lowest FDR were obtained for each k’s function setting. When k
was also an exponential function, the minimum FDR values in each
column were derived for the vast majority of different function
settings of v for n decreasing from 50 to 30. Furthermore, 194 k-v
pairs were derived from different functions and their corresponding
changing factors, resulting in a low FDR of less than 5% (including 192
k-v pairs with the lowest FDR equaling 0 at n 5 30 and 2 k-v pairs
with the lowest FDR equaling 2.86% at n 5 35). Among the 194 k-v
pairs, the probability of both v and k being exponential was the
highest (25.26%). Therefore, exponential function is more suitable
for k and v than other functions.

When k and v were fixed as exponential functions, the lowest FDR
was 0% at n 5 30, and there were 47 paired values of changing factors
for k and v (Table S1). To minimize the weight differences among
the sampling points, the smallest changing factor of k was chosen, qk

5 0.5. Once k was selected, the smallest changing factor of v was
defined as qv 5 0.6.

Under the optimized settings for k and v, the features were ranked
according to their w2RDA scores. The top 30 ranked variables
(Table 2) were chosen as the most important metabolic features
related to HCC development.

The most important variables were bile acids, with the exception of
dihydroxyandrostenone sulfate and LPE 18:2. The serum concentra-
tions of the primary bile acids cholic acid (CA) and chenodeoxy-

Figure 2 | Top 20 features ranked by wRDA for discriminating liver diseases from healthy control (A) and HCC from non-HCC stages (B). Redundant

ions from the same compound are deleted. LPC: lysophosphatidylcholine, TCA: taurocholic acid, TUDCA: tauroursodeoxycholic acid, LPE:

lysophosphatidylethanolamine.
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Table 1 | Optimization of k and v according to the lowest FDR values under different function settings

n
the lowest
FDR value

k’s, v’s
functions 50 45 40 35 30

a, a9 44.00 35.56 35.00 40.00 36.67
a, b9 36.00 35.56 37.50 31.43 30.00
a, c9 34.00 33.33 35.00 31.43 20.00
a, d9 34.00 35.56 35.00 31.43 30.00
b, a9 40.00 37.78 40.00 31.43 23.33
b, b9 36.00 35.56 40.00 22.86 10.00
b, c9 34.00 35.56 32.50 17.14 3.33
b, d9 34.00 35.56 32.50 20.00 6.67
c, a9 40.00 37.78 37.50 20.00 0.00
c, b9 34.00 35.56 30.00 20.00 0.00
c, c9 34.00 33.33 30.00 2.86 0.00
c, d9 34.00 33.33 30.00 14.29 0.00
d, a9 40.00 37.78 37.50 20.00 6.67
d, b9 34.00 37.78 32.50 22.85 0.00
d, c9 34.00 33.33 32.50 17.14 0.00
d, d9 34.00 35.56 32.50 20.00 0.00

*Combinations of k and v for four different functions were tested; the lowest derived FDR values are listed. Functions for k and v: a and a9-equal weights; b and b9-linear function; c and c9-exponential
function; d and d9- proportional function.

Table 2 | Top 30 variables ranked by the w2RDA in the HCC prospective study

Ranking No. Score tR m/z Compounds Existing form Ion mode

p value

M0 vs C0 M vs C

1 1.17 9.95 528.2631 GDCAS M2H ESI2 0.02 4.47E206
2 1.12 11.73 448.3063 GCDCA M2H ESI2 0.09 5.29E207
3 1.07 10.32 498.2889 TCDCA M2H ESI2 0.05 2.80E205
4 1.07 10.65 498.2889 TDCA M2H ESI2 0.08 7.19E204
5 1.05 10.13 464.3012 GCA M2H ESI2 0.06 1.50E204
6 1.01 9.05 514.2838 TCA M2H ESI2 0.06 4.02E204
7 1.01 11.57 407.2791 CA M2H ESI2 0.02 2.14E202
8 0.99 10.67 500.3031 TDCA M1H ESI1 0.04 1.14E203
9 0.99 9.68 528.2631 GCDCAS M2H ESI2 0.03 6.13E206

10 0.98 12.07 448.3063 GDCA M2H ESI2 0.1 4.79E204
11 0.98 13.98 391.2848 DCA M2H ESI2 0.04 2.02E202
12 0.96 19.99 802.5942 UN — ESI1 0.57 3.06E201
13 0.93 8.9 498.2889 TUDCA M2H ESI2 0.11 4.16E203
14 0.92 9.73 432.3106 GCDCAS Fragment ESI1 0.05 2.87E205
15 0.9 12.1 450.3206 GDCA M1H ESI1 0.13 2.11E204
16 0.89 13.68 391.2848 CDCA M2H ESI2 0.02 3.28E202
17 0.88 10.09 929.6078 GCA 2M2H ESI2 0.13 1.36E202
18 0.87 7.41 383.1522 DHEAS M2H ESI2 0.02 2.61E206
19 0.87 19.79 228.1955 UN — ESI1 0.34 1.85E201
20 0.87 20.3 802.5941 UN — ESI1 0.92 2.56E201
21 0.86 17.5 524.3701 UN — ESI1 0.79 5.75E201
22 0.86 10.32 500.3046 TCDCA M1H ESI1 0.21 1.35E203
23 0.86 12.45 391.2848 HDCA M2H ESI2 0.16 2.66E201
24 0.85 14.36 476.2763 LPE 18:2 sn-2 M2H ESI2 0.13 4.80E205
25 0.83 12.04 897.6172 GDCA 2M2H ESI2 0.18 1.68E202
26 0.82 10.31 999.6003 TCDCA 2M1H ESI1 0.13 3.83E203
27 0.8 11.54 373.2736 CA Fragment ESI1 0.03 2.10E202
28 0.79 9.93 931.6241 GCA 2M1H ESI1 0.18 2.52E202
29 0.78 17.25 524.3702 UN — ESI1 0.58 8.13E201
30 0.78 9.75 450.3218 GCDCAS Fragment ESI1 0.07 4.80E202

M represents the group of patients who were diagnosed as having HCC, and C means HBsAg1 control group. M0 and C0 represent the HCC group and control group at time point T0. CA: cholic acid,
CDCA: chenodeoxycholic acid, DCA: deoxycholic acid, GCA: glycocholic acid, GCDCA: glycochenodeoxycholic acid, GDCA: glycodeoxycholic acid, TCA: taurocholic acid, TCDCA:
taurochenodesoxycholic acid, TDCA: taurodeoxycholic acid, GCDCAS: glycochenodeoxycholate sulfate, GDCAS: glycodeoxycholate sulfate, HDCA: hyodeoxycholic acid, TUDCA:
tauroursodeoxycholic acid, UN: unknown compounds or ions, DHEAS: 3b,16a-Dihydroxyandrostenone sulfate, LPE: lysophosphatidylethanolamine.
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cholic acid (CDCA) were significantly higher in the HCC group than
in the control group (at T0) when malignant hepatic tumors were
identified. Four other bile acids, the secondary bile acids deoxycholic
acid (DCA) and taurodeoxycholic acid (TDCA) and the sulfated bile
acids glycodeoxycholate sulfate (GDCAS) and glycochenodeoxycho-
late sulfate (GCDCAS), were also elevated in HCC sera compared to

controls. When the serum levels of bile acids were compared over the
entire monitoring time period, most were significantly elevated in
patients in which HCC occurred compared to individuals that were
hepatitis B surface antigen positive (HBsAg1), with the exception of
hyodeoxycholic acid (HDCA) (Table 2). The relative serum levels of
bile acids at each time point are shown in Fig. 3.

Figure 3 | Relative content of serum bile acids in the HCC group compared to the HBsAg1 control group at paired time points. T0: the stage at which

patients were initially diagnosed with HCC. Serum samples collected every 6 months prior to T0 at T1 (half a year ago), T2 (one year ago), T3 (one and a

half years ago), T4 (two years ago) were then identified. Abbreviations are the same as in Table 2. * indicates significance (p , 0.05).
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Discussion
HCC usually develops from chronic liver diseases, and a long time is
required for the formation of malignant hepatic tumors. The mech-
anism underlying the occurrence and development of HCC remains
to be elucidated.

Bile acids are synthesized in the liver and their functions are not
limited to facilitating the absorption of lipids and lipid-soluble nutri-
ents37,38 but also include acting as signaling molecules to regulate
glucose and lipid metabolism39,40 and apoptosis41. Bile acids are
detergents and are cytotoxic, and their concentrations are tightly
regulated under normal physiological conditions42,43. We previously
demonstrated that glycocholic acid (GCA) and glycochenodeoxy-
cholic acid (GCDCA) are elevated in hepatitis, cirrhosis and HCC
accompanied by cirrhosis44. The serum levels of seven bile acids were
quantitatively measured and compared among HCC patients with-
out liver cirrhosis and hepatitis, HCC patients with liver cirrhosis
and hepatitis, benign liver tumor patients with liver cirrhosis and
hepatitis, and healthy controls, and elevated serum GCDCA, GCA
and TCA levels and decreased serum CDCA levels were correlated
with liver cirrhosis and hepatitis45. We previously demonstrated that
conjugated GCA, GCDCA, TCA and taurochenodeoxycholic acid
(TCDCA) are potential biomarkers of liver cirrhosis46.

Fasting serum levels of primary bile acids47 can be affected by
enterohepatic circulation48, leading to intra-individual variations.
Thus, multiple time points of circulating bile acids were compared
together within the monitoring period instead of at a single time
point. This comparison revealed that all bile acids except HDCA
were significantly higher in HCC patients than in HBsAg1 controls.
The more hydrophobic secondary bile acids DCA and lithocholic
acid (LCA) have been reported to increase HCC risk49,50.

Activation of the YAP pathway was recently shown to be respons-
ible for bile acid-dependent tumor promotion51. The development of
spontaneous liver tumors in a Fxr-/- Shp-/- double-knockout (DKO)
mouse model was employed in the study to produce chronically
elevated bile acid levels, which enabled the study of the mechanism
of hepatic malignant tumor promotion by long-term high circulating
levels of the bile acids CA and CDCA in mice51. Compared to the
HBsAg1 control group, serum CA, CDCA and DCA levels were
slightly elevated in the HCC group during the two-year monitoring
period, and their glycine- and taurine-conjugated forms were ele-
vated to a greater extent. Thus, the increased serum levels of bile acids
may be due to leakage from damaged hepatic cells or the alteration of
bile acid transfer protein activity52 rather than upregulation of bile
acid synthesis. When more bile acids enter the blood, they may
further intensify hepatic injury because of their cytotoxic nature
and may simultaneously act as signaling molecules to promote hep-
atic tumor formation.

No differences in levels of ursodeoxycholic acid (UDCA), which
has been reported to have protective effects53,54, were observed in
HCC patients and HBsAg1 controls during the two years before or
at HCC diagnosis, whereas levels of its taurine-conjugated form were
slightly elevated in HCC patients. The sulfated bile acids GDCAS and
GCDCAS were elevated in HCC patients during the two years prior
to diagnosis. Sulfotransferase-2A1, which has been reported to be
underexpressed in HCC tumor cells55, catalyzes the sulfation of bile
acids for their elimination and detoxification56. Sulfotransferase
activities have been reported to decrease with the severity of liver
disease from steatosis to cirrhosis57. The long-term increase in sul-
fated bile acids in HCC patients may be due to their increased avail-
ability for sulfation rather than enhanced SULT2A1 activity.

Because chronic hepatitis and cirrhosis are typically precursors of
HCC, in combination with the above evidence that bile acids promote
hepatic tumor formation, it is reasonable to speculate that long-term
high circulating bile acids are potential high-risk factors for HCC.
TCA is elevated since week 6 in model rats treated with DEN com-
pared to controls35. The 13 bile acids mentioned above were extracted

from the DEN-induced rat HCC model data acquired in positive
mode, which revealed that the 10 bile acids (CA, CDCA, DCA,
GCA, GCDCA, glycodeoxycholic acid (GDCA), TCA, TCDCA,
TDCA and tauroursodeoxycholic acid (TUDCA)) detected were ele-
vated in sera in the model group compared to the control group since
week 6 (Supplementary Fig. S2), coincident with the appearance of
hepatic cell injury due to DEN treatment. It has been reported that
40% of HCC patients infected with HBV from Qidong have high
exposures to aflatoxin B158. Although the mechanism of HCC patho-
genesis may vary greatly because of different etiological agents, the
common long-term elevated serum bile acids were observed before
HCC occurrence. Collectively, it can be speculated that the elevated
levels of circulating bile acids in chronic liver disease may play an
important role in the process of malignant hepatic tumor formation
in both humans infected with HBV and DEN-treated rats.

In this article, to identify discriminative metabolites that may
reflect dynamic biochemical developments, a wRDA method based
on the weighted mean and variance analysis along the time points
was proposed. Rather than screening differentially expressed vari-
ables at isolated time points as in static methods, the wRDA can
investigate variables comprehensively along all time points in feature
selection. Moreover, weighting the time points emphasizes the influ-
ence of relevant, important time points by setting relatively larger
corresponding weights, and vice versa. Thus, high efficiency can be
achieved in identifying the key differences between two groups along
the entire time course.

The application of the wRDA to the rat metabolomics data
demonstrated that it is an effective method for defining metabolic
features that may be related to disease status. In the prospective
cohort study, continuously high serum bile acid levels within a
two-year monitoring time period were identified as risk factors for
HCC development. The weights of the time points can be decided
based on prior knowledge or optimized by the lowest FDR. Other
functions and changing factors for weighting can be simulated, and
other optimization standards can be introduced in further studies.
Collectively, our proposed method, by analyzing the weighted rela-
tive difference accumulation along the time dimension, effectively
defines the features of dynamic metabolism related to disease
development.

Methods
wRDA and its application to the rat liver disease model. wRDA. When analyzing
the metabolomics time course data of two different groups, for simplicity, let C denote
the control group and M denote the model group. Let Ti denote a time point, 0 # i ,

N, where N is the number of the time points.
In bioinformatic data analysis, the method used to measure the discriminative

ability of a feature among different groups is a key consideration. SAM59 scores the
‘‘relative difference’’ of a gene over repeated measurements according to the mean and
the standard deviation. Based on the idea of ‘‘relative difference’’, the wRDA considers
the variations of the means along the time points to dynamically study the biological
process and screen biomarkers that reflect differences between the two groups and
characterize the development of the model group. A variable with a higher wRDA
score is more discriminative between the two groups. The detailed principles of the
wRDA are outlined as follows:

In metabolomics time-series studies, metabolites are measured at each time point.
Because differences in metabolite levels in the two groups may occur in a process, the
accumulation of distance between the mean values of a given feature f at all time
points, D(f), reflects the discriminative ability of feature f:

D(f )~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN{1

i~0

½mC,f (i){ mM,f (i)�2 �vi

vuut , ð1Þ

where mC,f(i) and mM,f(i) are the mean values of feature f at time point i in the C and M
groups, respectively and vi represents the weight of time point i. Different time points
may play different roles in the development of differences between the two groups,
resulting in different weight settings. In particular, some time points may occur at
typical stages for biological events and hence merit greater attention and relatively
large weights.

Furthermore, the standard deviation is applied to enable a fair comparison among
the discriminative abilities of features. Let
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s(f )~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN-1

i~0

vi � s2
C,f (i)z

XN-1

i~0

vi � s2
M,f (i)

vuut , ð2Þ

wheresC,f(i) andsM,f(i) are the standard deviations of feature f at time point i in the C
and M groups, respectively. Hence the ‘‘weighted relative difference accumulation’’ of
a feature f between the C and M groups over all time points is calculated as wRDA(f):

wRDA(f )~
D(f )

s(f )ze
: ð3Þ

e is a small positive value introduced to moderate or regularize the wRDA score and
potentially reduces the relative impact of small variances. In this study, e was set to
0.005.

Data source for the rat liver disease model. Metabolomics dynamic data for the rat liver
disease model35 were employed using the model obtained from the Shanghai
Experimental Animal Centre. Serum samples were collected from two groups, control
rats and rats with liver disease induced by DEN, every two weeks from week 6 to week
20. A total of 8 monitoring time points were obtained. In this animal model, the serial
progression of hepatocarcinogenesis includes three disease stages: the inflammation
stage (week 6–week 8), the cirrhosis stage (week 12–week 14), and the HCC stage
(week 18–week 20). All samples at each time point were collected synchronously in
this animal experiment.

The application of the wRDA to the rat liver disease model. The wRDA was first applied
to the metabolomics data of the rat liver disease model. First, features whose values
equaled zero in more than 20% of the samples60 at each time point were removed,
leaving 1289 features. Then, outlier correction was conducted (a sample for feature f is
an outlier if its value is beyond the range m(f) 6 2s(f), where m(f) is the mean value of f
and s(f) is the standard deviation of f in the corresponding group13). Assuming that
the feature followed a prior distribution, the outlier was replaced by a random selected
sample value following this distribution.

To select the features reflecting the different developments between the two groups
and define the features discriminating HCC samples from non-HCC samples, the
wRDA was applied at two levels (Fig. 1).

(1) In the first level, to study the dynamic differences between the liver disease
group and the control group, equal values of 1/8 were assigned to v at all time points.
The features defined together reflect the entire liver disease status of the model group
from week 6 to week 20. Permutation was conducted 200 times to filter noise and non-
informative features.

(2) At the second level, the wRDA was applied again to measure the variables in
feature subset 1 (Fig. 1), and the weights (v) of three time points, week 6, week 12 and

week 18, which were defined as the typical stages of hepatitis, cirrhosis and liver
cancer, were set to 0.3, 0.3, and 0.4, respectively. The stage at which liver malignant
tumors occur is the most important and merits greater attention, as reflected by a
larger weight. The weights (v) of the other time points were set to zero. The weight
adjustment allowed the most informative features characterizing the three different
liver diseases to be targeted, particularly those capable of distinguishing HCC from
non-HCC.

w2RDA and its application in the HCC prospective cohort study. w2RDA. In
epidemiological screening, people with high risk are checked at certain time intervals.
One time point may lie in the onset stage of a disease or a malignant tumor, and other
time points may be a certain time interval before or after the key biological event.
However, not all patients with a disease or a malignant tumor were spot at a uniform
screening period, and thus samples at each disease stage may be collected at different
sampling times. To measure the features more accurately, a weight k for different
sampling times was introduced:

w2RDA fð Þ~ D’ fð Þ
S’ fð Þze

, ð4Þ

D0(f )~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN{1

i~0

(
Xpi{1

j~0
kj � ½mC,f (i,j){ mM,f (i,j)�2 ) � vi

vuut , ð5Þ

where pi is the number of the sampling times at time point i; mC,f(i, j) and mM,f(i, j) are
the average levels of feature f at the sampling time j of the ith time point in the C and M
groups, respectively; and kj is the weight of the jth sampling time. The extended
standard deviation by considering the sampling time differences at each time point is
defined as follows:

s0(f )~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN-1

i~0

vi �(
Xpi{1

j~0
kj � s2

C,f (i,j))z
XN-1

i~0

vi �(
Xpi{1

j~0
kj � s2

M,f (i,j))

vuut , ð6Þ

where sC,f(i.j) and sM,f(i,j) are the standard deviations of feature f at the sampling
time j of the ith time point in the C and M groups, respectively.

HCC prospective cohort study and data collection. Serum specimens were obtained
from a prospective cohort in Qidong, Jiangsu Province, China. From May 2009 to
October 2012, residents of the Qidong area were invited for a health examination as
part of the HCC screening study. Table 3 shows the baseline characteristics of the
enrolled HCC and HbsAg1 control subjects. Each participant underwent serological
hepatitis tests (HBsAg, hepatitis B e antigen (HBeAg), anti-hepatitis C virus (HCV)),

Table 3 | Baseline characteristics of the enrolled HCC and HBsAg1 control subjects at T0

HCC patients (n 5 11) Controls (n 5 22)

Age (year, range, median) 46–64, 52 44–66, 54
Sex (male/female) 9/2 18/4
HBsAg positive (Number) 11 22
ALT . 45 (U/L) — —
AFP . 20 (ng/mL) 6 1

HBsAg, hepatitis B surface antigen; ALT, alanine aminotransferase; AFP, alpha-fetoprotein.

Figure 4 | Sampling for HCC and HBsAg1 control groups from May 2009 to October 2012. T0: the stage at which patients were initially diagnosed with

HCC. Serum samples were collected every 6 months prior to T0 at T1j (half a year ago), T2j (one year ago), T3j (one and a half years ago), and T4j (two years

ago).
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abdominal ultrasonography (US), serum alpha-fetoprotein (AFP) and alanine ami-
notransferase (ALT) tests at approximately six-month intervals. If an individual had
abnormal results from US or higher AFP levels (greater than 20 ng/mL), then
intensive surveillance by computed tomography (CT), magnetic resonance imaging
(MRI), and/or hepatic angiography were employed to identify the space-occupying
lesion. In total, 11 HCC cases were identified in a 3.5-year screening period. Their
serum samples at the time of HCC diagnosis and samples within the 2 years preceding
the initial HCC diagnosis were selected for analysis. Another 22 HBsAg1 individuals
were taken as a positive controls with matched age, sex, sample collection time points
and storage conditions (220uC). The details of serum sample preparation, liquid
chromatography-mass spectrometry (LC-MS)-based metabolic profiling and data
preprocessing are available in the supplementary material.

The application of the w2RDA in the HCC prospective cohort study. For simplicity, the
HCC and HBsAg1 control groups are also denoted as M and C, respectively. T0j, T1j,
T2j, T3j and T4j (Fig. 4) are used to mark each stage (time points). T0j represents the
stage when HCC was diagnosed, whereas T1j, T2j, T3j and T4j represent the stages 0.5,
1, 1.5, and 2 years before T0j, respectively. HCC patients were identified from the
participants at four screening periods in this study; thus there are four sampling times
for each stage (Fig. 4). Taking the T0j stage as an example, patients were diagnosed
with liver cancer in May 2011, Nov. 2011, May 2012 and Oct. 2012. The corres-
ponding serum samples at 6 months, 12 months, 18 months and 24 months prior to
HCC diagnosis were then collected. The longest time interval of the samples at each
stage from different sampling times was 1.5 years. Therefore, the w2RDA was applied
to further consider the possible influence of different sampling times.

The aim of the Qidong cohort study was to identify prospective features related to
the occurrence of HCC. The settings of the weights v and k could affect the feature
measurement of w2RDA. T0j is the onset stage of HCC and therefore is the most
important. The closer the other time points are to T0j, the more similar their metabolic
characteristics are to those of HCC. Hence, for v (and k), three different setting
methods were tested: a linear function, a proportional function and an exponential
function. FDR59,61 was adopted to evaluate the results under different weight settings.
For the linear function vi 5 1.0 1 (N-i-1)q, 0 # i , N, q is a parameter factor. When q
5 0, all time points have the same weight. For the proportional function vi 5 (1.0 1

q)(N-i-1), 0 # i , N. Many metabolomics experiments use natural exponential func-
tions to estimate time-varying profiles6; in this case, vi 5 e (N-i21)q, 0 # i , N. In the
latter two functions, q is also a changing factor. In the Qidong cohort study, to
consider the influences of all the monitoring time points on metabolism, the differ-
ences of vi should not be too large. q was restricted from 0.1 to 1.0 and was tested with
a step increment of 0.1. In addition, T0j is the most important stage when malignant
hepatic tumors are discovered, and thus its weight should be larger than those of the
others. Similarly, the weight k was also tested using a linear function, proportional
function and exponential function. The sample with the shortest storage time should
have the greatest weight.
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