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Local health departments (LHDs) play a vital
role in protecting the health of communities
and improving population health by leading
and coordinating surveillance and health pro-
motion efforts. There are more than 2800
LHDs in the United States, and they collaborate
closely with public and private organizations
to develop programs and enhance the capacity
of local communities to address public health
challenges.1 To carry out these responsibilities
in an effective manner, it is necessary to in-
corporate scientific evidence into program de-
sign and decision-making processes.2---4

Evidence-based decision-making (EBDM)
involves “making decisions on the basis of the
best available scientific evidence, using data
and information systems systematically, apply-
ing program-planning frameworks, engaging
the community in decision making, conducting
sound evaluation, and disseminating what is
learned.”2(p175),5 Although there is increasing
support for the use of EBDM in public health
practice, many LHDs use evidence-based ap-
proaches inconsistently because of a lack of
expertise and resources, as well as the lack of
availability of evidence-based programs that
are adaptable to local contexts. This is the case
despite the general interest of LHD leadership
in the systematic use of EBDM to inform
program design, development, and adoption.5

Systems science methodologies may provide
a logical and cost-effective approach to imple-
menting EBDM at LHDs that face resource
constraints. A 2010 report from the Institute of
Medicine (For the Public’s Health: The Role of
Measurement in Action and Accountability)
made key recommendations to improve health
data analysis and reporting, and proposed that
the US Department of Health and Human
Services should,

coordinate the development and evaluation and
advance the use of predictive and system-based

simulation models to understand the health
consequences of underlying determinants of
health. HHS should also use modeling to assess
intended and unintended outcomes associated
with policy, funding, investment and resource
options.6(p9)

We assessed how systems science method-
ologies might be useful to bridge resource gaps
at LHDs; these gaps impede the implementa-
tion of EBDM to solve local population health
challenges. Although there are many systems
science approaches that can be used to un-
derstand complex systems (e.g., network anal-
ysis, system dynamics modeling, discrete-event
simulation), we focused on agent-based mod-
eling (ABM) because this methodological
framework allowed us to evaluate how in-
dividuals behave and naturally evolve based
on a set of rules that might be more consistent
with reality and the way people think about
health progression and human and social in-
teractions. ABM is a relatively new modeling
approach compared with other systems science

methodologies. Examples of its use in public
health include studies of epidemics and health
behaviors (e.g., drinking and smoking).7---10

To demonstrate how ABM could be used to
embed EBDM in public health practice at the
LHD level, we studied the potential effects—in
terms of health outcomes over time—of a life-
style program or intervention in different local
populations and compared the results with the
natural progression of outcomes for these
populations. More specifically, we looked at
how LHDs located in 4 areas of New York State
could use EBDM, within a systems science
model, to help them understand the potential
impact of implementing lifestyle interventions
targeting cardiovascular disease (CVD) preven-
tion. These model interventions were designed
to be consistent with the goals of the state
prevention agenda because they relate to con-
ducting activities and developing programs to
prevent chronic disease and improve cardiovas-
cular health.11 LHDs in the state have conducted
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community health planning and developed
improvement plans that are used to track
progress toward meeting the health objec-
tives of the Prevention Agenda at the local
level.11 As such, systems science methodolo-
gies might prove useful to help LHDs achieve
their objectives by incorporating EBDM into
their approach.

METHODS

The New York Public Health Practice-
Based Research Network conducted small
group interviews and focus groups in 2010
with participants from 31 LHDs who had
decision-making responsibilities.5 The
study focused on how decisions were made
at their LHDs, as well as on knowledge and
use of EBDM. Although there was strong
support and desire to implement EBDM,
experience with EBDM was limited, and it
was not systematically applied in public
health practice. The study identified
strong leadership, workforce capacity,
resources, funding, data access, and suit-
able program models as some of the key
factors related to the adoption and use of
EBDM at LHDs.5

Table 1 lists key EBDM processes together
with barriers to implementation and how sys-
tems science methodologies can be applied to
address public health practice challenges at
LHDs. A common barrier to the implementa-
tion of EBDM processes at LHDs is that
specialized human or financial resources are
required for effective implementation, but
these resources are not always available at the
local level. For example, the first EBDM process
involves making decisions on the basis of the
best available scientific evidence. LHDs may
not have full access to the literature needed to
conduct systematic reviews or to carefully
assess the latest evidence reported. Appropri-
ately designed systems science models can fill
this gap, because many of them are built on the
best available scientific evidence on how dis-
ease progression and health systems evolve.
Thus, a well-constructed systems science model
has already internalized the scientific evidence
and predictions; therefore, simulations from
these models are inherently evidence-based.

Systems science methodologies can also be
used to engage the community in decision-
making. Interactive system dynamics models
have been used to help health planners to
convene community groups, identify policy

priorities, and support community coalitions.12

Systems science models are particularly useful
to help audiences visualize different policy
scenarios, which may be useful to facilitate
stakeholder engagement and strategic align-
ment.

Lastly, systems science can be used to project
long-term outcomes of programmatic and
policy relevance to LHDs (e.g., informing the
likely outcomes of a diabetes self-management
program designed to prevent complications like
foot ulcers or diabetic retinopathy).13

Model

Weused the New York Academy of Medicine
Cardiovascular Health Simulation (NYAM-CHS)
Model to evaluate potential local level outcomes
of a lifestyle program that reduced the pro-
portion of the population who smoked and who
were overweight, while increasing the propor-
tion of the population whowere physically active
and followed a healthy diet.14 The NYAM-CHS
model was developed based on a comprehensive
analysis of the scientific evidence from peer-
reviewed literature. The model can be used to
facilitate and inform decision-making for LHDs
by predicting population health trajectories,
to engage community stakeholders with data

TABLE 1—Evidence-Based Decision-Making Processes, Barriers, and Potential Benefits from System Science Methodologies

Evidence-Based Decision-Making Processes Barriers to Implementation Benefits From Applying Systems Science Methodologies

Synthesize best available scientific evidence Limited access to relevant databases and literature to conduct

systematic reviews; latest evidence difficult to interpret and

translate at the local level

Reduce the need for literature review by incorporating best

available scientific evidence in systems science models

Use data and information systems

systematically

Lack of resources for data collection; limited information

technology at the local level; difficulties tracking populations

over time

Systems science models can be used to simulate what happens to

individuals or populations over time, even if data sources are

limited

Use program planning strategies Difficulties prioritizing local public health challenges and

identifying process and outcome measures

Facilitate understanding of scientific evidence and impact of

interventions on local populations through data visualization and

population animation, thus promoting coordination

Engage the community in decision-making Communicating with different community organizations to identify

policy priorities and build consensus is challenging

Systems science models can be used to help audiences visualize

different policy scenarios, facilitating stakeholder engagement

and strategic alignment

Conduct robust program evaluation Comprehensive program evaluation difficult because of data

needs, particularly for programs with long-term outcomes

Although model simulations cannot be used to conduct robust

program evaluation, they can provide useful information about

projected or expected outcomes

Disseminate lessons learned Results difficult to convey retrospectively Model simulations can be used to show how a program or

intervention may work over time under different scenarios and

assumptions
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visualization and animation, and to evaluate
intervention programs and establish evidence for
future implementation. It is designed to track
population health outcomes and mortality over
a user-specified period of time. Through a user-
friendly interface to the model, users can select
varying combinations of initial population char-
acteristics and interventions to evaluate different
questions and scenarios.

The conceptual framework for the NYAM-
CHS model builds on the 7 health factors used
by the American Heart Association (AHA) to
define ideal cardiovascular health (i.e., not
having CVD while also not smoking, being
physically active, having a healthy diet and
a normal body weight, and achieving optimal
cholesterol, blood pressure, and blood glucose
levels).15 Each agent (person) in the model is
defined according to these 7 health factors, as
well as by age, gender, and history of myocar-
dial infarction (MI) or stroke.

ABM is a relatively new approach and has
been shown to have many advantages over
other systems science approaches, in that it can
be utilized with complex systems characterized
by heterogeneity, nonlinear dynamics, and
randomness.16,17 Transition probabilities
among different health states stratified by age
and gender were obtained from published
studies.18---35 The correlations among the health
factors and CVD were assessed using risks of
benefit and harm following evidence-based
medicine and public health. For example, the
risks of having an MI or stroke were calculated
using the widely accepted Framingham CVD
Risk Calculator.1

The model demonstrated consistent internal
validity and face validity through extensive
examination of model structure and code
among the development group and through
consultations with CVD experts. Parameters
were calibrated, and desirable predictive validity
was confirmed by favorable statistical test results
for several health outcomes (e.g., by comparing
simulated and actual results using nationally
representative data from the Behavioral Risk
Factor Surveillance System [BRFSS]).14 Although
none of the systems science methodologies (in-
cluding ABM) can replace actual comparative
effectiveness research, the NYAM-CHS Model
might provide insights into how to select effec-
tive population-specific interventions to improve
cardiovascular health rapidly and inexpensively.

Data

We used data from the BRFSS for 4 areas of
New York State to analyze how LHDs could
use ABM to inform program implementa-
tion.36,37 The BRFSS is a telephone survey
conducted by state health departments across
the United States. The target population in-
cludes adults ages 18 years and older living in
households, and the survey includes standard
core questions related to preventive health
practices and chronic health conditions. We
used data from the 2007 BRFSS to obtain
demographic and health information on 4
areas in the state: New York City (NYC; Bronx,
King, New York, Queens, and Richmond
counties), the Rochester Metropolitan Statisti-
cal Area (MSA; Livingston, Monroe, Ontario,
Orleans, and Wayne counties), the Suffolk
County-Nassau County Metropolitan Division
(Nassau and Suffolk counties), and the Buffalo-
Cheektowaga-Tonawanda MSA (Erie and
Niagara counties). These 4 regions were selected
based on sample size and because they are
part of the Selected Metropolitan/Micropolitan
Area Risk Trends (SMART) project of the
Centers for Disease Control and Prevention.38

The SMART project uses BRFSS data to track
health outcomes and assess public health
priorities in selected areas. The NYC area
defined in SMART included other surround-
ing counties, but we only included the 5 NYC
counties (boroughs) because this is where

local public health decisions are made for
NYC.

The variables selected included age, gender,
whether the respondent was a current smoker,
had a normal weight (body mass index, or
BMI [weight in kilograms divided by height in
meters squared]< 25), was physically active
(> 150 min/wk of moderate physical activity),
had a healthy diet (ate ‡5 fruits or vegetables/d),
did not have diabetes, hypertension, or high
cholesterol, and had no history of MI or stroke.
We estimated means or proportions for each of
these variables for the population aged 20 to
79 years in 2007 and then compared the ABM
simulation results with the population aged 25
to 84 years in 2012 to validate the predictive
ability of the model. After excluding respon-
dents with missing data, the sample sizes for
2007 and 2012, respectively, were 1391 and
1657 in NYC, 393 and 354 in the Rochester
MSA, 678 and 712 in the Suffolk County-
Nassau County Metropolitan Division, and 427
and 377 in the Buffalo-Cheektowaga-Tona-
wanda MSA.

RESULTS

Table 2 reports the population characteris-
tics for adults aged 20 to 79 years in the 4
areas selected. Means and proportions were
estimated using data from the 2007 BRFSS.
The mean age for the 4 areas ranged from

TABLE 2—Population Characteristics by Area: Behavioral Risk Factor Surveillance System,

New York State, 2007 and 2012

Characteristic NYC (n = 1391) Rochester (n = 393) Suffolk/Nassau (n = 678) Buffalo (n = 427)

Mean age, y, 6SD 44.09 615.75 46.50 615.05 48.08 614.75 47.27 615.72

Female, % 51.03 52.73 52.30 50.96

Not currently smoking, % 84.64 75.57 81.18 79.02

BMI < 25 kg/m2, % 36.56 30.68 37.45 35.42

Physically active, % 33.43 38.52 36.00 37.40

Have healthy diet, % 29.10 28.30 25.97 30.71

No diabetes, % 92.28 91.97 93.45 90.48

No hypertension, % 75.32 69.46 72.86 69.67

No high cholesterol, % 72.23 72.07 66.60 65.53

History of MI, % 2.45 3.28 2.64 2.95

History of stroke, % 2.00 1.89 1.15 4.05

Note. BMI = body mass index (calculated as weight in kilograms divided by height in meters squared); MI = myocardial
infarction; NYC = New York City.
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44.09 years in NYC to 48.08 years in the
Suffolk County-Nassau County Metropolitan
Division. The proportion of nonsmokers
ranged from 75.57% in the Rochester MSA to
84.64% in NYC. The proportion of the pop-
ulation with a BMI less than 25 kg/m2 ranged
from a low of 30.68% in the Rochester MSA to
a high of 37.45% in the Suffolk County-Nassau
County Metropolitan Division. Approximately
one third (33.43%) of NYC respondents were
physically active (i.e., were doing >150 min/wk
of moderate physical activity) compared with
38.52% of respondents in the Rochester
MSA. Only 25.97% of Suffolk County-Nassau
County Metropolitan Division respondents had
a healthy diet (i.e., ate ‡5 fruits or vegetables/d)
compared with 30.97%of Buffalo-Cheektowaga-
Tonawanda MSA respondents. The proportion
of the population without diabetes was the
highest in the Suffolk County-Nassau County
Metropolitan Division (93.45%) and the lowest
in the Buffalo-Cheektowaga-Tonawanda MSA
(90.48%). There was also noticeable variation
across the 4 selected areas in hypertension
and high cholesterol rates, but there was
a relatively lower variation in the proportion
of the population having a history of MI and
stroke.

Table 3 reports actual and simulated results
of 5 key health indicators for the 4 areas
selected. Actual and simulated progression
of the health indicators selected over the 2007
to 2012 period suggests that the NYAM-CHS
Model was able to track these indicators
reasonably well; the actual and simulated
differences were very close to each other for
most of these variables. More specifically, a
2-proportion z-test that compared actual with
simulated normal progression for smoking,
BMI of 25 kg/m2 or greater, and diabetes from
2007 to 2012 had P values greater than 0.05
(except for diabetes in the case of the Suffolk
County-Nassau County Metropolitan Division,
which had a P= .002). Thus, in 11 of 12 tests,
we failed to reject the hypothesis that the actual
and simulated proportions for these 3 health
indicators in 2012 were equal. The same results
arose for MI in NYC and for MI and stroke in
the Suffolk County-Nassau County Metropolitan
Division. However, the 2-proportion z-test
for stroke in NYC and stroke and MI in the
Rochester MSA and the Buffalo-Cheektowaga-
Tonawanda MSA had P values less than 0.05.

Table 3 also shows simulations that com-
pared the normal progression of health indi-
cators with the proposed comprehensive
lifestyle program which was designed to reduce,
by half, the proportion of the population who
smoked, ate less than 5 fruits and vegetables
per day, were physically active less than 150
minutes per week, and had a BMI of 25 kg/m2

or greater. Five and 20-year endpoints
(i.e., 2012 and 2027) were used to evaluate

health outcomes. In NYC, the lifestyle program
would result in reductions in smoking rates
from 14.6% to 7.9% by 2012 (an 85%
reduction) and from 13.8% to 7.4% by 2027
(an 87% reduction). Smoking rates would
have fallen 111%, 102%, and 203% by
2027 in the Rochester MSA, the Suffolk
County-Nassau County Metropolitan Division,
and the Buffalo-Cheektowaga-Tonawanda
MSA, respectively.

TABLE 3—Simulation Results (n = 1000) for Normal Health Progression and Lifestyle

Program in 2012 and 2027: New York State, 2007 and 2012

Smoking BMI ‡ 25 Diabetes MI Stroke

Variable % P % P % P % P % P

New York City

2012

Actual normal progression (n = 1657) 14.1 62.0 12.8 4.1 3.8

Simulated normal progression 14.6 .721 64.0 .302 12.0 .546 2.8 .082 2.3 .034

Simulated lifestyle program 7.9 < .001 39 < .001 10.7 .359 3.1 .691 2.6 .664

2027

Simulated normal progression 13.8 70.9 29.4 5.7 4.7

Simulated lifestyle program 7.4 < .001 51.0 < .001 27.7 .4 4.6 .266 4.0 .443

Rochester

2012

Actual normal progression (n = 354) 20.4 64.0 12.9 6.0 5.2

Simulated normal progression 23.8 .191 69.6 .052 11.2 .391 3.3 .026 2.9 .043

Simulated lifestyle program 11.3 < .001 40.8 < .001 12 .576 4.1 .343 2.1 .252

2027

Simulated normal progression 23.0 72.4 32.7 7.2 5.3

Simulated lifestyle program 10.9 < .001 55.0 < .001 28.9 .066 6.6 .597 4.0 .167

Suffolk/Nassau

2012

Actual normal progression (n = 712) 15.9 65.8 6.3 3.7 1.6

Simulated normal progression 17.6 .355 65.4 .864 10.6 .002 3.0 .424 2.0 .543

Simulated lifestyle program 8.7 < .001 41.2 < .001 9.7 .505 2.9 .895 1.7 .619

2027

Simulated normal progression 17.4 68.8 29.9 6.3 3.7

Simulated lifestyle program 8.8 < .001 54.9 < .001 25.6 .032 5.6 .508 3.2 .54

Buffalo

2012

Actual normal progression (n = 377) 21.7 69.7 12.7 6.0 1.4

Simulated normal progression 21.3 .872 66.3 .231 13.4 .732 3.1 .013 4.9 .003

Simulated lifestyle program 10.5 < .001 38.8 < .001 12.6 .595 2.8 .692 4.9 >.992

2027

Simulated normal progression 20.5 68.5 31.9 6.5 6.7

Simulated lifestyle program 10.2 < .001 53.3 < .001 27.7 .04 5.2 .215 6.3 .717

Note. BMI = body mass index (calculated as weight in kilograms divided by height in meters squared); MI = myocardial
infarction.
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For all the 4 areas evaluated, both smoking
rates and the proportion of the population with
a BMI of 25 kg/m2 or greater would have
decreased significantly in 2012 and 2027
(P< .001) with implementation of the pro-
posed comprehensive lifestyle program. The
proportion of the population with diabetes, MI,
and stroke would not have changed signifi-
cantly in 2012 (P> .05). However, there was
a downward trend in the proportions of most of
the health indicators studied. For example, in
the Suffolk County-Nassau County Metropoli-
tan Division, the proportion of the local pop-
ulation with diabetes, MI, and stroke would
decrease from 10.6%, 3.0%, and 2.0% to
9.7%, 2.9%, and 1.7%, respectively (from
2007 to 2012). The same downward trend
was observed in the 2027 simulated results.

Both the Suffolk County-Nassau County
Metropolitan Division and the Buffalo-
Cheektowaga-Tonawanda MSA would have
experienced a statistically significant reduction
in the proportion of the local population with
diabetes during the 2007 to 2027 period
(P< .05). Moreover, there was a pronounced
downward trend in the proportion of the local
population with MI and stroke in 2027 com-
pared with 2012 under the lifestyle program.
However, these differences were not statisti-
cally significant (P> .05).

DISCUSSION

More than 2800 LHDs coordinate and
provide key public health services across
communities in the United States. LHDs share
a strong and sustained interest in the use of
EBDM in public health practice, but they face
substantial challenges in the design and imple-
mentation of evidence-based programs and
interventions.2---4 The use of systems science
methodologies might help to address a number
of these barriers at a cost that is likely to be
significantly lower than acquiring the technol-
ogy and human resources required to effec-
tively utilize EBDM internally.

Our study showed how ABM, a specific
systems science approach, could be used to
compare outcomes for a population in a given
area (e.g., New York City) if a comprehensive
lifestyle program was implemented compared
with outcomes under the normal conditions. In
our specific application, we relied on data from

the BRFSS in 4 areas of New York State to
compare and contrast the differences in results.
We also used the NYAM-CHS Model, because
it was validated with national data from the
BRFSS, and it had a flexible, easy-to-use in-
terface that could compare different policy
scenarios at the local level.14

Other systems science models are readily
available to address similar problems, and
there is wide variation related to ease, utility,
technical support, breadth, and ability to cus-
tomize interventions. The Archimedes Model,
for example, allows for the modeling of disease
progression and health care costs, and the
model has been extensively validated with
data from clinical trials and longitudinal
studies.39,40 The cost of using the model is
particularly low for government agencies be-
cause of an agreement between Archimedes
Inc. (San Francisco, CA) and the US Depart-
ment of Health and Human Services. Research
organizations across the United States also
have systems science models or the capability
to construct and customize a model at a cost
that is significantly lower than building the
local infrastructure required to, for example,
collect data to conduct a comprehensive needs
assessment.

LHDs can accelerate the systematic imple-
mentation of EBDM by building collaborative
partnerships with universities, research centers,
and businesses that have the technical exper-
tise to develop evidence-based systems science
models. These organizations have incentives to
engage in the long-term collaboration with
LHDs to gain access to data and populations
for research, seek new opportunities for in-
ternships, training and placement, and develop
partnerships with other organizations in local
areas to meet synergistic goals.

Limitations

There were some important limitations
to our work. First, systems science models
like the one we used did not allow for the
perfect representations of reality. Although the
NYAM-CHS Model was able to predict 5-year
outcomes for smoking, obesity, and diabetes
reasonably well, it was less reliable for MI and
stroke. This was in part because MI and stroke
were longer-term outcomes; the proportion
of the population with MI and stroke was
also much lower than for the other health

conditions studied. Moreover, because of the
lack of longitudinal data at the local level, we
had to use cross-sectional BRFSS data at 2
points in time for the selected 4 areas of New
York State. Also, the BRFSS data might un-
derestimate the disease prevalence for health
conditions such as diabetes because some
people who have chronic health conditions
might be undiagnosed at the time of interview.
Moreover, collecting survey data using phone
interviews might lead to biased estimates re-
lated to oversampling or undersampling (e.g.,
high-risk underinsured populations). Lastly,
although the NYAM-CHS Model was based on
the peer-reviewed literature, the construction
of the model might have missed important
studies and interactions that would have made
the model more accurate.

Conclusions

We showed promising examples of how
systems science methodologies could be used
to enhance EBDM in LHDs. We focused on
the progression of health outcomes over time,
but the approach proposed could certainly
be expanded to include visualization tools,
a higher level of detail on how agents move
across different health states, and interactions
among agents to capture peer and neighbor-
hood effects. In the end, the adoption of
systems science as a way to promote the
systematic use of EBDM in public health
practice at LHDs will hinge on the level
of interest of leaders in using these types of
models as a part of implementing a set of
evidence-based approaches to solve challenges
in local public health systems. j
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