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Recently, more and more machine learning techniques have been applied to microarray data analysis. The aim of this study is to
propose a genetic programming (GP) based new ensemble system (named GPES), which can be used to effectively classify different
types of cancers. Decision trees are deployed as base classifiers in this ensemble framework with three operators: Min, Max, and
Average. Each individual of the GP is an ensemble system, and they become more and more accurate in the evolutionary process.
The feature selection technique and balanced subsampling technique are applied to increase the diversity in each ensemble system.
The final ensemble committee is selected by a forward search algorithm, which is shown to be capable of fitting data automatically.
The performance of GPES is evaluated using five binary class and six multiclass microarray datasets, and results show that the
algorithm can achieve better results in most cases compared with some other ensemble systems. By using elaborate base classifiers
or applying other sampling techniques, the performance of GPES may be further improved.

1. Introduction

With the development ofmicroarray technology, it is possible
for one to measure the expression levels of thousands of
genes simultaneously. Although it provides a gold mine
of biological information and knowledge, it brings new
challenges for biologists, statisticians, and machine learning
researchers because of the high dimension and small sample
size problem. In general, classification models can deal with
more features only when enough samples are provided;
otherwise the model is very likely to overfit the training data.
In other words, for microarray classification, the difficulty of
bias-variance dilemma [1] is mostly on the variance side.

Many researchers are devoted to designing new learning
models for classifying different diseases based on microarray
data, and there are already many successful applications. In
such cases, some techniques are widely used in models, such
as feature selection and regularization techniques. Among
them, an effective scheme to reduce overfitting is ensemble
learning. In general, ensemble learning requires a set of base

classifiers, which are then combined to form final decisions
instead of trusting only the best one.This technique has been
proved to be able to boost accuracy significantly in many
fields. Clearly, ensemble learning cannot improve the results
of single predictors if all the base classifiers were the same. On
the other extreme, generating totally random base classifiers
(without training) would totally fail anyway because their
performances would be close to that of a random guess. As
pointed out in [2, 3], the improvement of ensemble learning
is determined by a balance between accuracy and diversity of
base classifiers.

For classification problems, we can denote the𝑁 training
samples by (𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑁, 𝑦𝑁), where each 𝑥 is a
𝑀-dimensional vector and each 𝑦 is a scalar in {1, . . . , 𝑐} for
a 𝑐-class problem. Diversity can be injected at different levels:
sample, feature, and base classifier: (1) for injecting diversity
into samples, one does not need to alter the feature space of
𝑥, but the distribution of samples. Typical methods include
Bagging [4] and Boosting [5]. In Bagging, base classifiers
are trained with bootstrap training samples; thus, each base
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classifier is expected to deal with different training sets. In
Boosting, the base classifiers are generated by iterations.
And in each iteration, weights of samples are adjusted, so
that samples misclassified by current trained classifiers are
emphasized, and the following classifiers can concentrate on
them. (2) For injecting diversity into features, one maps the
original𝑀 dimensional feature space into a𝑀󸀠 dimensional
space. When the size of original feature set is relatively small,
some researchers may try to add some combined features to
make data more informative, resulting in 𝑀 < 𝑀󸀠. On the
contrary, when𝑀 is large, such as in the case of microarray
data analysis, researchers may tend to apply feature selection
techniques to ensure𝑀 > 𝑀󸀠, so as to simplify the problem.
Ho [6] and Bay [7] trained multiple base classifiers with
random subset of features, and this technique was named
as “random subspace” [8]. Bryll et al. [9] came up with the
attribute Bagging method, which was proposed based on
the combination of Bagging and wrapper feature selection.
RandomForest was introduced by fusing the ideas of Bagging
and random subset of features [10]. And Rotation Forest
model was proposed by using feature extraction methods
on different sample and feature subsets, so as to generate
diverse rotation matrices for base classifiers [11]. In this way,
each classifier rotates the original feature space in different
directions. (3) For injecting diversity at the level of base
classifiers, an intuitive scheme is to train base classifiers with
different parameters. A typical application is that Maclin
and Shavlik used a competitive learning scheme for training
neural networks with diverse initial weights [12].Themixture
of different types of base classifiers can also be an effective
method to produce diverse ensemble systems. For example,
one can use SVM, neural network, and decision tree at the
same time in an ensemble system. In addition, it is also
applicable to inject diversity at different levels in the process
of building ensemble systems. For example, Kim and Cho
[13] used different feature selection methods (at feature level)
and classifiers (at classifier level) and applied an evolutionary
algorithm to find a group of optimal combinations of feature-
classifiers pairs. The combination of different levels can
further improve the diversity in general.

After generating 𝐿 base classifiers, the next key to pro-
ducing a powerful ensemble system is to select a subset from
them as the final committee in a static or dynamic way, which
is referred to as the ensemble selection problem. When 𝐿 is
small, we usually just keep them all. However, when 𝐿 is set
to a large value, it may be redundant and even ineffective to
keep all of available base classifiers. For example, if a large
proportion of these base classifiers are similar or correlated,
the opinions of theminority would be ignored, and the diver-
sity of the ensemble committee cannot be guaranteed. The
simple strategy of selecting the top𝐾 (𝐾 < 𝐿) base classifiers
also faces this problem, because the top base classifiers may
turn out to perform similarly. Another feasible strategy is to
use somediversitymeasures to guide the search.However, the
usefulness of diversitymeasures is doubtful [3]. Usually, when
there are many samples in each class in a dataset, researchers
can divide it into three independent sets: training, validation,
and test sets. The work of Ruta and Gabrys [14] indicates that
the best criterion is the combined accuracy on a validation

set, at least when majority voting is selected as the fusion
strategy. However, for the microarray data analysis problem,
the whole sample size is so small that there are less than 100
samples in each class in most cases. As a result, almost all
microarray datasets contain only training and test sets. An
independent validation set is completely unaffordable, which
makes the analysis of microarray data a tough task.

In this paper, we propose a genetic programming (GP)
based ensemble system (GPES for short) to tackle this
problem. GP is a widely deployed evolutionary algorithm and
has been successfully applied inmany research fields. It can be
used to generate decision rules for binary class classification
problems directly, because each individual in GP is a syntax
tree, which can produce a “yes/no” answer. So in the field of
microarray analysis, Langdon and Buxton [15] and Yu et al.
[16] used GP to fulfill the tasks of cancerous gene selection
and classification model generation simultaneously. Besides,
Hong and Cho [17] proposed a diverse ensemble of classifiers
with individual rules generated by GP. And we extended the
original GP framework by designing a new individual struc-
ture (named as subensemble system) to deal with multiclass
problems directly [18]. However, in all these cases, it is a quite
time-consuming task to use GP to generate classification
rules due to the computational complexity. As a result, these
GP based algorithms are generally slower than elaborate
classifiers, such as kernel based SVM and neural networks.

On the contrary, the usage of GP in this work is different
from those introduced above. It is used to fuse base classifiers
and produce robust ensemble systems. In the framework of
GP, each individual is a single tree, representing a set of
possible compositions of functions and terminals selected
from the nonterminal and terminal sets. In our algorithm,
the terminals are decision trees, and nonterminals are fusion
operators (Average, Min, and Max in our algorithm). GP
begins with random initialization, and it evolves towards the
goal of low classification error rate. And as pointed out in
[19], different fusion strategies can guarantee diversity, so the
individuals generated by GP could be of high diversity and
low error rate in the evolution process. A number of individ-
uals in the last generation of GP are selected with a forward
search technique to form the final ensemble committee. In
this algorithm, diversity is introduced at all of three levels. So
the final ensemble consists of diverse and accurate members.
And the experiments in different microarray datasets verify
the high generalization ability of our method. Decision tree,
as a kind of preferred model for many ensemble frameworks
(Bagging, Random Forest, Rotation Forest, etc.), is deployed
as the base classifier in our algorithm because it is an unstable
model [20]. It should be noted that although our ensemble
system only employs decision trees, other classifiers, such as
SVMand neural network, can also be used in this framework.
Some earlier works in this paper have been presented at ICIC
2014 conference [21].

2. Methods

2.1. The Principle of Genetic Programming. GP is a widely
used evolutionary algorithm, and it has been proved to
be an effective solution for many optimization problems.
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Figure 1: A simple syntax tree for arithmetic.

Essentially, GP is a branch of genetic algorithm (GA), and
the main difference between GP and GA is the structure of
individuals: GA has string-structured individuals, while GP’s
individuals are trees, as shown in Figure 1. There are two
kinds of nodes: terminal and nonterminal nodes. A terminal
node is a leaf node without child nodes. And a nonterminal
node is an inner node with child nodes, which can be
terminals or nonterminals. Usually, terminals are primitive
elements, and nonterminals are operators for combining
these primitive elements. Figure 1 illustrates a simple syntax
tree for arithmetic, where nonterminals (×, +) are surrounded
by rectangles, and terminals (numbers) are surrounded by
circles.

Just like GA, there is a pool of individuals that compete
with each other in GP. The initial population is usually
generated randomly.Afitness function is designed to evaluate
the performance of each individual. And only the individuals
with higher fitness values are selected to survive and pro-
duce offspring. After that, crossover and mutation operators
are applied to the surviving individuals. The purpose of
the crossover operator is to create a chance of integrating
strengths of different individuals, which is usually done by
swapping some branches of two individuals (trees). The
purpose of the mutation operator is to inject randomness to
avoid falling into local minima in the evolutionary process.
And it can be achieved by changing some terminals or
nonterminals of individuals randomly. After finishing the
process of crossover and mutation operations, some new
individuals are produced to join the surviving individuals,
so as to form a new generation. And this process keeps on
iterating until a criterion is met. As a result, the population
moves towards the global optimum rapidly.

2.2. Growth of Decision Trees. Decision tree is widely used
in different ensemble systems, such as Bagging, Random
Forest, and Rotation Forest. Its advantage lies in that it is
an unstable model, and even small perturbations in inputs
can cause great difference among the trained trees. This can
reinforce the diversity among the base classifiers, which is
important for an ensemble system. It is deployed as base
classifiers in our algorithm either, making each individual
of GP be an ensemble of decision trees. Each terminal is
a single decision tree, and each nonterminal is one of the
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Figure 2: An example of the individual of GP in the proposed
algorithm.

fusion operators: Average, Max, and Min. In the binary class
problem, let the label be −1 for the negative class and +1 for
the positive class. Then the Min operator prefers the negative
class. That is, if one of its child nodes outputs a negative
vote, the final decision of the Min operator is a negative label
(−1) even when more children produce positive votes. The
Max operator works in a diametrically opposite way, and the
output is positive class label if one of its children outputs
positive label (+1). Unlike the regular definition of “average”
inmathematics, the output of Average operator is a hard label.
That is, when the mean value of inputs is smaller than 0, then
the Average operator regards the final vote as a negative label
(−1); otherwise, it outputs a positive label. So the Average
operator works in the same manner as the majority voting,
and the final decision is the label obtaining the most votes.
Because of the small sample size problem, if the accuracies
on training sets are used as weights for base classifiers, the
algorithm may be confronted with the overfitting problem.
So for the Average operator, all votes are treated as equal.

In order to make these operators work effectively, each
nonterminal is set to contain three children, which can
be either terminals or nonterminals. An example of an
individual is illustrated in Figure 2. Here, T1–T7 are decision
trees, and Average, Min, and Max are fusion operators. In
this individual, if T1, T2, and T5 produce negative votes for
a sample and others produce positive votes, the final output
of the ensemble system is a negative label.

The process of building decision trees is described as
below.

2.2.1. Feature Standardization. Before training, each feature is
standardized to zero mean and unit variance across training
samples, and the same standardization step (fitted from the
training set) is also applied to test datasets.

2.2.2. Feature Subset Selection. Microarray datasets consist
of large amounts of features, most of which contain little
information. As pointed out in [22], usually a small number
of genes are enough for the purpose of classification.Thus, to
speed up the training process and boost the accuracy, feature
selection is often applied before the training phase.

It was found that the use of various feature selection
methods benefits experimental results greatly [23]. It is
because different feature selection methods are based on
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different assumptions, and the biologically significant feature
subsets would be picked with higher probability by combin-
ing the results of different feature selection methods. So we
apply the following four popular feature selection methods:

(i) 𝐹-Test: it is a classical technique used in one-way
analysis of variance, and it tests whether the popula-
tion means of different groups are equal. We use the
implementation in scikit-learn library (0.12) [24] with
the default setting;

(ii) RELIEF: it utilizes the nearest neighbor classifier to
evaluate the significance of features [25] and has been
successfully applied in microarray data classification
[26]. We use the implementation in mlpy library
(3.5.0) [27], setting the parameter “sigma” to 2, as
suggested in [26];

(iii) RandomForest: the quality of splitting classes in deci-
sion trees can be used for assessing the importance
of features. So Random Forest is used for feature
selection by summing up the scores assigned by all
decision trees. We use the implementation in scikit-
learn library (0.12) with the default setting;

(iv) SVM-RFE: this is an embedded feature selection
method. It iteratively trains SVM and removes a
number of the least important features [22]. We use
the implementation in scikit-learn library (0.12) using
linear kernel. The parameter “step” is set to 2 for
recursive feature elimination (RFE). In this way, there
are two features to be removed at each iteration.Other
parameters are set by default.

Each of the feature selection methods selects 50 features, and
the combination of all features is kept to form a pool of
candidates without duplicates. In this way, the dimensionality
of datasets is reduced to a number within the range [50, 200].
After that, we adapt the idea of random feature subset selec-
tion, so that each decision tree only sees a random projection
of the candidate pool. For each tree,𝑁

𝑓
features are randomly

selected obeying a Gaussian distribution, setting the mean to
5 and the standard deviation to 3. Because each tree grows
with only a small proportion of the features, base classifiers
can be quite different. As a result, the diversity of the ensemble
system is maintained at the feature and base classifier level. In
addition, there are only five features used to train decision
trees on average, so the scale of each tree is limited. Since
each individual contains a group of decision trees, the small
scale of each tree can guarantee the efficiency of our ensemble
system.The base classifiers with poor performances would be
filtered out in the following process.

2.3. Balanced Subsampling. In the process of growing deci-
sion trees, we adapt the idea of Bagging to encourage diversity
at the level of samples. As originally described, Bagging
randomly selects sample with replacement to introduce
diversity. However, formicroarray datasets, we usually do not
have many samples; thus, sampling with replacement cannot
ensure diversity in training datasets. Another concern is that
in most cases microarray data are unbalanced, which usually
reduces the generalization ability of a classifier.

Taking these two factors into consideration, we used a
balanced subsampling technique. For two-class classification
problems, the numbers of samples in the two classes are
denoted by 𝑁

1
and 𝑁

2
, respectively. The number of samples

in the smaller class is 𝑁𝑠 = Min(𝑁
1
, 𝑁
2
). When building

a classifier, 𝑁𝑠 samples are sampled without replacement
in each class. Thus, all the samples in the smaller class are
kept, while the samples in the larger class will be subsampled
without replacement. In the GPES framework, multiclass
problems are divided into a set of binary class problems, and
this subsampling technique is also applied to these binary
class problems.

2.4. Evolutionary Process and Ensemble Selection. Based on
the tree building process described above, 300 decision trees
are firstly generated as candidates. Due to the random feature
subset technique, there inevitably exist decision trees with
poor performance. To solve this problem, only the trees with
above average accuracy among the candidates are selected to
construct a pool of base classifiers. In this way, only accurate
classifiers are kept in the pool, which is used as the set of
terminals in GP.

After that, a typical GP evolution schema is applied. Each
individual is an ensemble of trees and is generated with the
ramped half-and-halfmethod as in [18].With thismethod, an
equal number of trees are initialized for each depth between
2 and the initial maximum tree depth value. For each depth
level considered, half of the trees receive nonterminals from
the function set until trees are fully grown; the other half
is allowed to receive nodes from both the nonterminal and
terminal sets randomly except for the root node, producing a
group of heavily unbalanced trees. Then this method results
in balanced and unbalanced trees with several different
depths. The max depth of each individual is restricted to 3,
and each nonterminal is forced to have exactly three children,
which can be terminals or nonterminals. The crossover rate
is 0.8, and the mutation rate is 0.4. The population size is 80,
and the maximum number of generations is 200. The fitness
function for each individual is its accuracy on the validation
set (see Section 2.4). The implementation of GP is based on
the Pyevolve library (0.6rc1) [28].

The population in the last generation is reserved for
ensemble selection. Since each individual is already an
ensemble classifier, the step of further fusing individuals of
the final generation is a kind of metalearning. First, like the
decision tree building phase (Section 2.2), we select individ-
uals above the average accuracy of all the individuals as the
available individuals. Second, a forward search algorithm [14]
is applied: initially, the best individual is selected in the final
committee. And then at each step, we iterate all pairs of the
available individuals (not yet in the final committee) to find
out the best pair that reduces themajority voting error (MVE)
the most. Usually this step stops when all the individuals
are exhausted or no improvement could be found. However,
because there are only a small number of samples and each
individual is usually a competent learner, it is found that this
forward search process ceases after adding one or two pairs.
As a result, we still take the risk of getting a low-bias and high-
variance model. Based on this observation, it is necessary to
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Figure 3: Decompose GPES into different phases.

include more individuals in the final ensemble to reduce the
variance. So this algorithm is adapted to stop the forward
search process when one of these conditions is satisfied: (1) a
worse value of MVE is observed instead of no improvement;
(2) all individuals are exhausted.

2.5. Cross Validation to Avoid Overfitting. For the aforemen-
tioned steps, we need to evaluate base classifiers’ perfor-
mances in various phases:

(i) selecting decision trees with above average accuracy
of the 300 candidates,

(ii) evaluating fitness values for individuals in each gen-
eration in the evolutionary process,

(iii) selecting accurate individuals in the final generation
and using the forward search algorithm to select
proper members for the final committee.

One common approach to avoid overfitting in the training set
is to split off part of it as an independent validation set. How-
ever, an algorithm can also overfit the validation set because
of small sample size. To overcome this, in ourmethod,we split
the training set with 3-fold stratified cross validation and feed
different folds for these three phases, respectively. For 3-fold
cross validation, the data is randomly and evenly split into
3 groups. The evaluation takes 3 iterations. In each iteration,
one of the 3 groups is selected in turn as a validation set, and
the remaining 2 groups are selected as the training set. And
in each group, the ratio of samples in the two classes is kept
the same in both training and validation sets.

We decompose the training process of GPES into five
different phases, as shown in Figure 3. Phase 1 generates 300
candidate trees with random feature and sample subsets;
Phase 2 selects accurate trees from the candidates. Phase 1 and

Table 1: Binary class datasets used in experiments.

Datasets Number of genes
Number of
samples of
two classes

Reference

Ovarian 15154 162/91 [33]
Leukemia 7129 47/25 [34]
Colon 20000 40/22 [35]
Lung 12533 150/31 [36]
Prostate 12600 77/59 [37]

Phase 2 consist of the decision tree building process, and they
use the first training (Phase 1) set and the validation (Phase
2) set. Phase 3 deploys GP to evolve a group of candidates;
Phase 4 selects accurate individuals from the population in
the last generation; Phase 5 uses a forward search algorithm
to select the final ensemble committee. In general, Phases 3–
5 consist of the GP evolutionary process. Phase 3 uses the
first training set for training base classifiers and the validation
sets for calculating fitness value, while Phases 4 and 5 share
the second training set and the validation set for retraining
individuals in last generation, so as to realize the selection
of above-average individuals and the forward search step
efficiently.

3. Experimental Results and Analysis

To evaluate the effectiveness of GPES, we compare it with
some tree-based learners, including decision tree, Random
Forest, and Rotation Forest. They are evaluated on several
binary andmulticlassmicroarray datasets, as shown in Tables
1 and 2. For decision tree (both in standalone and GP) and
Random Forest, the implementations in scikit-learn library
(0.12) are used [24] with the default setting. For Rotation
Forest, the implementation in Weka with the default setting
is used. The standardization (Section 2.2.1) and the feature
selection (Section 2.2.2) steps are applied for all the classifiers.
In other words, all the classifiers receive the same reduced
subset of features for a given training and test dataset. Besides
them, a genetic algorithm (GA) based ensemble SVM learner
based on gene pairs (GA-ESP) is also applied for comparison,
with the same parameters in [29].

3.1. Results and Analysis on Binary Class Datasets. In this
section, we present and analyze the results of GPES in five
binary class microarray datasets. The detailed information
about these datasets is listed in Table 1. Most of the original
datasets are unbalanced. For example, for the Lung dataset,
numbers of samples in the two classes of the training dataset
are 134/15. So the ratio of two classes is close to 9/1, which
makes the classification problem hard to deal with. As we use
the subsample technique to obtain a balanced training set, the
balanced training set consists of 15 samples for each class. As
a result, the base classifiers of different ensemble systems tend
to be of high diversity.

To evaluate the fitness function in the GP evolutionary
process, 10-fold stratified cross validation is applied, based
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Table 2: Multiclass datasets used in experiments.

Dataset Number of classes Number of genes Number of training samples Number of test samples Reference
Leukemia 1 3 7129 38 34 [34]
Leukemia 2 3 12,582 57 15 [22]
Lung 1 3 7129 64 32 [38]
Lung 2 5 12,600 136 67 [39]
Breast 5 9216 54 30 [40]
DLBCL 6 4026 58 30 [41]

Table 3: Experimental results for binary datasets.

Datasets GPES DT Random Forest Rotation Forest GA-ESP
Ovarian

Accuracy 0.997 ± 0.003 0.984 ± 0.000 0.988 ± 0.006 0.997 ± 0.003 0.997 ± 0.003
AUC 0.992 ± 0.004 0.987 ± 0.000 0.990 ± 0.000 0.992 ± 0.004 0.992 ± 0.004

Leukemia
Accuracy 0.961 ± 0.013 0.863 ± 0.000 0.944 ± 0.016 0.934 ± 0.020 0.944 ± 0.012
AUC 0.972 ± 0.012 0.829 ± 0.000 0.942 ± 0.006 0.945 ± 0.017 0.935 ± 0.010

Colon
Accuracy 0.810 ± 0.024 0.743 ± 0.000 0.804 ± 0.030 0.820 ± 0.025 0.830 ± 0.026
AUC 0.805 ± 0.017 0.756 ± 0.000 0.795 ± 0.024 0.796 ± 0.022 0.805 ± 0.013

Lung
Accuracy 0.992 ± 0.004 0.967 ± 0.000 0.985 ± 0.005 0.990 ± 0.005 0.980 ± 0.009
AUC 0.988 ± 0.003 0.927 ± 0.000 0.980 ± 0.003 0.986 ± 0.004 0.963 ± 0.007

Prostate
Accuracy 0.902 ± 0.014 0.889 ± 0.000 0.889 ± 0.017 0.912 ± 0.020 0.890 ± 0.018
AUC 0.889 ± 0.010 0.831 ± 0.000 0.862 ± 0.011 0.891 ± 0.013 0.885 ± 0.015

Average
Accuracy 0.932 ± 0.011 0.889 ± 0.000 0.837 ± 0.020 0.930 ± 0.015 0.928 ± 0.014
AUC 0.929 ± 0.009 0.866 ± 0.000 0.914 ± 0.009 0.922 ± 0.012 0.905 ± 0.010

on the corresponding selected training set and validation set
with the original division, as introduced in Section 2.4.

For unbalanced binary class problems,AUC is an effective
measure besides accuracy, as discussed in [30]. After obtain-
ing the values of true positive (TP), true negative (TN), false
positive (FP), and false negative (FN), AUC is calculated by

AUC = 1
2
(

TP
TP + FN

+
TN

TN + FP
) . (1)

Each algorithm runs 20 times with the same 10-fold split. For
both accuracy andAUC, the corresponding average value and
standard deviation on each test set are listed in Table 3. From
the results shown in Table 3, we can see that GPES wins three
cases, and both Rotation Forest and GA-ESP win two cases
in all datasets. Random Forest and the single decision tree
never achieve the best performance in all experiments. It can
be found that when the base classifier is accurate enough, for
example, in the case of Leukemia data,GPES can obtain 96.1%
average accuracy, which is about 10% improvement compared
with the accuracy of a single tree. In comparison of GPES,
GA-ESP, andRotation Forest, it should be noted that Rotation
Forest uses PCA to transform the original features, so the base
classifiers receive different inputs from the original feature
subsets. On the contrary, GPES and GA-ESP can carry out

the classification task in the original feature subspaces, which
allows researchers to further investigate frequently selected
genes. And the highest average accuracy is still achieved by
GPES with the lowest deviation. It is obvious that GPES is
able to improve the accuracy of decision tree and outperforms
Random Forest in most cases.

Figure 4 shows the average accuracy of GPES in different
phases (see Section 3.2) in a run, on both validation sets and
test sets. Note that the samples of test sets are never mixed
with the training set, so the results are reliable. The changes
of the accuracy in different phases on validation sets are
plotted in Figure 4(a). It can be found that Phase 2 boosts the
performances compared with those in Phase 1 significantly,
because its functionality is to select above-average trees in the
validation set.The transition fromPhase 2 to Phase 3 is theGP
evolutionary process. As Phase 3 represents the results of the
last generation ofGP, the average performances of individuals
becomebetter and better. So it can be observed that the curves
ascend stably in most cases. Colon dataset is an exception. As
can be found in Figure 4(a), the curve drops in Phase 3. The
reason may lie in that, in Phase 3, a new training/validation
set is used. The sample size of original dataset is too small,
and the training set and validation set are not in the same
distribution. As a result, the trained classifiers cannot fit
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Figure 4: Change of accuracy in different phases.

the validation set well. Phase 4 effectively raises the curve
again because only the individuals above the average perfor-
mance are kept. Then, in the final forward search step (Phase
5), the accuracy curves raise a lot again for all datasets.

The changes of average accuracy in test sets are plotted
in Figure 4(b). Independent test sets are also be inputted in
different phases, so that variation of the accuracy on test sets
in these different phases can also be evaluated. Overall, the
performance on the test sets keeps increasing in each phase
for all different datasets. And it is observed that even for
the Colon dataset, whose average curve drops in Phase 3 in
validation set, the curve keeps going up in the test set. This is
an evidence that GPES does not overfit in these datasets.

Figure 5 shows the plot of average accuracy (on validation
set) in Phase 4 versus average number of individuals in the
final ensemble committee. It is clear that the number of indi-
viduals in the final ensemble committee is roughly correlated
with the average accuracy in Phase 4. That is, when the
average accuracy is high, the number of individuals included
in the final ensemble committee is large. It is desirable in the
task of microarray classification. Because when the accuracy
of base classifiers is high, incorporating more classifiers can
help to reduce variance. On the contrary, when the average
accuracy is low, it is usually hard to find a lot of reliable
(accurate) candidates, and the combination ofmore classifiers
will not benefit the final results. Thus, the algorithm is able
to adaptively adjust the size of the final ensemble committee
according to the characteristics of the dataset.

Table 4 lists the average percentages of different operators
appearing in the final ensemble committee for different
datasets. In all the cases, the Average operator appears with
the highest frequency, and the distributions of different oper-
ators are different among different datasets. For example, the
percentages ofMin operators are relatively high for the Colon
and Lung datasets, while low for the Prostate dataset. It is
obvious that the application of diverse operators contributes
to the effectiveness of the final ensemble committee.

3.2. Results and Analysis on Multiclass Datasets. In the
following experiments, six multiclass microarray datasets are
deployed to evaluate the performance of GPES in multiclass
problems, and their detailed information is listed in Table 2.

For a 𝑚-class problem, different class labels are repre-
sented as 1, 2, . . . , 𝑚. The base classifiers used in our exper-
iments are decision trees, and they can only output hard class
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Figure 5: Average accuracy (validation set) in Phase 4 versus
average number of final ensemble systems.

Table 4: Percentage of different operators in the final committee.

Datasets % of Min % of Average % of Max
Ovarian 0.257 0.567 0.177
Leukemia 0.240 0.567 0.194
Colon 0.374 0.449 0.177
Lung 0.333 0.487 0.180
Prostate 0.178 0.582 0.240

labels, which are used to indicate corresponding different
classes. So it is meaningless to apply the Average, Min, and
Max operators to different class labels directly. In order to
make all operators work effectively, a multiclass problem is
decomposed to a set of binary class problems in the following
experiments. Two commonly used decomposition methods
are employed: one versus one (OVO) and one versus rest
(OVR). By this mean, despite the fact that the decision tree
can deal with multiclass problem directly, it is only used
as a binary classifier in the following experiments. For fair
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comparisons, decision tree, Random Forest, and Rotation
Forest methods are also used as binary classifiers, fused with
OVOandOVRmethods.And it should be noted that decision
trees are also ensemble systems after they are fused with
OVO andOVRmethods in experiments.The Rotation Forest
algorithm used in binary class problems is based on Weka
software, and it is not easy for us to feed the decomposed data
to the Rotation Forest function in the software. So we use
an improved Rotation Forest algorithm and hybrid extreme
rotation forest (HERF) [31] in the experiments for multiclass
problems instead. The python implementation available at
[32] is used with the default setting.

The framework of GPES is the same as that for the binary
class problem, and it is still set to contain three children for
each operator so as to control the size of ensemble system.
And we use two different measures, 𝐹score

𝜇
and average

accuracy (AAc for short) [30], for results comparisons.
Assume that there are 𝑐 classes in a dataset, and then these
two measures can be calculated by formulas (2)–(5):

Precision
𝜇
=
∑
𝑐

𝑖=1
tp
𝑖

∑
𝑐

𝑖=1
(tp
𝑖
+ fp
𝑖
)
, (2)

Recall
𝜇
=
∑
𝑐

𝑖=1
tp
𝑖

∑
𝑐

𝑖=1
(tp
𝑖
+ fn
𝑖
)
, (3)

𝐹score
𝜇
=

(𝛽
2
+ 1)Precision

𝜇
Recall

𝜇

𝛽2Precision
𝜇
+ Recall

𝜇

, (4)

AA𝑐 =
∑
𝑐

𝑖=1
((tp
𝑖
+ tn
𝑖
) / (tp

𝑖
+ tn
𝑖
+ fp
𝑖
+ fn
𝑖
))

𝑐
. (5)

Different from accuracy, AAc indicates the average per-class
performance of a classifier. If a classifier fails to recognize
samples in a “hard” class, it cannot achieve high scores in
AAc. 𝐹score

𝜇
is a measure combining the scores of both

precision and recall. To get a balance between precision and
recall, 𝛽 is set to 1 for formula (4).

Results obtained by different methods are listed in
Table 5. Among the twelve groups of results, it is obvious
that GPES (OVO) wins four cases; GA-ESP (OVR) wins
three cases; GPES (OVR), Random Forest (OVO), andHARF
(OVO) win two cases. In addition, GPES (OVO) achieves
the highest average accuracy with low variance for both
measures.

The performance of GPES (OVR) is worse than GPES
(OVO) in most cases, especially on Breast and DLBCL
datasets. The failure of the OVR scheme is mainly caused by
the undersampling technique. When the number of classes
is large enough, for example, 6 classes in DLBCL dataset,
this undersampling technique receives two different parts of
samples to construct the training dataset in OVR scheme: the
first part from a class and the second part from the remaining
5 classes. To get balanced datasets, the size of the second
part is the same as that of the first part with undersampling
technique. Since for the fourth binary problem (to distinguish
the fourth class from other classes), the number of the fourth
class in the training dataset is 4, the number of the second
part for the training dataset must be set to 4. It is a quite

small value, which does not allow the training set to obtain
even a sample from each of the remaining five classes. As a
result, this scheme faces the problem of a severely insufficient
training sample in this case, and the base classifier cannot
fully learn the distribution of the two parts. So, it can be
expected that when applying other sampling techniques, the
performance of GPESwithOVRwould be boosted. However,
since its score is only 1% lower than that of Random Forest
withOVR in bothmeasures, and its average performances are
still ranked as the fourth best method in the experiments, we
do not further explore the application of different subsample
techniques.

It should be noted that the average variances of the GPES
and GA-ESPmethods are lower than those of Random Forest
and HARF methods, which indicates the relatively stable
performances of evolutionarily based ensemble methods
in multiclass problems. As the multiclass problem is the
combination of a set of binary problems, the observations
in these experiments are similar with those of binary class
problems.

4. Conclusion

In this paper, we propose a new GP based ensemble system,
named asGPES.Decision trees are deployed as base classifiers
in this ensemble framework with three operators: Min, Max,
and Average. The evolutionary process makes the ensemble
system be adapted to better solve the classification problem
for both binary class and multiclass microarray datasets.

The training process is carefully designed to inject diver-
sity at feature, sample, and base classifier levels. In this way,
the final ensemble committee is composed of accurate and
diverse base classifiers, so it can effectively avoid overfitting.
The effectiveness of GPES is evaluated in five binary class
and six multiclass microarray datasets. It is found that the
algorithm is proved to be adaptive to the characteristics
of datasets. In addition, although the base classifier of this
algorithm is decision tree, other classification models can
also be used as base classifiers, such as neural networks
and 𝑘-nearest neighbor. By using elaborate base classifiers,
or applying other sampling techniques, the performance of
GPES may be further improved.
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