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Abstract

Extraction of relevant features from multitask functional MRI (fMRI) data in order to identify 

potential biomarkers for disease, is an attractive goal. In this paper, we introduce a novel feature-

based framework, which is sensitive and accurate in detecting group differences (e.g. controls vs. 

patients) by proposing three key ideas. First, we integrate two goal-directed techniques: 

coefficient-constrained independent component analysis (CC-ICA) and principal component 

analysis with reference (PCA-R), both of which improve sensitivity to group differences. 

Secondly, an automated artifact-removal method is developed for selecting components of interest 

derived from CC-ICA, with an average accuracy of 91%. Finally, we propose a strategy for 

optimal feature/component selection, aiming to identify optimal group-discriminative brain 

networks as well as the tasks within which these circuits are engaged. The group-discriminating 

performance is evaluated on 15 fMRI feature combinations (5 single features and 10 joint 

features) collected from 28 healthy control subjects and 25 schizophrenia patients. Results show 

that a feature from a sensorimotor task and a joint feature from a Sternberg working memory 

(probe) task and an auditory oddball (target) task are the top two feature combinations 

distinguishing groups. We identified three optimal features that best separate patients from 

controls, including brain networks consisting of temporal lobe, default mode and occipital lobe 

circuits, which when grouped together provide improved capability in classifying group 

membership. The proposed framework provides a general approach for selecting optimal brain 

networks which may serve as potential biomarkers of several brain diseases and thus has wide 

applicability in the neuroimaging research community.
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Introduction

Brain imaging techniques have been used for many years in order to study both healthy and 

diseased brains. Currently in functional studies, several different tasks are often performed 

on the same person. Each fMRI task reports on a limited domain and typically provides both 

common and unique information. Given this rich array of data, there is great potential 

benefit in a method which examines the joint information lying within multi-task fMRI 

datasets. We are interested in evaluating the power of different tasks and combinations of 

tasks to distinguish patients from controls, and in identifying the optimal brain regions that 

could serve as potential biomarkers of some brain diseases by multi-task fMRI data fusion.

We have previously proposed a symmetric second-level fMRI data fusion model, i.e. joint 

independent component analysis (jICA) (Calhoun et al., 2006a,b), which takes advantage of 

the “cross-information” between different features. In the joint ICA model, an fMRI 

“feature” is a contrast image, for example an activation map computed within Statistical 

parametric mapping (SPM) (http://www.fil.ion.ucl.ac.uk/spm/), which contributes an input 

vector from each task for each subject. These features are then examined for relationships 

between tasks and differences between groups. JICA has been successfully applied by 

several groups to study the patients vs. controls difference, e.g. aphasia (Specht et al., 2008), 

major depression (Choi et al., 2008) and schizophrenia (Calhoun et al., 2006a,b, 2007; Liu et 

al., 2009).

Many multivariate group analysis methods have been proposed using the original 4D fMRI 

data of subjects, the so called first-level fMRI processing. These methods include group-

ICA (Calhoun et al., 2001b), tensor PICA (Beckmann and Smith 2005), partial least squares 

(PLS) (Lin et al., 2003; McIntosh et al., 1996), self-organizing clustering (Esposito et al., 

2005) and most recently, local linear discriminant analysis (LLDA) (McKeown et al., 2007), 

independent vector analysis (IVA) (Lee et al., 2008), unified framework (Guo and Pagnoni 

2008) and support vector machine (SVM) (Wang et al., 2007). While all of the above 

methods can generate reasonable solutions for group-difference inference, currently they 

have thus far been applied to only one fMRI task at a time (except PLS, e.g. Grady et al., 

2006), though theoretically they could be extended to work with multiple tasks in the future. 

For data fusion purpose, we apply our method within joint ICA framework as an initial step.

Joint ICA, as a second-level fMRI analysis method, has been used for capturing group-

difference in two ways: 1) The contribution of one component to each group is dissimilar, 

which is reflected by meanthe mean of mixing coefficients (quantified via p value of two 

sample t-test). 2) The back-reconstructed sources for each group are uncommon; namely, the 

component can vary spatially between two classes of populations as reflected by the joint 

histogram (quantified via J-divergence) (Calhoun et al., 2006a).
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However, joint ICA may not be optimal in this sense. For example, we have previously 

shown that for hybrid fMRI data, the component exhibiting the largest between-group 

diversity is not always sorted correctly by above two criteria and thus cannot be identified 

properly (Sui and Calhoun 2008; Sui et al., 2008). Hence, a more accurate and sensitive 

approach on group-difference detection is needed for mining large scale noisy fMRI data 

spanning multiple tasks. Therefore, we proposed a novel general framework by combining 

two techniques: coefficient-constrained ICA (CC-ICA) and principal component analysis 

with reference (PCA-R).

The main contribution of this work is three fold. First, we propose a framework which 

combines CC-ICA (Sui et al., in press) and PCA-R (Caprihan et al., 2008; Liu et al., 2008), 

both of which incorporate prior membership information, thus enhancing the components’ 

extraction sensitivity to group differences as well as their estimation accuracy. Secondly, an 

automated artifact removal method is proposed to accelerate the selection of components of 

interest. This method works on independent components (IC) derived from the second-level 

fMRI analysis, and we show in results a specificity of 93% and a sensitivity of 88% for 

artifact classification. Our approach is based on the general properties of ICs, with no need 

of strong temporal or spatial prior assumptions. Finally, we develop an automatic method for 

determining optimal group-differentiating feature/component from a large number of 

components. An analysis flow chart explaining how one goes from the raw data all the way 

to the final optimal components is given in Fig. 1.

In this paper, we utilize healthy controls (HC) versus schizophrenia patients (SZ) as two 

groups of subjects. Schizophrenia is a brain disorder characterized by altered perceptions, 

thought processes, and behaviors (Liddle et al., 1992). It is currently diagnosed on the basis 

of a collection of psychiatric symptoms and is associated with both structural and functional 

abnormalities in neocortical networks.

Several fMRI tasks have been found to reveal robust activation disparity in schizophrenia 

versus controls. In this paper we focused on three of them: a Sternberg working memory 

task (Manoach et al., 1999, 2001), an auditory sensorimotor task (Johnson et al., 2006; 

Sabbah et al., 2002) and an auditory oddball task (Kiehl and Liddle 2001). There are five 

features extracted from these three tasks; Sternberg_probe (SBP), Sternberg_encode (SBE), 

sensorimotor (SM), auditory oddball_target, (AODT) and auditory oddball_novel (AODN), 

resulting in 15 combinations including 10 joint features and 5 single features. The group-

discriminating performance is evaluated across 15 feature combinations collected from 53 

subjects, each of whom performed all three tasks. Two optimal features and three optimal 

components are identified based on the proposed framework and their potential to serve as 

biomarkers is investigated further.

Methods and materials

CC-ICA

Coefficient-constrained ICA is formulated by incorporating a group difference criterion 

directly into the traditional ICA cost function to adaptively constrain the mixing coefficients 

of certain components to enhance group differences. Since regular ICA only maximizes the 
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component’s independence without considering the group information, a modified ICA 

framework which incorporates additional requirements (Hesse and James, 2006; Lu and 

Rajapakse, 2005) and prior information (Lu WaR, 2004) can help improve the performance 

of the ICA estimation.

To account for group inferences, the classic ICA model X=A·S can be extended as

(1)

The observed data X consists of measurements such as one or more stacked features along 

subjects with dimensions of N×L (subjects by voxels), A is the mixing coefficient matrix 

(N×M) and S, with dimensions of M×L, contains M independent sources such as brain 

activation maps. Here, X and A are divided into 2 parts, where the suffixes h and p denote 

the group data of healthy controls and schizophrenia patients respectively. In joint ICA, S is 

the joint component and both features share the same A. The aim of ICA is to find the 

unmixing matrix W=A−1 (when we ignore the permutation and scaling ambiguity) so that 

the source estimation U=WX is as close as possible to the true source S. The back-

reconstructed sources for each group can be calculated as Uh = WhXh = Ah
−1·Xh, Up = 

WpXp = Ap
−1·Xp. If data are noisy and the components are allowed to show different 

manifestations on different populations, then U, Uh, and Up are different from each other.

CC-ICA aims to improve the components’ extraction sensitivity to group differences as well 

as their estimation accuracy. Its cost function is constructed as shown in Eq. (2), in addition 

to the traditional ICA objective function H for achieving independence; the sum of the 

squared T statistic of the constrained component(s) is added.

(2)

where λ is the constraint strength associated with the T2 term, the suffix i represents index of 

the constrained ICs. The calculation of Ti and how to determine the constrained components 

are given in the Appendix. Maximization of cost function C is based on the gradient 

algorithm which, with its optimization strategies, is also described in detail in (Sui et al., in 

press) and the Appendix.

CC-ICA can be implemented within different ICA algorithms, here we use Infomax (Bell 

and Sejnowski, 1995) as an example, since Infomax is closely related to most other ICA 

algorithms (e.g. FastICA) under certain conditions and can be shown to be equivalent to 

maximum likelihood estimation (Cardoso, 1997). For example, if the demixing matrix W in 

Infomax is constrained to be orthogonal and the nonlinearity in both is matched to the source 

density, the cost functions for Infomax and FastICA can be shown to be equivalent (Adali et 

al., 2008). More importantly, Infomax is optimal if the nonlinearity used in the algorithm is 

matched to the source density in the maximum likelihood sense.

In our previous work, we had shown via simulations that CC-ICA can increase the 

estimation accuracy of both the components and the mixing coefficients compared to 
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Infomax, and can sort components more consistently with the ground truth by p value and J 

divergence, which prove especially important for identifying optimal components.

Data reduction by PCA-R

Principal component analysis (PCA) has been used for data reduction, component selection, 

and also considered for linear discriminate analysis (Jolliffe et al., 1996). It transforms data 

into a new orthogonal coordinate system such that the components are sorted by variance. 

Since the components carrying the largest variance may not be the ones best characterizing 

group differences, variance is not an ideal criterion for analysis of group difference. Other 

alternative selection criteria (Chang, 1983; Dillon et al., 1989) may not be suitable for our 

fMRI data application due to the dimensions of the dataset (number of subject is much less 

than the number of voxels). Extending this idea, PCA-R, has recently been applied to brain 

imaging data (Caprihan et al., 2008; Liu et al., 2008) successfully and provides an improved 

group-discriminating component set compared to other approaches. After a regular principal 

component decomposition, PCAR incorporates a categorical variable such as mean group 

difference as a reference for measuring a component’s distinguishing power, which is sorted 

from high to low to select out the most sensitive components for group analysis (Liu et al., 

2008). More details can be found in the Appendix.

Automated artifact removal method

When mining large numbers of features, it is important to remove artifactual results, which 

are often captured in separate components. We thus propose an automated artifact removal 

method for the components derived from feature-based ICA, with the underlying idea that 

the artifacts are less likely to aggregate in the clustered regions. In spatial ICA, fMRI are 

decomposed into several spatial modes (independent components), some of which are 

interpreted as a subset of ‘interesting’ and ‘meaningful’ components related to the task, 

while some others reflect signal artifacts or noise (McKeown et al., 2003). In previous fMRI 

applications of ICA, the selection of components of interest has been performed using 

various approaches. The simplest one relies on visual inspection of the IC spatial maps or 

time courses (first-level result) (Calhoun et al., 2001a,c; McKeown et al., 1998). Since ICA 

does not provide any intrinsic order of the ICs, the IC classification based on visual 

inspection is very time consuming and highly dependent on the experience of the researcher.

There are many automated noise reduction methods based on analysis of the component/

time courses derived from first-level processing (Kochiyama et al., 2005; McKeown, 2000; 

Perlbarg et al., 2007; Tohka et al., 2008). Since we work on contrast images which contain 

no time-domain information, the ICs of interest cannot be selected based on expectations of 

time course profile, such as its linear correlation with the reference function. Strong priori 

assumptions on the spatial layout of the activations can be used as an alternative, e.g. in the 

approach proposed by van de Ven et al. (2005), brain networks are detected by selecting 

components that load heavily in predefined regions of interest (ROIs); however, prior 

expectations on one or more ROIs are not always available.

An approach called IC-fingerprints, a visual tool for characterizing the ICs, was defined as a 

multidimensional space of 11 descriptive measures by De Martino et al. (2007), with an 
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underlying assumption (Formisano et al., 2002) that the ICs reflecting similar process types 

(e.g., BOLD activation, structured noise, movement) have similar fingerprints. This IC-

fingerprint proved to be effective in isolating task-related components in a simple paradigm 

without time information.

Motivated by IC-fingerprints, we propose an artifact removal method to automatically label 

the components of interest according to two criteria: 1) spatial correlation of the IC with a 

grey matter (GM) template is bigger than that with a ventricular cerebrospinal fluid (vCSF) 

template and, 2) the focusing degree (FD) of the IC is bigger than the adaptive threshold 

thFD. All measures we used are estimates of global properties of components and do not rely 

on strong temporal or spatial hypotheses (De Martino et al., 2007). They are chosen by 

empirical observations and can classify ICs easier than other measures such as kurtosis. We 

focus on three types of artifacts in this paper: vCSF artifact, sparsely-distributed noise and 

movement-related artifact.

1) Spatial correlation of the IC with grey matter template and ventricular CSF 
template—We utilize the classic GM, white matter and vCSF Montreal Neurologic 

Institute (MNI) templates included in SPM 5. First, we reslice the templates to the same 

dimensions with the derived components, in our case the dimensions are 53×63×46. The 

template voxel values are retained if they are the largest among the three tissue types and are 

set to zero otherwise. Fig. 2 (a) and (b) display the vCSF and GM template. Each IC is 

transformed into a Z map by dividing its standard deviation across all voxels, and the voxels 

with ∣Z∣ value lower than a threshold (th=1.5 in our case) are set to zero, as shown in Fig. 2 

(c). Since the activations are mainly shown in the middle layers of the fMRI slices, we only 

extract the thresholded Z map from −33 mm to 66 mm in z axis of MNI coordinates (7th–

40th slices in our case) and stretch it into a vector, then correlate this vector with the 

corresponding part of the GM and vCSF template to obtain two correlation values: CGM and 

CCSF. The components of interest should show their activations mostly in GM and rarely in 

vCSF region. If CGM<CCSF, the component is labeled as vCSF artifact.

2) Focusing degree defined by spatial entropy (S_enpy) and clustering degree 
(CD)—

(3)

where i is the component index, both S_enpy and CD are normalized scalars in range of [0, 

1].

Clustering degree is a measure of spatial structure (Formisano et al., 2002). For every IC, the 

number of voxels (Ntot) exceeding a threshold in the Z-map and the size of the subset of 

these voxels (Nclu) belonging to a 3D cluster of minimum extension (e.g. 3×3×3 voxel3) are 

computed. The CD is defined as CDi=Nclu/Ntot and is linearly scaled to be in the interval of 

[0, 1].
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Spatial entropy is a measure of information content for one spatial distribution (De Martino 

et al., 2007), which is expected to be higher for component with more widely distributed 

values. We define

(4)

where hsi represents spatial histogram of the ith component computed over Nb bins. S_enpy 

is obtained by linear scaling of ∣ln (H)∣ so that it is in the range [0, 1].

Hence FD captures both the spatial distribution and the spatial structure information of one 

component. The movement-related artifact are shown as thin edge at the skull profile with 

opposite activated Z-values on two sides, such as top versus bottom or left versus right. The 

sparsely-distributed noises are by definition sparsely-distributed small activations. Both of 

them usually have fewer large-scale clustered activations or a wider spatial distribution than 

ICs of interest, so they are expected to have the lowest FD values. Suppose SFD is the 

sorted scalar FD from low to high, i.e., SFD(1) has the smallest value; MedFD is a measure 

defined by the median value of S_enpy and CD as follows, we use both MedFD and the sort 

order of FD to determine thFD dynamically:

(5)

(6)

where mth is the number of IC hypothesized as artifact. When FD<thFD, the IC is labeled as 

artifacts of such two types.

Demonstration of the artifact-removal method

Fig. 3 illustrated the most remarkable characteristics for 8 components decomposed from an 

fMRI dataset with a single Sternberg probe task. Our automated artifact removal method is 

applied to label every component and relies on two criteria: ‘CGM>CCSF’ and ‘FD>thFD’, 

whose values are binary with 0 (noise or artifacts) or 1 (non-artifact). As listed in the first 

two rows, if a component is labeled 0 for either of the criteria, it is classified as artifact or 

noise.

‘CGM>CCSF’

The correlation measures CGM and CCSF (listed in the 3rd and 4th row of Fig. 3) are used to 

label the vCSF artifact if ‘CGM>CCSF’ is false (value 0). For example, the 5th IC is marked 

as zero with CGM=0.0961<CCSF=0.2473 and Fig. 3 confirms that it is a vCSF artifact.

‘FD>thFD’

In case of Fig. 3, mth=8/4=2, SFD(2)=0.1972, SFD(4)=1.025 and MedFD=0.368; so 

thFD=SFD(2)=0.1972, then two ICs with the smallest FD values are labeled as artifact, i.e., 

the 3rd IC is sparsely-distributed noise and the 7th IC is movement-related artifact.

Sui et al. Page 7

Neuroimage. Author manuscript; available in PMC 2015 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Optimal component/feature selection

For each of the 15 feature combinations, two non-artifact ICs (or one if duplicated) with the 

smallest p value or the largest J-divergence are selected out and termed “optimal 

components”. The two evaluation metrics are defined below:

1. p value, a measure which determines the probability of two groups having a 

significantly different mean in the mixing coefficients.

2. J-divergence (the symmetric Kullback–Leibler divergence), a measure reflecting 

the mutual information between the back-reconstructed source distributions of two 

groups (Calhoun et al., 2004a). The higher J-divergence value a component has, the 

larger difference exists between joint histogram distribution of Uh and Up.

Optimal feature selection

We define J-modulus, which is modulus of the J-divergences of two optimal components, as 

a measure of group-differentiating power of one feature combination. J modulus is ordered 

from high to low across all feature combinations to determine the optimal feature.

Optimal component selection

All non-artifact ICs of 15 combinations are sorted by J-divergence in descending order, 

several top ones are chosen as optimal components for all combinations.

Data sets

We used real fMRI data acquired at a single site, the Mind Research Network, collected as 

part of the MIND clinical imaging consortium, a large multisite fMRI study. Participants, 

including 25 schizophrenia patients and 28 healthy controls, had provided written, IRB-

approved consent at University of New Mexico. They are scanned for all the following 3 

tasks, which have been found to reveal robust activation differences in schizophrenia 

patients (Kumari et al., 2007; Manoach et al., 2001). The numbers of males/females are 

(23/5) and (22/3) for controls and patients respectively, and no significant group differences 

exist in age (controls, 32±13 years, range 18–54 years; patients, 32±12 years, range 21–60 

years).

1) Auditory oddball task (target and novel)—The auditory oddball task stimulated the 

subject with three kinds of sounds: target (1200 Hz with probability, p=0.09), novel 

(computer generated complex tones, p=0.09), and standard (1000 Hz, p=0.82) presented 

through a computer system via sound insulated, MR-compatible earphones. Stimuli were 

presented sequentially in pseudorandom order for 200 ms each with inter-stimulus interval 

(ISI) varying randomly from 500 to 2050 ms. A subject was asked to make a quick button-

press response with their right index finger upon each presentation of the target stimulus and 

no response was required for the other two stimuli. There were 4 runs, each comprising of 

90 stimuli (3.2 min) (Kiehl and Liddle, 2001; Kiehl et al., 2005b).

2) Sternberg working memory task (encode and probe)—The Sternberg working 

memory task (Manoach et al., 1999, 2001) requires subjects to memorize a list of digits 

(displayed simultaneously) and later to identify if a ‘probe’ digit was in the list. Three 
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working memory loads: high (5 digits), medium (3 digits) and low (1 digit) were used in this 

paradigm. Each run contained two blocks of each of the three loads in a pseudorandom 

order. Half of the probe digits were targets (digits previously displayed) and half were foils. 

Subjects were asked to respond with their right thumb if the probe digit was a target and 

with their left thumb for a foil.

3) Sensorimotor task—The sensorimotor task (Haslinger et al., 2005; Mattay et al., 

1997) consisted of an on/off block design, each with a duration of 16s. During the on-block 

cycles of 8 ascending-pitched and 8 descending-pitched, 200 ms tones were presented. 

There were three runs each with duration of 4 min. The participant was instructed to press 

the right thumb of the input device after each tone was presented.

Imaging parameters

Scans were acquired at the Mind Research Network, on a 1.5 T dedicated head scanner 

(Siemens) with single echo planar imaging (EPI). The parameters for these functional scans 

are: TR = 2s, TE = 40 ms, FOV = 22 cm, acquisition matrix = 64 × 64, flip angle=90°, voxel 

size=3.75×3.75×4 mm, slice thickness=4 mm, gap=1 mm, 27 slices, AC-PC, Pulse 

sequence=PACE-enabled, single shot.

Image preprocessing

Data were preprocessed using the software package SPM5. Images were realigned using 

INRIalign, a motion correction algorithm unbiased by local signal changes (Freire et al., 

2002). Data were spatially normalized into the standard MNI space (Friston et al., 1995), 

spatially smoothed with a 9 mm3 full width at half-maximum (FWHM) Gaussian kernel. 

The data, originally 3.75×3.75×4 mm, were slightly subsampled to 3×3×3 mm, resulting in 

53×63×46 voxels.

GLM analysis

Data for each subject were analyzed by multiple regression with the SPM5 software. 

Regressors were created by modeling the predictors of interest as delta functions convolved 

with the default SPM5 hemodynamic response function (HRF). Contrast images were then 

calculated by applying appropriate linear contrasts to the parameter estimates for the 

parametric regressors of each task. After GLM analysis, the original fMRI 4D data of each 

subject is then reduced to be a 3D spatial map, i.e. “contrast image” or “feature”.

Results

Performance of the automated artifact removal method

The performance of the automated artifact removal method is evaluated when using 

different component number M. According to the minimum description length (MDL) 

principle (Li et al., 2007) and by applying it to multiple datasets, we find that for second-

level fMRI analysis, M is usually in range of [8, 16], so 8, 12 and 16 components are chosen 

for data decomposition respectively. Every joint component contains 2 features, so there are 

(10×2+5)×M number of features that need to be classified. Only joint-ICs with both features 

shown as artifacts are automatically removed. If a joint component contains only one feature 
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displayed as artifacts, it is still treated as an IC of interest, in order to keep potential useful 

information. The classification results from the proposed auto-artifact-removal method are 

compared with visual inspection results by experienced researchers and listed in Table 1, 

conditions in joint features (JF) and single feature (SF) are listed separately as JF/SF.

Note that our method performs robustly for different numbers of ICs. The error rates are 

computed as follows:

To avoid removing the components of interest, the false positive rate (FP) is controlled as 

7.64% for all joint features and is lower than 5% (4.88%) for all single features. The true 

positive rates (sensitivity) show that nearly 88% of real artifacts are labeled correctly and the 

specificity (1-FP) for all features is 93%. Finally, the classification accuracy of our method 

is higher than 90% for all features and becomes quite efficient when analyzing large scale 

data, since it decreases the time needed for manual inspection.

In order to validate the effectiveness of our method to other datasets, we applied it to another 

dataset collected from a different scanner at the Olin Neuropsychiatry Research center in 

Hartford including 30 participants conducting the auditory oddball (target) task. The dataset 

was decomposed by CC-ICA using 8, 12 and 16 components respectively and labeled by the 

proposed method. The average classification accuracy is 91.7% compared to visual 

inspection. Hence, our automatic artifact removal method appears to generalize across 

different datasets.

Identified optimal features and components

Based on MDL with independent sampling (Li et al., 2007), 16 components are estimated 

from each of 10 joint feature combinations and 12 components are estimated from each of 5 

single feature combinations, producing total 220 components consisting of 380 features.

For every feature combination, the J-modulus (right red bar) and the J-divergence of two 

optimal components based on the smallest p value (left blue bar) and the largest J-

divergence (middle green bar) are illustrated in Fig. 4. Apparently, the SM single feature and 

the SBP&AODT joint feature are the top two combinations, so we pick them as two optimal 

features.

Fourteen components with J-divergence larger than 1.5 are plotted in Fig. 5 and their feature 

names are displayed on the bars. The top three components: SM7, SBP&AODT7 and SM6 

stand out from others with J-divergence larger than 3. Hence they are regarded as the three 

optimal group-discriminating components and their spatial activations are investigated 

thoroughly in the next section.
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To verify the robustness of generating optimal features and components by the proposed 

framework, we changed the data by leaving ten controls and ten patients out and worked on 

a reduced dataset including 33 subjects. Results show the brain networks identified by the 

top 3 optimal components do not change, still, the top two optimal features are SM and 

SBP&AODT too. Thus, our framework derives consistent result in subset of the data on 

measuring group-differentiating capability.

Analysis of 3 optimal components

The three optimal components belong to two optimal feature combinations: SM and 

SBP&AODT. For display, the spatial maps of the 3 components are converted to Z-scores 

and thresholded at ∣Z∣>2.5 as shown in Fig. 6 (a), (b). Fig. 6 (c) gives a distinct view of the 

combined spatial maps in (a) and (b); these activated regions can best separate the two 

groups. The highlighted slices in (c) are back-reconstructed using Uh = Ah
−1·Xh,Up = 

Ap
−1·Xp and a significant group difference is indicated in (d) by subtracting patients from 

controls on their spatial maps, where controls have greater ∣Z∣ values is shown in orange and 

otherwise is shown in blue.

The thresholded Z maps of the 3 optimal components are converted to Talairach coordinates 

one by one, as listed in Table 2, and the most remarkable activated brain networks are 

interpreted.

1. SM7: The temporal lobe network (Brodmann [BA] areas 21, 22, 38, 41, 42) which 

is associated with perception and recognition of auditory stimuli, memory, and 

speech, is identified as the most group-discriminative regions (Pearlson, 1997).

2. SBP&AODT7: The occipital lobe network including cuneus, lingual gyrus and 

occipital gyrus are identified in both features of this joint component.

3. SM6: A network which resembles the default mode network including precuneus, 

posterior cingulate, and BA 7, 10, and 39 (Correa et al., 2007) are identified as 

group-discriminating regions too. This component is derived from a second-level 

fMRI analysis, it is not really the same as, but looks very similar to the “default 

mode” derived from the first-level fMRI processing, so we will call it that in this 

paper. This brain network is proposed to participate in an organized, baseline 

default mode of brain function that is diminished during a variety of specific goal-

directed behaviors (Raichle et al., 2001).

Further investigation of these highlighted regions including transverse and superior temporal 

gyrus, precuneus and posterior cingulated, cuneus and lingual gyrus, show that patients are 

more activated in ventral and medial superior temporal gyrus (STG) regions (including BA 

38) and controls had greater activations in bilateral dorsal STG regions (which did not 

include BA 38). The default mode networks show negative Z-values for both groups, 

particularly, controls showed less activation in posterior cingulate than patients while had 

greater activation bilaterally on angular gyrus. In addition, a large region of cingulate gyrus 

and its surrounding sub-gyrus was activated in patients but not in controls. In addition, in 

occipital lobe, controls show stronger activations in cuneus (BA 18, 19) than SZ patients.
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The optimal components are then utilized for the classification of patients and controls using 

a dataset collected from a different scanner. This dataset is also used to validate the auto-

artifact-removal method and consists of 15 healthy controls and 15 schizophrenia patients. 

We generate five mask templates as listed in Table 3. Four of them based on the highlighted 

group-discriminative regions of the three optimal components as shown in Fig. 6 (c). 

Another mask is created by thresholding a two-sample t-test on the contrast images of the 

two reference groups at a significance level of p<0.0001, the regions of interest mainly 

occurred in temporal lobe and thalamus (now shown in the paper). The contrast image of 

every subject is masked via the template and the resulting nonzero voxels are transformed 

into a scalar with reduced dimension. We use mean of the absolute value of this scalar as the 

classifier input of each subject. Each individual was assigned one of two class memberships, 

with a leave-one-out approach based on the Euclidian distance between the individual and 

group means. Randomly selected subjects from each group were excluded from the whole 

data set, the classifier was designed using the remaining participants and tested on the two 

subjects. An average sensitivity and specificity were reported respectively in Table 3 for all 

masks. Note that the mask using combined regions generates the highest classification 

accuracy (sensitivity 87% and specificity 73%), while using the univariate method (t-test) 

results in a relatively lower accuracy (sensitivity 75% and specificity 64%). These results 

are quite encouraging considering the fact that the validation data was not only collected 

from different subjects, but also from a different MRI scanner.

Analysis of two optimal feature combinations

For two optimal feature-combinations: SM and SBP&AODT, we were interested in 

investigating additional group-differentiating brain networks and exploring the potential 

associations which may be missed by separate analysis. To keep a balance for the 

contribution of the two combinations, the contrast images are concatenated as 

[SM,SM,SBP,AODT] with the same length of voxels for every feature and then stacked 

along subjects. 16 components are estimated via MDL criterion and decomposed by PCA-R

+CC-ICA, the one with the largest J-divergence is thresholded by ∣Z∣>2.5 and is displayed 

in Fig. 7. Five main activated brain networks are demonstrated and converted to the 

Talairach coordinates. Table 4 lists the relevant Brodmann areas (both positive and negative) 

and their activated volumes.

Discussion

For purposes of group discrimination and data fusion of large-scale fMRI data spanning 

multiple tasks, we proposed a novel framework that incorporates several key ideas: PCA-R, 

CC-ICA, automated artifact removal and optimal feature/component selection.

PCA-R is implemented in our initial data reduction step. The mean of group difference is 

adopted as a reference for measuring the discriminative power of the components, although 

other group information can also be introduced, this one is effective and computationally 

efficient (Chang, 1983), and selects out principal components with greatest potential to 

distinguish groups.
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We proposed CC-ICA as an approach to incorporate prior group member information within 

the normal entropy cost function (for Infomax) to emphasize components that can best 

distinguish two groups. CC-ICA is designed to regularize the independence maximization 

by using a criterion which adaptively constrains specific mixing coefficients. Hence, the 

approach is not a strict constrained problem and the main role of λ is to regularize the 

solution. Optimization strategies are adopted to ensure the constraint enforces only when 

group differences really exist; otherwise, CC-ICA is identical to regular ICA. Our previous 

work (Sui et al., 2009) had shown CC-ICA can increase the estimation accuracy of both the 

components and the mixing coefficients compared to Infomax, and also brings about a 

change in the sorted order of the components, which may prove especially important in 

identifying optimal components. In this paper, we further extended its application to 

potential biomarker identification; considering the theme and the length of the paper, we 

didn’t show the results derived from Infomax.

In contrast to first-level ICA-based fMRI analysis methods, such as GIFT (Calhoun et al., 

2001b), tensor probabilistic ICA (PICA) (Beckmann and Smith, 2005) and independent 

vector analysis (IVA) (Lee et al., 2008), CC-ICA is used for second-level fMRI analysis, it 

can work on either GLM contrast images (hypothesis-driven) or first-level ICA output maps 

(data-driven). We use GLM contrast images as input in this paper, as this is consistent with 

our previous work. It is straightforward to utilize components resulting from the first-level 

fMRI analysis in future work. Wang and Peterson (2008) also provides an option for 

selecting optimal first-level independent components as input (‘feature’) of our model. 

Further, by concatenating data from two modalities (e.g. functional MRI and structural MRI) 

instead of two fMRI-based features, CC-ICA can be extended to work with multi-modal 

data analysis, hence it has wide applicability in neuroimaging field.

We propose a novel automated artifact removal method for components derived from 

second-level fMRI analysis, which effectively accelerates the components’ classification 

especially when hundreds of ICs need to be analyzed. This method is designed to 

automatically remove the artifacts with obvious noise characteristics, rather than all 

“possible artifact” components, such as the component displaying both meaningful 

activations and vCSF artifact. We leave these noise-mixed components for further visual 

inspection. Since no time-domain information is available for components extracted from 

feature-based ICA, our method only depends on general spatial measures. Though it is 

possible to include other measures to improve the classification accuracy, our method is 

very straightforward and efficiently attains high sensitivity (88%) and a low false positive 

rate (7%). Application to a separate dataset also validates its generalizability.

The first criterion is based on the spatial correlation with vCSF and GM template, which can 

remove vCSF artifact effectively while simultaneously keeping noise-mixed components if 

their activations in GM are stronger than those in vCSF. Using spatial mask to remove the 

data in vCSF region before we starting analysis is also an option, but after smoothing, the 

voxels in vCSF region may contain GM information, in order to keep useful information as 

much as possible and retain the integrality of raw data, we chose the former option. The only 

parameter that is user selected in our artifact selection approach is the Z-score value. Our 

experience working with many data sets suggests that a value ∣Z∣>1.5 is a good choice and 
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provides reliable performance. Also, we noted the robustness of the method to variations of 

Z-score when it is chosen around this value.

The three optimal components we identified suggest that aberrant patterns in temporal lobe, 

default mode and occipital lobe are shown in schizophrenia, which is consistent with 

previous findings. Specifically, first, various studies have shown that superior temporal 

gyrus is significantly different in schizophrenia (Pearlson, 1997) and one of the most robust 

functional abnormalities in schizophrenia manifests as a decrease in the temporal lobe 

amplitude of the oddball response in both event-related potential (ERP) data (McCarley et 

al., 1991) and fMRI data (Kiehl and Liddle, 2001). The bilateral temporal lobe has also been 

used for successful discrimination of HC and SZ (Calhoun et al., 2004b). Second, in task-

related fMRI studies, activity deficits in the occipital cortex had been observed in 

schizophrenic patients compared with controls (Johnston et al., 2005; Tregellas et al., 2004), 

and there were evidences supporting that the activity of the occipital lobe is abnormal in 

schizophrenia in both resting-state (Liu et al., 2006) and non-task-related fMRI studies such 

as AOD task (Kiehl et al., 2005a). This region may perhaps be differentially activated 

because the Sternberg task has a visual component. Finally, schizophrenia is found 

associated with altered temporal frequency and spatial location of the default mode network 

(Bluhm et al., 2007; Garrity et al., 2007).

Note that each of these brain networks was identified separately in previous neuroimaging 

studies (Garrity et al., 2007; Kiehl et al., 2005a; Tregellas et al., 2004), however our 

approach grouped them together in a framework that specifically identifies group 

discriminative features. Such a result is not obtainable using traditional approaches which 

focus upon a single task. Moreover, the optimal components may only be ‘identifiable’ 

through stimulation and comparison by different tasks, which further motivates a data fusion 

approach.

Initial classification results on a novel dataset indicate that combining information from all 

optimal components provides an encouraging classification accuracy (sensitivity 87% and 

specificity 73%) and an improved ability to classify memberships compared with each 

approach individually, see Table 3. Compared with clinical symptoms, which typically need 

to be combined with outcome data tracked over a period of months in order to develop an 

accurate diagnosis, the group-differentiating brain networks derived by our framework are 

less variable and may also be useful for classification, see Calhoun et al. (2008), however a 

full examination of the classification potential is beyond the scope of our current work. 

These initial results suggest our method can generate optimal components which may have 

great potential to serve as biomarkers for certain brain disorders.

We focus on between-group differences (no within-group differences) in this paper. The 

weakness of the univariate methods on joint analysis (e.g., regression analysis, t-test, 

ANOVA) lies in that they cannot identify covariation patterns of the same subject, thus 

wouldn’t enable us to identify joint information. In addition, the artifacts and effective brain 

activations are all mixed together when using univariate methods, so the artifactual signals 

will not be separated from signals of interest; while this can be solved readily by ICA-based 
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methods. The initial classification results also prove the advantage of our method over a 

univariate method.

Another point we should keep in mind is that it is not sufficient to only identify the optimal 

regions, to identify the tasks within which these circuits are engaged is also significant. This 

is the strength of our approach. By analyzing multiple fMRI tasks, the selection of features 

for group discrimination/classification is proved to be crucial. SM is suggested the best 

group-differentiating feature; its 3 ICs occur in top 4 ones with the largest J-divergence. 

This optimal feature shows several brain modes that demonstrate robust functional 

disturbances in schizophrenia patients (Hazlett and Buchsbaum, 2001; Mattay et al., 1997), 

such as temporal lobe and default mode circuits. The sensorimotor task was also found to 

best discriminate schizophrenia from control subjects in a classification approach comparing 

the same three tasks (Demirci et al., 2008). In addition to SM, we found that a joint feature 

SBP&AODT is the second most group-discriminative feature.

To explore whether additional benefit could be obtained, we also performed a 4-way joint 

ICA analysis ([SM SM SBP AODT]) on two optimal feature: SM and SBP&AODT. It is 

notable that identified brain networks in Fig. 7 are largely similar to those indicated in Fig. 

6(c). Specifically, temporal lobe still contains the most prominent activated regions in the 

SM feature and contains voxels with the largest Z-value among all 3 features; a network 

which resembles the default mode now shows up in SBP&AODT (previously in the SM 

feature); the occipital regions involved in pattern recognition and visual attention are 

identified in the SBP features. Note that all three features also include regions in primary 

and secondary motor cortex (BA 4, 6), accompanied by a functional asymmetry with left 

dominance, consistent with the fact that all the three tasks need participants push the button 

with their right fingers. Except the four common regions to those displayed in Fig. 6 (c), 

additional activations in parietal lobe with left dominance show up in the SBP&AODT 

feature but not in the SM feature. Parietal lobe is involved in multiple functions including 

attention, visuospatial abilities, sensory integration (Andersen and Buneo, 2002; Bendiksby 

and Platt, 2006) and decision making (McClure et al., 2004). Our finding is consistent with 

the fact that both the Sternberg and AOD tasks require signal discrimination (i.e., target vs. 

novel in AOD, digits previously displayed or not in SB), but there is no such requirement in 

the SM task. Therefore the multi-way (more than 2) joint CC-ICA results appears to identify 

more inter-task relationships, while it generates similar conclusions to the 2-way joint CC-

ICA on identifying the most group-discriminative regions.

In order to identify the best group differentiating aspect we proposed the J modulus, which 

incorporates information from both mixing coefficients and the estimated sources. Although 

other criterions may also be applicable, our measure is straightforward and generates 

reasonable results on optimal feature selection.

We have also shown our framework derives consistent results from a different data subset, 

which demonstrates that the optimal selection results are not biased toward a particular 

dataset and are hence more likely to be reproducible.

Sui et al. Page 15

Neuroimage. Author manuscript; available in PMC 2015 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Investigating schizophrenia-related deficits in functional connectivity among the optimal 

components we identified here will be an important future goal, since previous studies show 

evidence that schizophrenia involves a defect in the functional integrity of neural circuits or 

dysfunctional connectivity in multiple brain regions including temporal lobe (Friston and 

Frith, 1995; Kiehl et al., 2005a) and default mode (Garrity et al., 2007; Zhou et al., 2007). 

This work may provide a template for differential diagnosis of multiple brain disorders.

We also hope to further validate the results in future studies using a split-half resampling 

technique under the NPAIRS framework (Nonparametric Prediction, Activation, Influence 

and Reproducibility reSampling) (Strother et al., 2002). This technique provides a way to 

compare differences between two groups and among participants in the same group. It may 

also be useful to incorporate other prior information or different distributions for different 

features into the model. Application to data in other modalities such as EEG can also be 

implemented to investigate the significant group differences.

In conclusion, we proposed a novel framework for selection of group discriminating aspects 

from multiple fMRI tasks. An automated artifact removal method with an accuracy of 91% 

is also proposed to accelerate optimal component selection. Application of our method to a 

schizophrenia dataset shows that SM and SBP&AODT are two optimal features. Also, three 

optimal components including brain networks of temporal lobe, default mode and occipital 

lobe are suggested to be most sensitive in distinguishing schizophrenia from controls and 

show great promise as potential illness markers.
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Appendix

PCA-R

Principal components analysis is a typically used preprocessing step in multivariate data 

analysis to decompose data into a set of uncorrelated principal components ordered by the 

variance of each component. Suppose there are nh healthy controls and np patients, 

nh+np=N, the observed data X consists of measurements from all subjects with dimensions 

of N×L (subjects by voxels). In a typical use of PCA for dimensionality reduction, assume Λ 

and B are, respectively, the diagonal eigenvalue and eigenvector matrix of the covariance 

matrix E{X·XT}, Λ=diag{λ1, λ2…λN}. The top M components (M<N) with the largest λi are 

selected, thus Λ is changed to Λ’, an M×M diagonal matrix, and B is reduced to an 

corresponding M×N matrix B’. Therefore the reduced data X’ is given by X’=Λ’−1/2·B’·X.

In PCA-R, a categorical variable such as the mean group difference, is incorporated as a 

reference r for measuring a component’s discriminate power φi. We define
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(A.1)

(A.2)

where bi is the ith column of matrix B. After sorting φi in a descending order, as well as the 

corresponding eigenvectors, the top M components are selected for discriminative purpose 

by projecting X into the top M eigenvectors and X’ can be obtained in a similar way. 

Assume X’=D·X, the M×N matrix D is called whitening matrix and is used for dimension 

reconstruction of mixing matrix A during CC-ICA optimization.

CC-ICA

To account for group inferences, the regular ICA model can be extended as

(A.3)

Ah,Ap are mixing matrices in dimension of nh×M and np×M, each column of which 

represents loading parameters for one shared component. For the ith component, i=1,2…M, 

assume scalar Ah,i,Ap,i (the ith column of matrix Ah,Ap) are its corresponding subject-

specific loading parameters for two groups. The mean of Ah,i and Ap,i represent the 

contribution of the ith component to different groups. The T statistic to test whether their 

means are different can be calculated as follows:

(A.4)

where the symbol  and and Sh,i(Sp,i) are the mean and the standard derivation of 

Ah,i(Ap,i). nh +np−2 is the number of degrees of freedom for two-tailed significance testing. 

The larger the absolute value of Ti, the higher the probability that the mixing coefficients’ 

averages of the ith component are significantly different for two groups.

The cost function C of CC-ICA is constructed as:

(A.5)

(A.6)
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(A.7)

where u and y are the nonlinear network input and output scalar. The nonlinear sigmoid 

function g(·) has been shown to be quite robust to violations of the underlying model for a 

wide variety of data types. Here, E{·} is the expectation operator, H{·} is the differential 

entropy of y, λ represents the constraint strength and suffix i refers to the index of the 

constrained component(s).

The main purpose of CC-ICA is to estimate the unmixing matrix W by maximizing C. The 

learning process is as follows: for a selected iterative ICA algorithm, we assume the 

unmixing matrix obtained at the kth iteration is Wk,sICA, thus Wk,sICA will iteratively 

converge with the maximization of H. In case of Infomax, Wk,sICA is updated by the natural 

gradient learning rule (Amari, 1998) as

(A.8)

Only when weight change ΔWk,sICA stabilizes (measured by a tolerance factor), the 

constraint  takes effect, namely λ>0; now Ah and Ap are determined by 

, D is the whitening matrix defined in PCA-R.  is then 

maximized by the steepest ascent learning rule using partial derivatives of Ah,i and Ap,i, as 

shown in (A.9,10), i denotes the column index of the constrained components.

(A.9)

(A.10)

After updating Ah and Ap, Wk is obtained according to (A.11).

(A.11)

In the next iteration, Wk is then updated to Wk + 1,sICA according to Eq. (A.8). The learning 

process is repeated until convergence of Wk achieved, which is to some degree similar to 

that used in set-membership normalized least mean square (SM-NLMS) algorithm 

(Gollamudi et al., 1998).
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Note that which components are constrained is not fixed; rather, they are allowed to vary 

during the optimization. After constraint takes effect, T2 values of all components are 

calculated as Eq. (A.4) and are sorted at the current and the following steps. Half or more 

number of components with the highest T2 values are selected to be constrained to ensure 

that all components which may capture group differences are potentially constrained.

To ensure CC-ICA to adaptively adjust the learning process with the dataset, two 

optimization strategies are adopted:

1. We adaptively adjust the constraint strength λ. Specifically, after the constrained 

components are determined, the constraint  is incorporated with a strength λ0 

(initial learning rate). λ0 is estimated by a testing loop so that the absolute 

correlation value between Wk,sICA and Wk (the weight matrix obtained before and 

after adding the constraint) is bigger than 0.99. Furthermore, to achieve mutual 

independence between the components, the slope of ΔWk during the last ten steps 

SlopeΔW,10 is used to supervise the learning process so that the entropy 

maximization dominates the Wk update process. λ0 is scaled down by 0.9 when 

SlopeΔW,10>0.

2. We put an adaptive stopping rule in place which enables CC-ICA to converge to 

regular ICA if no group differences exist. When there are few or no components 

with a true group difference, the SlopeΔW,10 can also act as a switch for the 

constraint. In this case, entropy will fall suddenly and consequently ΔWk will 

increase abruptly, so when SlopeΔW,10 exceeds the threshold thstop (e.g., 

thstop=0.001), λ is set to be zero and the learning process converges to regular ICA. 

Hence the supervision by SlopeΔW,10 prevents the constraint from producing 

spurious group differences.
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Fig. 1. 
Flowchart of the optimal features/components selection, explaining how to identify the final 

optimal components from the raw data.
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Fig. 2. 
Grey matter and vCSF templates used for spatial correlation with the thresholded Z-map of 

the independent component.
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Fig. 3. 
The most remarkable characteristics for 8 components decomposed from an fMRI dataset 

with a single Sternberg_probe task. Note that the 3rd IC is sparsely-distributed noise, the 5th 

IC is a vCSF artifact, the 7th IC manifests as movement-related artifact; and others appear to 

be ICs of interest. The descriptive measures used to classify the components are listed below 

in a table. All the 3 artifacts show zero (green background) in either of the criteria listed in 

the first two rows.
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Fig. 4. 
J-divergence of the optimal components selected by 2 criteria: the smallest p value (blue 

bar) and the largest J-divergence (green bar), for 15 feature combinations. The modulus of 

the above two J-divergence values are plotted as red bar, which is treated as the group 

discriminating power of each feature combination.
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Fig. 5. 
Top 14 ICs with a J-divergence larger than 1.5 among all extracted ICs of 15 combinations. 

Their feature combination names are displayed on the bar. Component’s number of the top 3 

ICs is also shown in bracket.
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Fig. 6. 
(a), (b) are the spatial maps of the top 3 optimal components, which are converted to Z-

scores and thresholded at ∣Z∣>2.5; (c) shows the overlapping regions of the 4 features with 

their original spatial map values, these activated regions are important for group 

discrimination and may serve as biomarkers of schizophrenia patients; (d) displays the 

difference between the back-reconstructed sources (HC-SZ) on the combined highlighted 

regions of the top three optimal ICs in (c), the regions where HC>SZ in ∣Z∣ score are shown 

in orange, otherwise are shown in blue.
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Fig. 7. 
The extracted joint component with the largest J-divergence from feature combination of 

[SM,SM,SBP,AODT]. The activations of the 3 features are transferred to Z score and 

thresholded at ∣Z∣>2.5.
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Table 1

Results comparison of auto-artifact-removal method with visual inspection

Number of ICs used 8 12 16

Feature number classified 160/40 240/60 320/80

Number of features(JF/SF) Actual condition

Artifact Non-artifact Artifact Non-artifact Artifact Non-artifact

Test shows “artifact” 42/11 6/1 93/15 12/1 106/25 16/4

Test shows “non-artifact” 9/0 103/28 14/3 121/41 10/4 188/47

False positive rate 5.36%/3.57% 8.89%/2.27% 8.08%/7.84%

Sensitivity 82.35%/100% 86.9%/83.3% 91.38%/86.2%

Accuracy of classification 90.6%/97.5% 89.2%/93.3% 91.9%/90%

Artifact ratio 31.9%/27.5% 44.6%/30% 36.3%/36.3%

Total false positive rate 7.64%/4.88%

Total sensitivity 87.96%/87.93%

Accuracy of classification 90.7%/92.8% (average 91.1%)
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Table 2

Talairach table of the 3 optimal components

Area Brodmann area R/L vol (cm3) R/L max Z(x,y,z)

SM component 6

  Positive

Superior temporal gyrus 22: 41 0.4/0.3 4.3(−50,14,−6)/4.1(59,−23,4)

Inferior/middle/medial frontal gyrus 47: 45: 9: 6 0.7/0.1 3.9(−50,17,−6)/2.8(45,0,53)

Inferior parietal lobule 40 0.3/0.0 3.5(−48,−41,55)/ns

Superior frontal gyrus 6: 8 0.4/0.2 3.4(0,11,52)/3.1(3,6,60)

Insula 13 0.3/0.0 3.0(−39,18,2)/ns

  Negative

Posterior cingulate 23: 31: 29: 30 0.9/0.8 6.2(−3,−51,22)/5.8(3,−51,22)

Precuneus 31: 7: 19 1.6/1.8 5.5(0,−51,30)/5.1(3,−51,30)

Cingulate gyrus 31 0.4/0.4 4.7(0,−45,30)/4.3(3,−45,30)

Cuneus 7 0.2/0.2 4.6(0,−65,31)/4.3(3,−65,31)

Fusiform gyrus 18 0.1/0.0 4.4(−27,−88,−16)/2.5(50,−53,−18)

Inferior parietal lobule 39 0.0/1.0 ns/4.2(45,−68,39)

Medial/middle/superior frontal gyrus 10: 11 0.2/0.7 3.6(−3,62,16)/3.8(3,62,8)

Middle/superior temporal gyrus 39:42 0.0/0.7 ns/3.6(50,−66,23)

SM component 7

  Positive

Superior temporal gyrus 42: 22: 41: 13 4.0/4.2 8.4(−62,−20,12)/7.4(50,−20,4)

Transverse temporal gyrus 42: 41 0.9/1.1 7.7(−62,−17,12)/7.3(42,−31,13)

Middle temporal gyrus 21: 22 1.2/0.7 6.9(−62,−6,−5)/5.0(59,−3,−5)

Insula 13: 22: 41 0.3/1.2 6.1(−45,−17,4)/5.4(45,−17,4)

Postcentral gyrus 43: 40: 1 0.1/0.0 3.2(−65,−19,20)/2.5(53,−18,45)

Inferior parietal lobule 40 0.0/0.1 ns/2.9(53,−46,22)

Lingual gyrus 17 0.0/0.1 ns/2.9(12,−94,−8)

  Negative

Fusiform gyrus 18 0.1/0.0 3.9(−27,−88,−16)/ns

SBP component 7

  Positive

Inferior/middle occipital gyrus 17: 18 0.5/0.0 6.2(−24,−91,−8)/ns

Precentral gyrus 6: 44 0.0/0.3 ns/4.2(59,4,19)

Lingual gyrus 17 0.1/0.0 4.0(−18,−94,−8)/ns

Inferior frontal gyrus 44: 45 0.1/0.3 2.6(−42,38,9)/3.8(59,7,19)

Superior/middle/medial frontal gyrus 11: 6 0.9/0.1 3.7(−30,40,−15)/ns

Cerebellum 0.2/0.0 3.3(−36,−82,−16)/2.7(12,−82,−16)

Cuneus 17 0.3/0.0 3.3(−18,−96,0)/ns

Posterior cingulate 31 0.0/0.1 ns/2.8(9,−57,22)

Inferior parietal lobule 40 0.1/0.0 2.8(−45,−59,47)/ns

  Negative
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Area Brodmann area R/L vol (cm3) R/L max Z(x,y,z)

Superior parietal lobule 7 0.4/0.6 4.0(−30,−68,48)/4.5(33,−58,55)

Precuneus 19: 7 0.8/0.5 4.3(−30,−77,40)/3.7(27,−80,40)

Superior frontal gyrus 10: 8: 6 0.5/0.5 3.9(−3,17,52)/3.9(30,59,16)

Middle occipital gyrus 18: 19 0.1/0.4 3.7(−50,−67,−9)/3.8(45,−76,−9)

Lingual gyrus 18 0.0/0.4 ns/3.7(18,−70,−9)

Middle/medial frontal gyrus 10: 6: 8 0.1/0.1 3.2(−3,20,43)/3.3(30,62,8)

Cuneus 19: 18 0.2/0.2 3.1(−3,−86,32)/3.2(15,−102,8)

Superior temporal gyrus 22: 38 0.4/0.0 2.8(−56,11,−6)/ns

AODT component 7

  Positive

Cuneus 17: 18: 19: 7 0.5/0.9 10.1(−3,−96,0)/8.9(3,−96,0)

Lingual gyrus 17: 18 0.2/0.2 5.8(0,−90,−1)/6.1(6,−93,0)

Cerebellum 0.4/0.1 3.4(−33,−56,−17)/2.7(27,−59,−17)

Middle temporal gyrus 21 0.3/0.0 3.3(−62,−18,−12)/ns

Superior temporal gyrus 22 0.4/0.1 3.1(−65,−14,3)/3.0(53,14,−6)

Transverse temporal gyrus 42 0.1/0.0 2.9(−65,−14,12)/ns

Fusiform gyrus 19 0.1/0.0 2.8(−27,−56,−10)/ns

Postcentral gyrus 2: 40 0.0/0.1 ns/2.7(45,−29,54)

Middle occipital gyrus 18 0.0/0.1 ns/2.7(30,−96,0)

  Negative

Inferior/middle occipital gyrus 17: 18 0.6/0.1 6.1(−21,−94,−8)/3.0(27,−88,−8)

Lingual gyrus 17 0.2/0.0 5.7(−18,−94,−8)/ns

Cerebellum 0.2/0.1 2.6(−27,−34,−34)/4.5(6,−48,−33)

Thalamus 0.1/0.1 3.2(−3,−17,4)/3.7(3,−17,4)

Posterior cingulate 23: 29 0.1/0.1 2.8(−3,−55,14)/3.1(3,−52,14)

Superior/medial frontal gyrus 6: 8 0.2/0.1 3.3(−3,20,60)/3.4(3,18,60)

Superior parietal lobule 7 0.1/0.2 2.9(−21,−67,56)/2.8(24,−67,56)

Cuneus 18 0.0/0.1 ns/2.7(3,−72,15)

Precuneus 7 0.0/0.1 ns/2.7(24,−68,48)
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Table 3

Classification accurate using different masks with a leave-one-out method

Mask ‘Default mode’ (SM6) Temporal lobe (SM7) Lateral occipital lobe
(SBP&AODT7) Combined three regions Two sample t-test

Specificity 0.52 0.60 0.70 0.73 0.64

Sensitivity 0.64 0.84 0.87 0.87 0.75
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