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A B S T R A C T

Papillomaviruses (PVs) are a numerous family of small dsDNA viruses infecting virtually all mammals.

PVs cause infections without triggering a strong immune response, and natural infection provides only

limited protection against reinfection. Most PVs are part and parcel of the skin microbiota. In some

cases, infections by certain PVs take diverse clinical presentations from highly productive self-limited

warts to invasive cancers. We propose PVs as an excellent model system to study the evolutionary

interactions between the immune system and pathogens causing chronic infections: genotypically,

PVs are very diverse, with hundreds of different genotypes infecting skin and mucosa; phenotypically,

they display extremely broad gradients and trade-offs between key phenotypic traits, namely productiv-

ity, immunogenicity, prevalence, oncogenicity and clinical presentation. Public health interventions have

been launched to decrease the burden of PV-associated cancers, including massive vaccination against

the most oncogenic human PVs, as well as systematic screening for PV chronic anogenital infections.

Anti-PVs vaccines elicit protection against infection, induce cross-protection against closely related

viruses and result in herd immunity. However, our knowledge on the ecological and intrapatient

dynamics of PV infections remains fragmentary. We still need to understand how the novel anthropo-

genic selection pressures posed by vaccination and screening will affect viral circulation and epidemi-

ology. We present here an overview of PV evolution and the connection between PV genotypes and

the phenotypic, clinical manifestations of the diseases they cause. This differential link between viral

evolution and the gradient cancer-warts-asymptomatic infections makes PVs a privileged playground

for evolutionary medicine research.
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INTRODUCTION

Papillomaviridae are a diverse family of small, non-

encapsulated viruses that infect warm-blooded

vertebrates. Members of this family were initially

described in mammals, but they have also been

found in birds, turtles and snakes and probably

infect all amniotes [1]. To date, more than 200 geno-

types of distantly related human papillomaviruses

(PVs) have been identified. In other well-sampled

species, such as horse, dog, cow or cat, many dis-

tantly related PVs have also been detected. Further,

virtually all humans are simultaneously colonized

by several PVs, causing asymptomatic infections in

skin and mucosa. Most likely, this is also the case for

all other mammals. Thus, PVs are a fundamental

part of the mammalian healthy skin microbiota.

In most individuals, PV infections are acquired early

during childhood and persist asymptomatically dur-

ing all their lifetime. However, certain PV infections

can have clinical presentations from self-limited be-

nign growth, e.g. hand or plantar warts, to malignant

growth, e.g. cervical or anal cancer. Indeed, cancers

associated to chronic infections by a few oncogenic

PVs are a major public health concern. Large

screening programs for early detection of gynaeco-

logical chronic infections by oncogenic PVs were

launched decades ago and are being complemented

by systematic vaccination programs in the last years.

However, our knowledge about PV molecular biol-

ogy and natural history of the infection is deeper

than our comprehension of the viral-host evolution-

ary and ecological interactions. We still need to

understand how these novel anthropogenic selec-

tion pressures imposed onto a few PVs will affect

both short-term and large-term dynamics between

PVs and humans. This article aims to bridge the

current gap between mechanistic and clinical re-

search on the one hand and evolutionary and ecolo-

gical research on the other hand, for PVs and the

associated infections and diseases.

BASICS ON PV BIOLOGY

Infection by PVs targets undifferentiated keratino-

cytes in the basal layer of the stratified squamous

epithelia, at both cutaneous and mucosal levels.

Most of our knowledge about PVs focuses on a

handful of medically important, closely related

human PVs (HPVs), linked to the development of

anogenital and oropharyngeal cancers.

PV genome structure

PVs contain a circular double-stranded DNA gen-

ome of approximately 8 kb (Fig. 1), organized into

three major regions: (i) an upstream regulatory re-

gion (URR) harbouring transcription factor-binding

sites and controlling gene expression; (ii) an early

region, encoding for six genes involved in multiple

functions including viral replication and cell trans-

formation and (iii) a late region, encoding for the L1

and L2 capsid proteins which self-assemble to yield

the virion. The conserved elements shared by all PV

members are the presence of an URR, the early pro-

teins E1 and E2 (and possibly the E4 gene nested

into E2) and the late proteins L1 and L2 [2].

Theoretically, these four proteins alone might fulfil

the basic tasks of replicating, regulating, stabilizing

and packaging of the viral DNA, eventually leading

to the release of the virion progeny [3].

PV life cycle

The best-studied PV is HPV16, a mucosotropic PV

that is the primary cause of cervical cancer and of

other anogenital cancers [4]. The life cycle described

below corresponds to HPV16, and although it may

be applicable to all PVs, differences in strategies

leading to productive/silent, chronic/acute infec-

tions have evolved and may vary between different

PV groups.

The infectious cycle of PVs is linked to the differ-

entiation program of the keratinocyte (Fig. 1). The

virion enters basal keratinocytes, probably targeting

stem cells through microwounds or the hair follicles

[5-7]. The precise nature of the cell surface receptor/s

that allow for the initial attachment to the cell re-

mains disputed [8, 9]. However, cell attachment

and entry are not the limiting factors for infection,

as they do not grant virus replication and virion pro-

duction [10]. Actually, infection does not require the

virus to be in form of virion, as skin abrasion and

exposure to the naked viral genome are able to re-

capitulate the complete natural history of the infec-

tion in different animal models [11]. The naked viral

genome is incorporated into the nucleus after the

cell completes one mitosis cycle and replicates

there as low-copy episomes. Genome integrity and

correct segregation to the daughter cells is ensured

by the E1 and E2 viral proteins [12, 13]. Viral replica-

tion is performed by high-fidelity cellular polymer-

ases, in parallel to the replication of the cellular

genome [14].
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As keratinocytes migrate upwards and enter the

differentiation process, they stop replicating and

undergo changes in lipid biochemistry, protein

specializations and fusion into cornified sheets for

preventing water loss and eventually nucleus loss,

cell death and shedding. The E6 and E7 PV proteins

hijack the checkpoint mechanisms ensuring that the

different cell cycle steps are completed properly.

That allows the differentiating keratinocyte to enter

uncontrolled proliferation [15, 16]. The E7 protein

binds to Retinoblastoma family members and pro-

motes their degradation [17], which results in the

release and activation of the E2F transcription factor

family, inducing unscheduled re-entry into S-phase

cell cycle. The E6 protein prevents the induction of

apoptosis in response to such unscheduled S-phase

entry through degradation of p53 [16]. Finally, the E5

protein promotes hyperproliferation and prevents

apoptosis of infected cells and is likely to facilitate

malignant progression [18]. Thus, a chronic PV in-

fection results in an increased proliferation activity

in a cell that should not be replicating and is further

depleted of quality control mechanisms. As a conse-

quence of this unchecked cell cycle, the host cell

accumulates mutations over time predisposing to

the development of PV-associated cancers.

Following cellular differentiation, the expression

of E6 and E7 is replaced by expression of E1, E2, E4

and E5 [19, 20]. As a result, viral copy number

amplifies to thousands of copies per cell [21]. In

the upper layers of the epithelium, viral gene expres-

sion shifts towards the L2 and L1 capsid proteins,

A B

Figure 1. Genome organization and life cycle of PVs. (A) Schematic representation of PV dsDNA genome, exemplified on

HPV16, showing the location of the early (E) and late genes (L) and of the URR. (B) Summary of PV genes functions. Genes

involved in similar functions are indicated with similar colours: green, genes implicated in oncogenesis; orange, viral replication

genes and blue, viral capsid genes. (C) Schematic view of the PV16 life cycle. The squamous epithelium is represented on the left

and the genes expressed in each stage of the keratinocyte differentiation program are noted at the right. PVs infect keratinocytes

in the basal layer of the epithelium that become exposed through microwounds. The viral genomes are established in the nucleus

as low-copy episomes and early viral genes are expressed. The viral genomes are replicated in synchrony with cellular DNA

replication. After cell division, one daughter cell migrates away from the basal layer and undergoes differentiation. Differentiation

of HPV-positive cells induces the productive phase of the viral life cycle, which requires cellular DNA synthesis machinery.

The expression of E6 and E7 deregulates cell cycle control, pushing differentiating cells into S phase, allowing viral genome

amplification in cells that normally would have exited the cell cycle. The late-phase L1 and L2 proteins encapsidate newly

synthesized viral genomes and virions are shed from the uppermost layers of the epithelium
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which are targeted to the nucleus and autoassemble

into virions, encapsidating the viral genome [22].

Finally, viral release proceeds without cell lysis.

The E4 protein may contribute to viral egress in the

upper epithelial layer by binding keratin filaments

and disrupting their structure, but virions are

essentially released through the normal process of

desquamation [14].

Clinical presentations of PV infections

The clinical manifestations of PV infection depend

on multiple factors including the viral genotype, the

genotype of the host, the type of epithelium infected

(which could be considered as the phenotype of

the host cell) and environmental factors such as

the status of host immunity and nutritional factors.

A detailed description of the different clinical pres-

entations of PV-related diseases, for different hosts

and anatomical locations is given in Supplementary

Table S1.

The majority of PV infections are subclinical and

do not cause any physical lesions [23]. PVs are com-

monly present in normal skin and mucosa of healthy

individuals, suggesting commensalism/mutualism

between PVs and their host cells [23, 24]. Infection by

cutaneous PVs occurs rapidly after birth, as both

viral DNA and antibodies are detected in infants

and children [25, 26]. For certain PVs, the infection

becomes clinical and may cause benign, self-limiting

proliferative lesions, typically seen as warts affecting

children in boundary epithelia in the fingers, lips and

eyelids. Some lesions may be difficult to eradicate,

evading immune surveillance of the host for a pro-

longed period of time. Nevertheless, in most cases,

they are eventually controlled by the immune system

and disappear after 2–3 years [27]. Sexual transmis-

sion of certain PVs is also recognized as a cause

of anogenital warts, possibly the most common

sexually transmitted disease [28]. However, not all

PVs causing anogenital infections are sexually

transmitted, as viral DNA and antibodies can be

found in children and in individuals who had never

had sexual intercourse [29, 30]. Anogenital PVs may

be transmitted from mother to child by direct con-

tact during labour [31, 32], and vertical transmission

is often related to juvenile recurrent respiratory

papillomatosis [33] and to genital warts [34].

However, the non-concordance of type specific PV

between mother and newborn suggests the import-

ance of additional horizontal transmission routes

such as manipulation with infected hands, bathing,

towels or fomites [28, 35, 36].

Only a limited number of evolutionarily related

PVs cause persistent infections that pose a risk

for development of high-grade lesions, which are

precursors of anogenital cancers [37, 38]. Potential

to induce malignant transformation is linked to

specific activities of the E5, E6 and E7 oncogenes,

exclusive to oncogenic PVs. Only the E6 protein

in oncogenic PVs is able to induce degradation of

the p53 cellular protein, thus promoting uncon-

trolled cell growth [39, 40]. Also, the E5 protein in

oncogenic PVs decreases exposure of the infected

cells to immune surveillance and decreases cellular

dependence from external growth factors [41, 42].

Oncogenic PVs are responsible for virtually all

cases of cervical and anal cancer cases and for a

fraction of cancers of the penis, vagina, vulva

and oropharynx (Fig. 2). Progression of precursor

lesions to invasive cancer usually requires more

than one decade, which allows time for the can-

cer screening programs, identification and treat-

ment [27].

PV DIVERSITY AND TAXONOMY

The study group of PVs, within the International

Committee for the Taxonomy of Viruses, provides

guidelines for PV classification and nomenclature

(http://ictvonline.org/index.asp). Biological tax-

onomy is a human convention, and changing bor-

ders between categories reflect disagreements

between splitters and lumpers. Virological tax-

onomy is also disputed [43], but a clear definition

of viral taxonomical levels is essential for compar-

ability between datasets. Since 2004, PV taxonomy

relies on nucleotide sequence comparisons [44], and

since 2010, PV classification should integrate phyl-

ogeny, genome organization, biology and pathogen-

icity [45]. The L1 gene has been chosen as

yardstick for building PV comparisons, and taxo-

nomic categories are based on percentages of

identity at the nucleotide level in this gene.

Threshold definition is facilitated because the distri-

bution of evolutionary distances among PVs shows

a multimodal distribution [44–46], even if these

distances are not homogeneous throughout the

whole PV tree [46].

Viral taxonomy standards do not implement taxo-

nomic categories below viral species. However, for

the PV community, the clinically relevant taxonomic

level is the ‘type’: two PV genomes sharing more
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than 90% nucleotide identity in the L1 gene belong

into the same PV type [44]. Isolates from closely

related PV types may show very different pheno-

types. As an example, HPV16 and HPV31 are sister

taxa and display similar tropism, but HPV16 is 15

times more prevalent in cervical cancer than HPV31

[47]. Similarly, HPV6 and HPV11 are sister taxa and

cause similar productive lesions, but differ in trop-

ism, as HPV6 is more often associated to genital

warts, whereas HPV11 is more often associated to

respiratory papillomatosis [48, 49]. The International

Agency for the Research on Cancer classifies also

PVs at level of type depending on their carcinogen-

icity (Fig. 3). The clinical focus at this taxonomic

level is further obvious in the current developing

trends of commercial assays for PV identification,

essentially in the context of cervical cancer

screening, which provide tools for genotyping al-

ways at the level of PV types [50], as well as in the

choice for vaccination targets.

Around two-thirds of the full-length genome PV

types entries in the Genbank correspond to HPVs.

The strong research focus on PVs and cancer has led

to the description of around 60 types in the AlphaPVs

genus, which harbours all oncogenic HPVs

associated to anogenital cancers. The advent of

rolling circle amplification first and of next-

generation sequencing later have largely expanded

Figure 2. PV phylogeny reconstruction. Best-known maximum likelihood nucleotide phylogenetic tree of the concatenated E1E2L1L2 gene sequences of full-

length 263 PV genomes. Phylogenetic reconstructions yield four well-supported PV supertaxa. Colour code highlights the four crown groups: red, Alpha-Omikron-

PVs; green, Beta-Xi-PVs; ochre, Lambda-Mu-PVs; blue, Delta-Zeta-PVs and white, PVs without well-supported phylogenetic relationships. Branches in black

correspond to HPVs and branches in grey to non-HPVs. Outer labels indicate the most common tropism for the groups encompassing HPVs. Carcinogenicity of

HPVs is indicated: a black dot indicates International Agency for Research on Cancer (IARC) group 1; a white dot indicates IARC groups 2A or 2B. Animal PVs with

carcinogenic potential are marked with a black triangle. Asterisks on branches correspond to ML bootstrap support values. Two asterisks indicate maximal support

values; one indicates support values between 90 and 50; and values under 50 are not shown
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the number of HPVs classified as Beta- or GammaPVs,

with both genera spanning now over hundred HPV

types. Results from metagenomic surveys suggest that

we may have already identified most human AlphaPVs

[51], whereas most of the unexplored HPV diversity

may belong within the Beta- and GammaPVs [52, 53].

This trend is also reflected in the evolution of the num-

ber of PV sequences available in the Genbank, with

AlphaPVs reaching a plateau, whereas BetaPVs steadily

increase and the number of GammaPVs has rocketed

(Fig. 4). It is very interesting to note that two PV genera

(Mu- and NuPVs) encompass only three HPVs for

which no close relative has been described thus far.

Should this difference in number be true, it would

imply a large variation in differential success, as

measured in terms of number of lineages infecting

the same host, for different PV genera, in the

sequence GammaPVs>BetaPVs�AlphaPVs>>

MuPVs�NuPVs.

PV EVOLUTION

The consensus in the PV community poses that par-

tial phylogeny mirroring between hosts and viruses

suggests that virus–host coevolution is the main

driving factor of PV evolution, even if other

mechanisms also contribute significantly [54, 55].

PVs are thus conceived to be well adapted to their

hosts and to evolve slowly.

Mutation and substitution rates in PVs

PVs do not encode for a DNA polymerase, and the

viral genome is replicated during S-phase by high-

fidelity cellular polymerases with error correction.

Mutation rates and mutational biases ought to be

thence close to those of the hosts. However, genome

composition and codon usage preferences in HPVs

do not match those of the host genome. They are

instead enriched in A+T and display extreme codon

usage preferences [56–58], as much as that there is

not a single instance of match between the most

used synonymous codon by HPVs and by human

genes [56]. These compositional differences pos-

sibly reflect a bias in the mutation/selection evolu-

tionary processes that still needs to be understood.

Regarding mutation, it is conceivable that viral

infection could modify the polymerase biases by

altering the biochemical environment for PV gen-

ome replication. Additionally, the PV genome could

be a target for the cellular APOBEC3 cytidine

deaminase [59], resulting in a C>>T bias similar

Group 1 
Carcinogenic to 
Humans 

Sufficient evidence of 
carcinogenicity in 
humans and in 
experimental animals 

111 agents, including 
8 biological agents: 
- Epstein-Barr virus 
- Helicobacter pylori 
(infection with) 
- Hepatitis B virus (chronic 
infection with) 
- Hepatitis C virus (chronic 
infection with) 
- Human immunodeficiency 
virus type 1 (infection with) 
- Human papillomavirus 
types 16, 18, 31, 33, 35, 
39, 45, 51, 52, 56, 58, 59  
- Human T-cell 
lymphotropic virus type I  
-Kaposi sarcoma 
herpesvirus 

Group 2A 
Probably 
Carcinogenic to 
Humans 

Limited evidence of 
carcinogenicity in 
humans and sufficient 
evidence of  
carcinogenicity in 
experimental animals 

65 agents, including 3 
biological agents: 
-Human papillomavirus 
type 68 
-Malaria (caused by infection 
with Plasmodium falciparum in 
holoendemic areas) 
-Merkel cell polyomavirus 

Group 2B 
Possibly 
Carcinogenic to 
Humans 

Limited evidence of 
carcinogenicity in 
humans and insufficient 
evidence of  
carcinogenicity in 
experimental animals 

274 agents, including 
6  biological agents: 
-BK polyomavirus 
-Human immunodeficiency 
virus type 2 (infection with) 
-Human papillomavirus 
types 5 and 8 (in patients 
with  
epidermodysplasia 
verruciformis) 
-Human papillomavirus 
types 26, 53, 66, 67, 70, 
73, 82 
-Human papillomavirus 
types 30, 34, 69, 85, 97 
(Classified by phylogenetic 
analogy to the HPV genus 
alpha types classified in Group 
1)  
-JC polyomavirus 

Group 3 
Not classifiable 

Inadequate evidence of 
carcinogenicity in 
humans and in 
experimental animals 

504 agents, including 
5  biological agents: 
-Human papillomavirus 
genus beta (except types 5 
and 8)  
and genus gamma  
-Human papillomavirus 
types 6 and 11  
-Human T-cell 
lymphotropic virus type II 
-SV40 polyomavirus 
-Hepatitis D virus 

Group 4 
Probably not  
Carcinogenic to 
Humans 

Evidence suggesting 
lack of carcinogenicity 
in humans and in 
experimental animals 

1 agent, no biological 
agent 

Figure 3. Classification of carcinogenicity used by the International Agency for Research on Cancer (IARC). IARC’s programme

relies on international working groups of scientists expert in the particular area under investigation. The working groups analyze

the information from case reports and epidemiological studies on humans, animal studies and other relevant biological data

to evaluate the carcinogenicity of different agents to humans. Agents are classified into one of the four carcinogenicity groups.

(Data extracted from IARC Monographs vol. 100B and 104.)
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to those observed in several cancer genomes [60].

Finally, viral genome replication occurring in superfi-

cial layers of the skin may be exposed to increased UV

radiation and therefore subject to additional error-

prone mechanisms linked to resolution and repair

of cyclobutane pyrimidine dimers [61]. Regarding se-

lection, three adaptive explanations for the biased

codon usage preferences in PV genes have been

proposed. First, wild-type PV genes are usually poorly

translated in cell culture [62, 63]. It has been classic-

ally claimed that PV codon usage preferences have

been selected for because they decrease viral protein

synthesis, thereby lowering immune exposure [64]

and experimental evidence in vivo with the rabbit

model also points in this direction [65]. Second, it

has been postulated that codon usage preferences

in PVs may have evolved to match the varying tRNA

profile of the keratinocyte through the differentiation

program [66]. Finally, the barely 8-kb PV genome ac-

commodates overlapping genes, transcription, regu-

latory and splice sites [67] and is subject to complex

differential methylation during the life cycle while

avoiding accumulation of CpG islands that could

elicit immune response [68]. The biased codon usage

preferences of PV genes may thus reflect the trade-off

between all these forces optimizing the protein

coding and non-protein coding information en-

crypted on the viral genome.

Estimates for PV substitution rate, i.e. the rate at

which mutations are fixed in the PV genome, fit well

our common understanding of viral mutation rates,

with dsDNA viruses showing the slowest evolution-

ary rates among viruses [69, 70]. Estimates for PV

coding regions render values between 2� 10�8 and

5� 10�9 substitutions per site per year [71, 72],

whereas the non-coding, regulatory region of

Figure 4. Evolution of the number of PV sequences available in the GenBank. Data have been extracted at the level of type for the

genera encompassing PVs infecting humans: Alpha-, Beta-, Gamma-, Mu- and NuPVs. The evolution of the number of different

full-length genome HPV16 variants is also shown. The trends in the number of sequences available indicate that although

the members of AlphaPVs, the best-studied PVs, have reached a plateau, the number of Beta- and GammaPVs is still increasing.

Only three members within Mu- and NuPVs have been described. Although largely undersampled and constantly growing, the

number of animal PVs represents one-third of the global known PV diversity
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the PV genome accumulates mutations around

two-times faster than the coding regions [73, 74].

These values are slightly higher but around the same

order of magnitude than for mammals, reinforcing

the idea that PVs use the cellular polymerases with

proofreading capacity. Experimentally, the PV epi-

some can be maintained in cell culture at numbers

of 500 copies per cell without obvious generation of

diversity among the intracellular viral genomes, as

no variation has been reported with a frequency

above 0.5% in the W12 cell line, which harbours

HPV16 episomes [75]. Thus, evolutionary rates in

PVs may occur too slowly to be studied by means

of serial sampling or historical clinical material.

Analyses of HPV16 sequences show that there is

not enough signal-over-noise to infer evolutionary

rates by means of root-to-tip phylogenetic regres-

sion [76]. Indeed, two BPV1 isolates sampled in

Sweden and in Wisconsin more than 30 years apart

displayed 99.89% nucleotide identity, not different

from the standing genetic variation of this virus [77].

Recombination in PVs

The common understanding about PV dynamics is

that recombination plays a minor role in PV evolu-

tion. However, the molecular evidence suggests that

recombination is central to PV genome replication,

and phylogeny and comparative genomics pinpoint

several recombination events along the evolutionary

history of PVs. Some of these events have had pro-

found implications for colonization of new niches

and the emergence of oncogenic phenotypes.

PV replication requires homologous recombin-

ation activity. Replication of the PV genome occurs

bidirectionally during the non-productive stages of

the infection, yielding episomes [78] and switches

during the productive stages of the infection to-

wards a rolling circle-like replication that generates

concatenated viral genomes [79]. Homologous

recombination may provide the molecular tool

for resolving, excising and re-circularizing the

concatenated genomes into individual plasmid

genomes that are eventually packed as virions

[80]. Resorting to homologous recombination might

allow for rare error events of non-homologous re-

combination and indeed, the presence of recombin-

ant HPV16 sequences has been reported during

natural infection [81]. Using the rabbit model, experi-

mental infection with a mixture of complementing,

truncated viral genomes resulted in productive

lesions that contained possible recombinant se-

quences from both parental DNA sequences [82].

Several independent recombination events have

also shaped the evolution of Papillomaviridae.

The clinically important AlphaPVs have undergone

recombination event(s) between the early and the

late regions of the genome [42, 83, 84]. As a conse-

quence, the phylogenetic relationships among

AlphaPVs differ when inferred based on the early or

the late genes. Reconstructions based on genes

related with transformation or with replication (i.e.

early genes) cluster together viruses associated

with similar clinical manifestations, cutaneous

warts, benign mucosal proliferative lesions or mu-

cosal lesions with malignant potential. This pattern

disappears when the phylogeny is based on the cap-

sid genes (i.e. late genes) [42, 83]. This recombin-

ation event is most likely related to the integration of

the ancestral E5 ORF on the backbone of the ances-

tral AlphaPV genome, as there is a clear match

between the E5 genotype and the associated pheno-

type of the infection [42]. The integration of the E5

gene provided a way to immune evasion by modifying

membrane chemistry [85, 86] and decreasing presen-

tation of viral epitopes [87, 88]. Hence, the acquisition

of a novel repertoire of mechanisms for sustaining cell

growth and for evading immune response triggered an

adaptive radiation that generated the three main lin-

eages of the AlphaPVs [42]. Integration of this E5 block

occurred in the boundary between the early and the late

regions of the PV genome backbone (Fig. 5). This gen-

omic locus has been implicated in at least five inde-

pendent integration events during the evolution of the

Papillomaviridae [2, 89], either involving additional

coding regions, such as E5 ORFs in DeltaPVs or in

TauPVs, or long non-coding regions of unknown func-

tion in different members of the Lambda-MuPV

crowngroup and of the Beta-XiPV crowngroup.

Recombination events have also occurred be-

tween distantly related PVs. This has been the case

of certain patchworked monophyletic PVs infecting

cetaceans, sharing the early genomic region with

cetacean PVs in the Alpha-OmicronPV crowngroup

and the late region with bovine PVs in the Beta-XiPV

crowngroup [55, 90, 91]. Finally, recombination be-

tween very distant viral relatives can also lead to fix-

ation, as in the chimeric viruses retrieved from

bandicoots and displaying genomic features of two

different viral families: the early, transforming genes

of polyomaviruses and the late, capsid genes of PVs

[92]. Both Papillomaviridae and Polyomaviridae are

small circular dsDNA viruses, and the convergence
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A

B

Figure 5. Global scenario of PV evolution. (A) Ancestral amniotes were already infected by ancestral PVs. The four PV crown groups (labelled in red, green, blue

and orange) appeared during the evolution of skin glands and hairs (250–150 Mya). Subsequent mammalian radiation triggered further a second wave of PV

diversification (110-60 Mya). (B) Zoom into the evolutionary scenario for lineages in the Alpha-Omicron-PVs crown group, with individual, rare events largely

influencing the evolutionary history. A recombination event yielded a novel viral lineage with the early genes from an Alpha-Omicron-PV infecting cetaceans and the

late genes from a Beta-Xi-PV infecting artiodactyls. Separately, in a PV lineage infecting the ancestor of Old World monkeys and apes, an integration event between

the E2 and the L2 genes introduced a DNA segment encoding for the ancestral E5 ORFs. This integration triggered an adaptive radiation that generated three viral

lineages with different tropism and different clinical manifestations. In one of these lineages, the E6 proteins acquired the ability to degrade p53. Some viruses

in this lineage are responsible for anogenital and oropharyngeal cancers in humans
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on similar replication mechanisms may allow

for such extremely rare events of non-homologous

recombination. Fixation of non-homologous recom-

bination shows a preference towards events

involving non-coding regions, possibly because the

probability of a non-homologous recombination

event involving a coding region to maintain gene

functionality is very low.

Globally, recombination has played a role during

the evolution of Papillomaviridae, as it has been

shown to occur in vivo, and several independent

instances of fixation have been documented at very

different levels of the PV tree.

Within-host evolution

The study of within-host evolution is key for under-

standing the evolutionary dynamics of rapidly

evolving viruses, such as human immunodeficiency

virus or hepatitis C virus [93, 94]. For PVs, because of

the low evolutionary rate, it is commonly assumed

that generation of viral diversity during the course

of PV infection is negligible. However, given the

combination of large population size, large infection

time and large prevalence, the study of generation of

diversity in chronic PV infections and its connection

with the differential outcome of the disease deserves

deeper attention.

A careful analysis of published data reveals that

generation of diversity does occur during chronic PV

infections. Retrospective sequence analysis of HPVs

in recurrent respiratory papillomatosis showed no

evidence of strain replacement in 67/70 cases during

a median follow-up of 4 years, with an individual case

of 22 years follow-up [95]. However, in 5% of the

patients, the original strain was replaced by another

one very closely related, which could be explained

either by viral replacement or by intrapatient evolu-

tion [95]. Similar results have been reported from

the study of PV infections in women in consecutive

genital/cervical samples. In most cases of persistent

infection with HPV16, the same variant is retrieved

during serial sampling [96–98]. However, changes in

the predominant variant, as identified by changes

in one or two nucleotides through consensus

sequencing, have been reported in 4-8% of women

during a follow-up of up to 2 years [97, 99–101].

Retrieval of the same PV variant during consecutive

samplings is usually interpreted as evidence for per-

sistent infection, whereas retrieval of a different vari-

ant is interpreted as a novel infection and never as a

result of a bottleneck or of a selective sweep upon

mutation. Claiming the case of selective sweep re-

quires evidence for generation of diversity during the

course of an infection; indeed deep sequencing of

viral genetic material from clinical lesions showed

that 3/7 samples contained polymorphic sites

above the reliable mutation threshold, reaching

frequencies of up to 5% for the minor sequences

[75]. The study of viral persistence has traditionally

been assessed through Sanger sequencing or by

amplicon hybridization with probes targeting vari-

ant-specific polymorphisms, but such approaches

are unlikely to capture the dynamics of slowly

evolving viruses.

Conspicuous evidence of PV intrapatient evolu-

tion has been described in two independent cases

of lung cancer developed in patients after a 20-year

long history of recurrent respiratory papillomatosis,

associated to HPV6 [102] and to HPV11 [103].

In both cases, viral genomes retrieved from the ma-

lignant lesions contained duplications of the regula-

tory region, a feature absent from the viral genomic

sequences retrieved from benign lesions in the same

patient. Colonization of a novel niche—the lung epi-

thelium in both cases—may thus have provided with

an evolutionary advantage to a rare mutant that

appeared after a recombination event resulting in

duplication of the regulatory region. These examples

of parallel intrapatient evolution illustrate that highly

prevalent, long-lasting infections by PVs result in

viral effective population size values large enough

to efficiently explore sequence space and to allow

mutants with an advantage to be fixed, even if mu-

tation rate and if recombination rate are (very) low.

Along this line, HPV6 and HPV11 are common in

healthy tissue of the female anogenital tract [104]

and appear as the main causative agents of genital

warts [105] but are associated with occasional cases

of anogenital carcinomas [106]. Characterizing the

PV population in such rare malignant lesions may

help understand the intrapatient viral dynamics in

slow evolving viruses.

Ecology of the virus–host interaction

Viruses causing acute infections usually transform

the infected cell into a virus factory, eventually

leading to cell death and release of the viral progeny,

while eliciting a strong, protective immune response

[107]. PVs, however, do not kill the infected cell.

Instead, most PV infections persist for decades

but are not very productive. Only warts caused by

PVs have a faster clinical course and are highly
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productive lesions. Natural infection by PVs elicits

specific immune response in most cases [26, 108]

but only a limited number of individuals develop

high antibody titres that provide some degree of pro-

tection against reinfection with the same type [109].

Further, infections by multiple PVs in healthy women

and in low-grade lesions are more common than

single infections [110]. Nevertheless, it is not clear

whether certain PVs tend to appear together in co-

infection patterns more often than expected by

chance [111–113]. The presence of multiple infec-

tions by oncogenic PVs has an additive effect on

the risk of developing high-grade lesions [114].

However, the mutual interactions between types

causing simultaneous infections and the interplay

with the host’s immune system are not necessarily

correlated with the occasional development of can-

cer, because infectious tumours derive most likely

from a single clonal expansion event [115] and indi-

vidual lesions are associated to individual PVs [116].

Oncogenic potential in PVs is linked to a viral

monophyletic lineage (Fig. 5a), characterized by

two specific synapomorphies: the ability of the viral

E6 protein to induce degradation of the cellular p53

protein [39, 40], and the presence of a particular E5

protein, able to downplay immune exposure in in-

fected cells [42]. The combined effect of both viral

activities allows these viruses to establish chronic

infections through sustained low-level replication

of the infected cell and immune escape. Such

chronic infections produce very low amounts of vir-

ions but last for decades. The non-oncogenic sister

lineages (Fig. 5b) have instead evolved towards be-

nign lesions that grow fast and produce large

amounts of virions but that are ultimately controlled

by the immune system and cleared. A strong trade-

off between virion productivity and immune expos-

ure is thus evident in the alternative evolutionary

strategies of sister viral lineages. Long-lasting un-

controlled cellular replication in chronic infections

eventually leads to accumulation of mutations [117]

and in some cases to genomic instability linked to

integration of the viral genome in the cellular gen-

ome [118, 119]. Malignant growth is therefore a non-

adaptive consequence of the increased potential in

oncogenic PV for persistence without eliciting im-

mune response, and cancers should be conceived

as a sink in the ecological source and flux dynamics

of PV infections. In the natural history of PV infec-

tions, cancers are a very particular stage because

they are a double dead end: (i) for the virus, because

cancers virtually do not produce virions and are

therefore not infectious and (ii) for the host, because

invasive cancers do not spontaneously revert,

whereas precancerous lesions do spontaneously re-

vert in the majority of cases following immune

activation.

Studies on the time trends in HPV type prevalence

in cervical cancer during the last 70 years have

shown that the relative contributions of the different

oncogenic HPVs have not varied from 1940 to 2007

[120]. Also, viral DNA similar to HPV18 and to

HPV91 was retrieved from a genital lesion in a fe-

male XVI-century mummy, [121]. Nevertheless, sta-

bility of HPV type prevalence values in cancer does

not necessarily imply stability of HPV type preva-

lence values in the healthy population, in the same

way that viral prevalence in cancer [47] does not

reflect circulating viral prevalence [104]. Globally,

our ecological understanding of cancers linked to

PV infections is still very poor, especially when

compared with the strong epidemiological research

developed around the burden of HPVs-related

diseases.

Long-term evolution of PVs

Coevolution with their hosts has been historically

considered as the main force driving PVs evolution

[122]. However, virus–host coevolution contributes

to explain barely one-third of all events needed to

reconcile the evolutionary histories of PVs and their

hosts [55]. Other mechanisms such as intrahost du-

plication, lineage sorting—‘missing the boat’—or

host-switch [123] need to be invoked to fully explain

the global diversity of PVs and their relationship with

their hosts [54, 55]. These results should, however,

be interpreted with caution because PV hunting has

been systematic in humans but remains opportun-

istic in most hosts, thus overestimating the contri-

bution of intrahost duplication and of lineage

sorting [1, 55]. Further, analyses of virus–host

coevolution require knowledge on host-specificity

that is commonly missing, and broad host-range

may be more common than anticipated for PVs

[24, 55, 89, 124, 125]. Finally, evolutionary related-

ness between HPV16 and HPV18 sequences

retrieved from the same geographical continent

has served to sustain the claim for coevolution be-

tween PVs and human populations in recent times

[74, 126], although this match was not observed for

HPV6 [127]. From a more recent comprehensive

sampling of the worldwide HPV16 diversity [128],

we suggest that recent PV evolution may have been
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punctuated by episodes of expansion and bottle-

necks/selective sweeps that deserve further study.

The evolutionary scenario that fits best the current

description of the PV genetic diversity is a series of

basal duplication events followed by limited virus–

host coevolution [55] (Fig. 5). The E6 and E7 genes

are very divergent, and the organization of these loci

is highly variable across the PV tree. The ancestral

PV, containing at least the core of the E1-E2-L2-L1

genes, may have already infected ancestral amniotes

some 300 Mya, by the time of divergence between

the ancestors of birds and the ancestors of mam-

mals [2]. During some 100–150 My, mammals

evolved a glandular epithelium, associated to

changes in beta-catenin pathways, lipid complexes

and keratinized structures, that resulted in seba-

ceous, sweat and mammary glands and ultimately

hairs [129]. Ancestral PVs may have diversified while

colonizing these new niches, generating the ances-

tors of the extant PV crowngroups. No PVs have

been retrieved—yet—from monotremes, but the

presence of a PV pseudogene integrated in the platy-

pus genome shows that they have been exposed to

these viruses [130]. The single PV genome retrieved

from a marsupial host is not basal to all PVs infecting

placentals [131], suggesting that the initial PV diver-

sification predated the split between both mamma-

lian clades. The ancestral placentals were thus

already infected by several ancestral PV lineages,

and viruses expanded with their hosts as they

radiated. The Alpha-OmicronPV crown group

evolved towards an essentially mucosal tropism,

whereas the Beta-XiPV crown group evolved towards

a commensal cutaneous phenotype. The conspicu-

ous absence in the Delta-ZetaPV crown group of PVs

infecting primates suggests an event of lineage

sorting. More recently, one recombination event

involving the ancestral AlphaPVs occurred before

the split between old world monkeys and apes and

led to the integration of small hydrophobic ORFs

with oncogenic activity, the future E5 genes [42].

The novel genomic resources triggered an adaptive

radiation that generated at least three lineages

allowed for a change of tissue tropism and

diversified the phenotypic presentations of the infec-

tion (Fig. 5, Supplementary Table S1). In one of these

lineages, the E6 protein evolved later a gain of func-

tion favouring degradation of p53 [39, 40]. All onco-

genic PVs associated to human anogenital cancers

stem from this latter lineage and share a recent com-

mon ancestor [42, 132], possibly contemporaneous

with the split between old world monkeys and apes

(Fig. 5).

At shallower levels, the evolutionary forces driving

diversification and differential ecological success

between closely related viruses, such as the success-

ful HPV16 and the obscure HPV35, are not well

known. Albeit not systematically, experimental

interspecies transmission was explored since the

early stages of PV discovery [133, 134], and cross-

species infection occurs under natural conditions

[55, 89, 124, 125]. For certain sister PVs infecting

closely related hosts, the barrier to cross-species

transmission might rather be cultural than biolo-

gical. This may be the case of HPV13, PtPV1 and

PpPV1, causing similar oral proliferative diseases

in humans, chimpanzees and bonobos [135–137].

Such cultural barriers allowing for isolation and fix-

ation of viral lineages may be especially effective

when viral spread is linked to intimate or sexual host

contact and when the viruses involved mutate

slowly, as is the case for PVs or for certain herpes

viruses [138, 139].

Novel ecological pressures linked to

vaccination

The introduction of vaccines targeting a subset

of the circulating PV diversity implies a dramatic

change in the differential ecological pressures to

virus circulation. Therefore, evolutionary and ecolo-

gical considerations on vaccines and PV dynamics

have both fundamental and clinical implications.

Such considerations address the individual levels

of protective immunity elicited by vaccination, the

possible generation of herd immunity, i.e. the pro-

tection against viral infection in non-vaccinated in-

dividuals elicited through barrier effect of vaccinated

individuals and the possibility for the pathogen

to evade immune restrictions through sequence

evolution.

Two prophylactic HPV vaccines are currently avail-

able: a bivalent vaccine targeting HPV16 and HPV18

[140], and a quadrivalent vaccine additionally tar-

geting HPV6 an HPV11 [141]. Both contain recom-

binant L1 proteins that autoassemble into hollow

structures mimicking virions, called virus-like par-

ticles. An enhanced vaccine including virus-like

particles from five additional targets—HPV31, 33,

45, 52 and 58—has just been licensed [142]. This

vaccine is intended to prevent infection by HPVs

responsible for the majority of anogenital cancers

(Fig. 6), and it is envisioned that extending the
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repertoire of viruses in the formulation should

suffice to cover eventual type replacement dynamics

[143]. Despite their incomplete status, these

pseudo-viral structures can elicit protective

antibodies [144]. Indeed, immunization results in

generation of high antibody titres in above 95%

vaccinated individuals [140, 141]. Vaccination deliv-

ery of the viral antigens by intramuscular and

the presence of adjuvant molecules acting as local

immune modulators are possibly responsible for

the very high level of seroconversion and for the high

antibody titres compared with those elicited during

natural infection [14]. Additionally, immunization re-

sults in partial cross protection against viruses not

directly targeted by the vaccine formulation, essen-

tially HPV31 and HPV45, close relatives of HPV16

and HPV18, respectively [145–147]. The strong im-

mune response elicited through vaccination and

the sexual transmission dynamics of infection pre-

dicts a strong herd immunity effect [148], compared

with that induced by the limited immune response to

natural infection [149]. Indeed, data on the decrease

of incident cervical lesions and genital warts suggest

that vaccination results in the establishment of

a herd immunity effect in unvaccinated women

and partly also in unvaccinated young men [146,

150, 151].

Pathogens targeted by vaccination may evolve

escape mutants that render the vaccine ineffective.

For PVs, such phenomenon is described in the lit-

erature as type replacement. The strong protective

response against the targeted viruses, the induced

cross protection and the low evolutionary rate of PVs

have led to the consideration that type replacement

after massive vaccination is unlikely [143, 152].

However, interactions between PVs and the immune

system remain difficult to interpret. As an example,

acquisition of a novel infection by HPV33 seems

to occur more often in unvaccinated people al-

ready exposed to other oncogenic HPVs [153].

Nevertheless, a major threat for type replacement

after vaccination would be the emergence of a viral

recombinant encompassing the early region of one

of the highly oncogenic PVs and the late region of

one virus not targeted by the vaccine [1]. Even if both,

recombination rate and the probability of such two

viruses to simultaneously infect the same cell are

very low, combination of large population size

and chronic infection may provide the (remote) pos-

sibility for such an event to occur, and the selective

Figure 6. Fraction of anogenital cancers caused by HPVs infections preventable through vaccination. Data should be read as

follows, with vaginal cancer as an example: every year, 9,000 new vaginal cancer cases are diagnosed worldwide, and 74% of them

are associated to infection by HPVs. This is known as PAF, Population Attributable Fraction. From these, 77.1% are associated to

HPV16 or HPV18, and could be prevented using the bivalent or the quadrivalent vaccine; 0.9% are associated to HPV6 or HPV11,

and could be prevented by the quadrivalent vaccine; 13.7% of the rest of HPV-related cases are associated to HPV31, HPV33,

HPV45, HPV52 and/or HPV58, and could be prevented using the nonavalent vaccine; the remaining 8.3% of the vaginal cancer

cases are not targetted by any current vaccine. Data extracted from the Catalan Institute of Oncology HPV Information Center, last

queried on June 2014 (http://www.hpvcentre.net/)
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advantage under the enormous pressure of the vac-

cine-mediated immunity would result in spread of

the recombinant.

A few ecological models addressing the dynamics

between anogenital PVs and humans have been de-

veloped. They have focused on the trade-off between

virion production and immune exposure [154], on

the connection between PV infection, cell differenti-

ation and epidermal dynamics [155], on the intrin-

sically patchy nature of the PV infection in the

epithelium and the competition between simultan-

eous viral infections and the immune system [156]

and on the impact of acquisition and clearance of

concurrent infections [157]. Although limited and

simplified, results from these models are valuable

as they suggest that many of the common assump-

tions regarding intrapatient and epidemiological

dynamics of the PV-human interaction may need

to be revised. Specifically, we still need to under-

stand why natural immunity does not always gener-

ate protective immune responses [144, 149]. Such

information is essential to make a choice between

‘susceptible-infected-resistant’ and ‘susceptible-

infected-susceptible’ models [109]. We need to

decipher whether the interactions between PVs are

or not neutral [111–113] and how multiple infections

influence the probability of clearance of each individ-

ual virus, because predictions on type replacement

largely differ depending on whether sequential or

simultaneous clearance is assumed [157]. Finally,

integration of the viral mechanisms leading to local

impairment of immune response [158–160], of the

clonal nature of each PV lesion [115, 116] and of the

complex composite structure of the target

epithelium [161] will render modelling approaches

closer to the complexity of the biological question

[155, 156].

CONCLUSION

Ever since mammals evolved skin glands and hairs,

their epithelia and mucosa have been infected by a

plethora of PVs. Decades of fundamental research

have shown that PVs have a broad genotypic diver-

sity, have experienced complex evolutionary

histories, are capable of hijacking the cellular and

immune systems at several levels and are associated

to multiple manifestations of the infection, from

asymptomatic to invasive cancer. Although infec-

tions by closely related PVs tend to display similar

clinical presentations, the forces linking viral geno-

typic and phenotypic diversity with host/viral

ecology have not been elucidated yet. We propose

that PVs are an excellent model system for the study

of chronic infections and the evolutionary interplay

between innate and adaptive immune responses

and that could become the reference model in

evolutionary medicine for the study of cancers

associated to infections. First, PVs offer a large

repertoire of very divergent viral sequences,

well sampled at several different evolutionary

scales, suitable for in-depth evolutionary and

phylogeographic analyses, which are still wanting.

Further, PVs infections display large variation gradi-

ents in several key phenotypic traits, such as prod-

uctivity, prevalence, immunogenicity, oncogenicity

and clinical presentation. Several of such traits dis-

play opposite gradients and are clear examples of

evolutionary trade-offs, chiefly between virion prod-

uctivity and immune exposure. Such combination

of genotypic and phenotypic diversity is unique

among human pathogens. Finally, human interven-

tions such as massive vaccination against selected

PVs, as well as cancer screening focused on selected

PVs, will surely have a positive impact on human

health. However, their outcome on viral circulation,

intrahost dynamics and epidemiology cannot be

ignored, and we are still far from being able to fore-

see the associated impact. The combined efforts of

epidemiology and ecology, both at the intrapatient

and at the population level, will be required to under-

stand the present and to anticipate the future of the

long lasting interaction between the few oncogenic

PVs and humans.
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